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1. THE PROBLEM

REASONS FOR A REASSESSMENT

This study analyzes yield response to nutrients in order to make optimal fertilizer
recommendations. This has been a continuing objective of agronomists and soil scient-
‘ists since Justus von Liebig's efforts in 1840. While knowledge of the dynamics of soil
fertility and crop yields is of paramount importance in providing reliable fertilizer
recommendations to farmers, the fertilizer problem is largely an economic one, and from
the very beginning it has been recognized as such. Yet, during the last 256 years agrono-
mists and agricultural economists have tended to use quite different methodologies.

The divergence began during the early 1950s when agricultural economists pro-
posed a revision of the experimental designs used to analyze yield response to fertilizers.
The production function concept postulated a smooth, concave, differentiable function,
possessing a point maximum, and characterized by substitution among all nutrients
(Baum, Heady and Blackmore, 1956; Baum, et al., 1957). The functional form was justi-
fied by the numerous combinations of fertilizer treatments needed to estimate multinut-
rient polynomial yield response surfaces with precision. A major modification in the
design of the fertilizer experiment was recommended: the use of many treatments but
few replications, instead of the customary few treatments repeated a number of times.

The production function approach had enormous effect on the scientific conception
and work of soil scientists. In the late 1950s, there were several joint efforts by agrono-
mists and agricultural economists to investigate the advantages of polynomial re-
sponses. But more than 20 years after the initial formulation of the new methodology,
soil scientists, by and large, have continued conducting fertilizer experiments following
the scientific framework and the statistical techniques developed 50 years ago (Fisher
and Eden, 1929). That is, the experiments are based on a single nutrient response with a
few treatments and several replications, with an exponential form being the frequent
choice to represent the response. At the same time, soil scientists have assumed increas-
ing responsibility in the worldwide battle against famine by preparing fertilizer recom-
mendation tables for use in developing countries. '

In reevaluating these polynomial models, Anderson and Nelson (1975) concluded
that, in many cropping situations, they result in costly upward biases of fertilizer
recommendations. This bias may be due to the presence of an extended range within
which crops do not respond to nonlimiting nutrients. Thus, the time may be propitious
for a critical reevaluation of the methodology proposed by agricultural economists, with
the hope of finding reasons for the substantial lack of common language and the scarcity.
of collaboration with soil scientists.
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AGRONOMIC PRINCIPLES

A detailed presentation of soil fertility theory is beyond the scope of this study. For
the economic and empirical analysis of the fertilizer problem it is sufficient to consider
the following five agronomic principles: (1) the “law of the minimum” of von Liebig; (2)
the notion of plateau maximum of the yield response function; (3) the influence of
weather and soil type conditions upon the response function; (4) the fertility carryover
effect; and (5) the calibration of soil tests. (See Lanzer (1979) for an expanded analysis.)

Shape of Yield Response Curve

Mitscherlich (1909) and Spillman (1923) were the first to attempt to develop an
algebraic specification for yield responses to nutrients. Independently, both scientists
selected the following relation to represent the yield response to a single nutrient:! |

y = A(1 - ec(X + b)) . R Coan

where y is yield, x is the quantity of the variable nutrient added to the soil as a fertilizer,
and A, b, and c are parameters. Parameter b is interpreted as the level of nutrient
available in the soil prior to fertilizer application. Equation (1.1) presents diminishing
returns for all x > 0, and y approaches A asymptotically from below.

Mitscherlich’s theory that the c coefficient was the same for all crops and growing
conditions, generated considerable controversy among soil scientists. Still, the algebraic
form of his yield response function is by far the most frequently used in applied research
conducted by soil scientists (Crowther and Yates, 1941; Willcox, 1947; Hanway and
Dumeml 1956; Bray, 1963; Rouse, 1968; Cope and Rouse, 1973).

| Equation (1.1) allows neither for an initial state of increasing returns nor for a final
stage of yield depression caused by excessive fertilizer use. However, empirical observa-
tions led agronomists to believe that the phase of increasing returns, is in general,
re_lativély short, and yield depression usually occurs at quantities far beyond the min-
imum needed to attain a “yield plateau” (Figure 1). The yield plateau is generally flat and
extended for macronutrients such as nitrogen (N), phosphorus (P), and potassium (K).
but the response to many micronutrients such as manganese and zinc is sharp and
extends over a short range of exposure (Corey and Schulte, 1973, p. 31). The notion that
the yield response for macronutrients tends to present a plateau maximum rather than

a point maximum seems to be well established among soil scientists.

~ Other algebraic forms proposed by soil scientists have retained the yield plateau
concept introduced in the Spillman-Mitscherlich equation. Examples are Balmukand's
(1928) “resistance” function, equation (1.2), and Cate and Nelsons ( 1971) “linear
response and plateau” functlon, equation (1 3) | | | |

= A-l + ¢(b + x)! - | ' - - '(1.2) _' '
y=min [c(b+x),A] o a3
where the symbols are as in equation (1.1). .

Agricultural economists have tended to disregard yield response mo'dels W'ith pla- |
teau because they do not allow for yield depression. Heady and Dillon (1961, p. 80), for
example state that “under many circumstances, except for potash or the s:mgle Varlable

'Both assumed that the supply of other nutrients was kept at “adequate” or “nonrestrictive” levels.
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Amount of supplied nutrient

Figure 1. General relation between any particular nutrient or growth
factor and the amount of growth made by the plant.

under certain soil climatic conditions, a function allowing negative marginal products
would be needed for fertilizer application.” However, given the acceptance of a plateau
type response by soil scientists and, given that conventional microeconomic equilibrium
analysis requires only the existence of diminishing returns, it seems that requiring nega-
tive marginal products may be too restrictive for applied research.

The choice of an appropriate algebraic form for yield response has typically been
difficult in applied research conducted by agricultural economists. Heady and Dillon
(1961, p. 210), who during the 1950s had considerable experience with this problem
state: - | -

Having fitted a number of functions, it may be found that some satisfy some
of the criteria better than others and vice versa. The function chosen as best
will depend on the weight the researcher attaches to the various criteria,
statistical and logical. At such state, the selection of a function is more of an
art than a science.
Theil (1971, p. 645) concurs: |

Statistical procedures should not be regarded as the only tool for handling

~ the selection problem. The analyst may be convinced on a priori grounds
that one specification is more realistic than another, in which case he should
feel justified in applying the former even if the latter has a slightly smaller
residual variance estimate. The real test is provided by prediction based on
an independent set of data. -

Perrin (1976) tested point vs. plateau maximum models by fitting both quadratic
and linear response and plateau (LRP) functions to the same set of experimental data.
With each estimated function, he maximized expected profits subject to the experimen-
tal grids associated with an independent set of data. Profits associated with fertilizer
recommendations from each respective function were computed from the independent
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set of data. The average profit associated with fertilizer recommendations from the LRP
function was higher than that associated with recommendations from the quadratic
function —through the difference was not statistically significant. Perrin (1976, p. 569)

concluded that it might be “surprising to some that the LRP provides recommendations
as valuable as those from the quadratic function.”

Shape of Yield Isoquants

Liebig (1840, 1863) was among the first agricultural chemists who empirically dem-
onstrated that the growth of plants depended on the uptake of chemical elements, such
as phosphorus and potassium, These discoveries led him to propose the use of soil tests
and inorganic fertilizers as means to exert control over soil fertility and agricultural
production. Liebig’s theory on the relationship between yields and nutrients is known as
the Law of the Minimum. Redman and Allen (1954, p. 4564) define the law:

This concept holds that the yield of any crop is governed by any change'in
the quantity of the scarcest factor called the minimum factor, and as the
minimum factor is increased the yield will increase in proportion to the
supply of that factor until another becomes the minimum. If another factor,

‘not at the minimum, is increased or decreased the yield would not be
affected.

The Law of the Minimum introduced two distinct concepts. The first was that crops
respond in proportion, i.e., linearly, to additions of the limiting nutrient. The second
concerned the strong complementarity among plant nutrients, i.e., the notion that var-
ious nutrients play different roles in plant physiological processes and cannot substitute
for each other. However, apparently, no statistical test of the nonsubstitution hypothesis
has ever been performed either by agronomists or by agricultural economists.

Baule (1918) generalized the Mitscherlich equation (1.1), to two and more nut-
rients. Without loss of generality, consider the two-nutrient specification:

y=A(l- e'Cl(XJL + bl)) (1- e'cz(xz + bz)) (1.4)

where y is crop yield, x, and X, are respective quantities of two nutrients added to the
soil as fertilizer and A, by, b,, ¢;, and ¢, are parameters of the model. In particular, the b
parameters are associated with the natural supply of the respective nutrient in the soil.

Balmukand (1928) proposed an alternative specification for crop multinutrient
relationships:

yl=Al+e (b +x)1 +ep(bp+x)t (1.5)

where the symbols are as before. (For a detailed account of the mathematic'al properties
of equations (1.4) and (1.56), see Heady and Dillon, 1961, pp. 89 and 97.)

A proper combination of nutrients is essential for a balanced plant growth, and in
the absence of an essential nutrient, no growth can take place. Equations (1.4) and (1.56)
are attempts to translate this concept of nutrient essentiality into a mathematical
equation. With respect to an electrical network, (1,6) states that yields have a theoreti-
cal maximum (A) that cannot be attained in general because of the existence_of asetof
resistances. By analogy, the resistances are deficiencies in the nutrient’s availability
levels. These resistances (deficiencies) act independently and can individually set an
upper bound on the value attained by the dependent variable. Neither the Baule nor the
Balmukand equations, however, strictly satisfy the concept of nutrient essentiality. In
particular, the requirement of nutrient specificity (or nonsubstitution) is not satisfied in
either (1.4) or in (1.5). However, both Baule and Balmukand worked when the mathe-
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matics of fixed proportions was still intractable and when inequalities were unfamiliar
notions to most soil scientists and economists.

Now, under the concept of strict essentiality, a multinutrient-yield specification may
be stated: '

y = min [8;(b; + x))] (1.6)
where M is the set of plant nutrients, g; is the yield response function to nutrient j, given
that other nutrients are nonlimiting. For reasons already discussed, g; is assumed to be
quasiconcave and to present, in general, a plateau maximum. Let A be the plateau
maximum of g;. The j-th nutrient is said to be at a nonlimiting level if g; for this level
equals A. On the other hand, it is assumed that g (0) = 0.

Special cases of the above formulation include the linear response and plateau
model of Liebig:

y = min [A, ¢;(b; + X,), Ca(by + X;)]. (1.7)

This specification can be traced to Cate and Nelson (1971). Another special case is the
Liebig-Mitscherlich model, which might be interpreted as a formal compromise between

Liebig's principle of nonsubstitution and Mitscherlich’s principle of diminishing returns:
| | -C(b; + x;) -Co(by + X3) |
y=min [A(1 -e ), A(l-e )] (1.8)

There are, however, other indications that the specification (1.6) closely represents
implicit assumptions (or explicit principles) largely accepted by soil scientists. In order
to design fertilizer recommendation tables, agronomists usually estimate response func-
tions for a single nutrient at nonlimiting levels; see, for example, Rouse (1968), This is, of
course, the most intuitive way of estimating the g; functions of specification (1.6). And
such an estimation procedure is justified by the shape of yield response commonly found
for macronutrients, i.e., positive response up to a yield plateau. An experienced soil
scientist usually has little difficulty in keeping the levels of all nutrients, but one, under
nonlimiting supply conditions.

Effect of Weather and Soil Type Variables and Relative Yield Theory

The study of the several factors affecting plant growth was highly stimulated by
Mitscherlich’s theory on the constancy of the proportionality factor. Mitscherlich main-
tained that the coefficient ¢ in equation (1.1) was a constant for each nutrient, irrespec-
tive of everything else, including crops. Variations in weather conditions, soil variables,
and the kind of crop would be felt only on the parameter A, the asymptotic maximum. In
the words of Russell (1973, p. 53): |

Mitscherlich’s work was extraordinarily stimulating and caused a veritable

flood of controversy when it was first developed. His equation has been of

great practical value though it is certainly not exact. Thus ... (coefficient c)

... for a particular nutrient is not a constant, but depends somewhat on the

other conditions of growth. . |
Because y/A equals 1 - e¢(b + X) a natural outgrowth of Mitscherlich’s theory was the
use of relative (or percéntage) yield as a means to standardize response data obtained
under different growing conditions. In spite of the shortcomings attributed to Mitscher-
lich’s theory, Ryan (1972, p. 25) notes that: '

Most soil laboratories recognize that the fitting of Mitscherlich type relative

yield curves to soil analysis is generally the “best” (emphasis added).

Agricultural economists, on the other hand, generally claimed that effects of
weather and soil type conditions (e.g., pH, depth, percent clay, moisture characteristics,
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~ redox potential) should be evaluated through the explicit incorporation of weather and
30il type variables into “generalized” yield response functions (Heady, 19566; Munson and
Doll, 1969). The estimation of generalized functions was deemed necessary for the
design of site specific fertilizer recommendations. In particular, the incorporation of
- weather variables was required in order to make an assessment of risks associated with
fertilizer use (Smith and Parks, 1967; de Janvry, 1972; Ryan, 1972; da Fonseca, 1976).

From an applied research point of view, the difficulties presented by the “general-
ized yield response function” approach seem to lie mostly on the availability of data for
the sites where experimentation took place. This kind of 11mitat10n is particularly true in
lesser developed countries,

Weather and soil type, in any event, are not under the control of farmers who have
already chosen specific locations for their activities. Thus, it is unnecesary to know the
levels of weather and soil class variables. Only knowledge of their likely ¢ffects on the
yield-soil test-fertilizer relationships is required in order to make fertilizer recommenda-
tions. Ideally, the required knowledge would be incorporated into a single and readily
available index of weather and soil type effects. Such an index can be obtained under a

set of relatively mild assumptions, and the result is directly related to Mltscherlich’
‘relative yield theory.

Definition: Given a particition with two subgroups of variables [w = (w,, Ws, ... W,,),
X = (Xy, ... Xp)]. A function F(w,x) is said to be weakly separable if the ratio of first
partial derivatives with respect to any two variables in one subgroup is independent of
any variable in the other subgroup.

Assumption 1: For predictive purposes, the generalized yield nutrient relationships
can be adequately represented by a weakly separable function with respect to the
partition (set of nutrients: set of other factors of growth) such as:

y = f(w, s)g(b + x) ' (1.9)
where y is yield, w is a random vector of weather variables, s is a vector of soil type
variables, b is the vector of the nutrient quantities available in the soil prior to fertilizer
application, and x is a vector of nutrient quantities applied as fertilizers.

- Assumption 2: There exists a set of weather, soil type and nutrient conditions, w*,
s* (b + x)*, such that:

f(w*, 8*)g(b + x)* = A* 2 f(w, s)g(b +X) ' (1.10)
where A* is the maximum attainable yield.

Dividing and multiplying the right-hand side of (1.9) by A* one obtains:

y = A*h(w, s)g"(b + x) ' , (1.11)

‘where h(w, s) = f(w, s)/A*. Since, by Assumption 2 y< A* equation (1.11) implies that
0 < h(w, $)g(b + %) < 1.

It can be assumed, without any loss of generality, that: _

0<hw,s)<1l : ' (1.12)
0<gb+x)<1 ' 1)
From (1.11), (1.12), (1.13) and the definition of A*, it is clear that h — 1 as f(w, s) —

f(w*, 8*). Also, g~ 1 as (b+x) = (b+x)* In particular, by letting A, = A* h(w, 8), one
can write (1.11) as:
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V= Ay g0 + ). ' o _ (1.14)

Equation (1. 14), a generaliZation of Mitscherlich’s theory, explicitly identifies the
- index to be used for pooling experimental data under different soil class and weather
conditions, This location index, A, represents the yleld plateau of each experiment,

Bray’s (1954, 1968, 1963) empirical research sought to establish the conditions
under which the relative yield principle seems to hold. His findings strongly support
Mitscherlich’s relative yield theory for nutrients such as phosphorus and potassium, The
relative yield concept seems to hold when several conditions are held constant; (1) the
form of the nutrient, (2) the distribution pattern of the nutrient in the soil relative to
plant distribution, (3) the kind of plant, and (4) the planting pattern and rate of plant-
ing. Condition (1) refers both to the kind of fertilizer employed, such as rock phosphate
or superphosphate, and to the form of the nutrient available in the soil. Conditions (2)
and (4) refer to agricultural techniques, such as band and broadcast fertilizer applica-
tion and number of plants per hectare (ha). Condition (3) says that the relative y'.leld
response functions differ by crop |

Figures 2A and 2B repre.sent_, schematically, yield responses to immobile nutrients
(such as P and K) and to mobile nutrients (such as N), respectively. According to Bray,
the relative yield concept would not apply to the more mobile nitrogen, but some
authors have had considerable success in pooling large sets of nitrogen experiments
under the assumption that coefficient ¢ (in Mitscherlich’s equation) is a constant (see,
for example, Hanway and Dumenil, 19565; Hildreth, 1956). It may be, therefore, that
Mitscherlich’s relative yield theory has wider applicability than Bray indicated.

-In conclusion, an estimate of the maximum yield attained at a given experlment
may be used as an index for the weather and soil type conditions associated with that
experiment. The shape of yield responses (plateau type maximum) simplifies the task of
obtaining an estimate for the maximum yield. Moreover, under the relative yield con-
cept, the maximum yield index may be used as a simple scaling factor, The relative yield
principle has sound theoretical support for immobile nutrients such as phosphorus and
potassium, but there is evidence that it can serve as a useful simplifying assumption for
a mobile nutrient such as nitrogen as well.

Soil Fertility Carryover and Control

Agronomists attribute considerable importance to fertilizer carryover effects, For
example, Tisdale and Nelson (1975, p. 538) state:

As fertilizer is applied in increasing quantities, it becomes apparent that
increased attention must be given to the value of carryover, In many cases,

the cost of fertilization is charged to the crop treated. However, carryover
fertilizer is like money in the bank and is part of fertilizer economics. Hence,

it is apparent that if we are to make a critical evalua,tmn of fertilizer use, the
carryover value must be considered. |

Agronomists make recommendations for correcting the leve] of soil fertility to keep
it at the minimum required to achieve the yield plateau (Rouse, 1968, pp. 16-17). These
recommendations are based on observations from soil tests of fertility levels, If all of the
fertilizer available in the soil in a given season were used by the plants and/or leached
out by the end of the season, there would be no need for dynamic specification and
analysis of the yield response problem. In many instances, however, a large part of the
applied fertilizer remains in trhe soil for extended periods of time. Thus, following Burt
(1972, p. 135):

The only correct procedure is to approach the problem for what it is —a
truly dynamic phenomenon,
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Figure 2. Yield response to immobile nutrients P or K (2A)
and to mobile nutrient N (2B) under different weather and

soil type conditions. '
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Fuller (1965) used the following model to analyze nitrogen fertilization for conti-
nous planting of corn:
(a) Carryover of nitrogen
T
N (K, - k,e'sN 1) (1.15)

(b) Total nitrogen supply

NTt = NI} + Ct tajug tag [Rt-li-‘t-l'E(Rt-lﬁt-l)] (1-16)
(¢) Yield response
YNt - -
Y=o+t Bie  +v, - (1.17)

where
C, = carryover of available nitrogen from t-1,

N} = total nitrogen available for planté in year t,

N% = nitrogen fertilizer applied in year t.,

e =Y, -E(y),
R, = a rainfall index [E(R,) = 0],
?t = a chance variable

and other symbols are parameters of the model.

From the model, Fuller was able to derive mean-variance maps for two fertilization
strategies: (1) a fixed rate of nitrogen applied every year and (2) an application of
nitrogen at an annual rate to maximize expected profits, including the allowance for
carryover for the current year. From equations (1.15) to (1.17) above, it is clear that
decision rules for the latter strategy require the knowledge of past levels of nitrogen
fertilization, rainfall, and yields.

Kennedy et al., (1973), analyzed nitrogen carryover for multiharvest sorghum in
Australia. Dynamic programming was used to derive optimal fertilizer and recycling
policies. Nitrogen carryover was specified as follows:

Cp = VoV oV 008V oN; Ve (0.1) (1.18)

where C; is the amount of nitrogen carryover from an application of N units of fertilizer
T periods before. The authors stated that coefficients V, would depend on variables such
as past yields and weather conditions, although they did not formalize these relation-
ships. Instead, based on previous research, they parameterized V, in the range of 0.2 to
0.4. Then they defined the optimal application of fertilizer for a given period as the
amount needed to bring total nutrient supply up to its optimum stock level. Although
the optimum stock level of nitrogen was found to be very stable with respect to the
choice of V,, the sequence of rates of nitrogen application was less stable.

Stauber, Burt, and Linse (1975), studied the economics of fertﬂiZing grasses,

accounting for carryover. They specified nitrogen carryover:

o) Oy |
Ci= oAy +Cpy) Wiy | (1.19)

where
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C¢ = nitrogen carryover available for plants in period t,
A; = applied nitrogen in period t and
W, = seasonal precipitation in period t.

~ The parameters of the carryover equation were estimated implicitly in the yield
response function. The problem of maximizing discounted expected returns was solved
by a stochastic dynamic programming approximation. Optimal fertilizer policies were
presented as 5,8 policies (where S is the desired level of nitrogen and s represents the
reorder point). Control of the system required the knowledge of the level of nitrogen in
the soil, but this variable was not directly observable in their model. |

This review shows the need for casting the analysis of fertilizer recommendations
into a dynamic framework. In particular, the (8,s) approach employed by Stauber, Burt,
and Linse (1975), reveals the nature of the problem. First, the optimal stock of soil
fertility which maximizes the stream of discounted expected net returns must be esti-
mated. Second, the fertility stock must be achieved and maintained at its optimal level
by the supply of fertilizer inputs; this is a control problem. Control rules can be deve-
loped from the knowledge of past fertilizer applications and carryover rates (Kennedy et
al,, 1973) or carryover functions (Fuller, 1965, and Stauber, Burt and Linse, 1975). In
other words, the design of fertilizer recommendations requires updated estimates of the
level of extractable nutrients in the soil. Such updated estimates can be obtained from
the chemical analysis of soil samples in the laboratory.

S0il Tests and Calibration

50l scientists consider that a correct interpretation of soil test measurements is of
paramount importance for the design of fertilizer recommendations (see Walsh and
Beaton, 1973, particular by chapters 1, 2, 4 and 14), because, in many instances, most of
the information concerning a particular farming site comes embodied into a single
composite soil sample. It is from the chemical analysis of such small pieces of “informa-
tion” that fertilizer recommendations are usually derived. In the terminology of optimal
control theory, soil test measurements are “sensor measurements signals” of a dynamic-
stochastic physical process (Athans, 1972). Soil testing chemical methods, on the other
hand, constitute the “sensors.” Ideally, the soil sensors should produce measurements
expressed In the same units employed to measure fertilizer quantities.

Agronomists usually assume that soil test measurements are proportional to the
“true” b values of existing nutrients in soil (Hanway and Dumenil, 1955, p. 78). Therefore,
by defining b* as a soil test measurement and A as a proportionality factor, one can
rewrite (1.14) as:

Yy = Ay 8(AD* + X), _ . (1.20)
In particular, for the case of the Mitscherlich equation;

y = A, (1 - ech -cx) . | (1.21)
where ¢c* = ch;

Equation (1.21) is the specification suggested by Bray (1954, 1958,1963). The pro-
portionality coefficient A is observed to vary somewhat with soil type. The pragmatic
approach followed by soil scientists in this case is to work with “homogeneous” groups of
soil types in terms of A coefficients. This procedure ensures that the chemical form of the
nutrient in the soil is approximately the same for the soils included in a given group.
Under the proportionality assumption, estimates of A can be obtained from:

A= x/b%-b*) (1.22)
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where b?, is a soil test measurement taken prior to fertilizer application and b* is a soil
test measurement taken sometime after a given quantity of fertilizer (x) has been incor-
porated into the soil. The process of classifying the soils according to the magnitude of
their A coefficients is called calibration in soil test terminology. Indeed, the A coefficient
“calibrates,” or filters the sensor signals (b*) with respect to the actual signals (b). In
practice, however, the calibration process is undertaken via the comparison of ¢* esti-
mates for different soil types (Rouse, 1968; Cope and Rouse, 1973). In more general
terms, the calibration of soil tests is made by comparing the response functions of a
given crop or rotation cultivated in different soil types. For these reasons, the A coeffi-
cients are functions of at least some s80il type variables, so that the relative yield concept
expressed in (1.20) is better understood as:

y = A, 8(Ab* + X) ' (1.23)

where A, means that the A coefficient depends on some soil type variables (other sym-
bols retain the previous meaning). B

In view of (1.23), a truly “generalized response function” should incorporate the A,
functions. This procedure, however, requires that soil type measurements be made In
addition to conventional soil test measurements. The alternative, of course, is the cali-
bration approach, that is, the aggregation of soil types into groups for which the range of
the A, function is relatively narrow. The choice of approach depends, obviously, on
economic considerations. There are the costs of additional soil analysis and research to
develop the A, functions, but there are potential gains to realize from a “finer tuning”
than that allowed by the calibration procedure. In any event, it is clear that the A
coefficients (or A, functions) play a crucial role in the formulation of fertilizer recom-
mendations. To some agricultural economists, however, e.g., Ryan (1972, p. 20):

There does not seem to be any particular advantage in attempting to mea-
sure a A factor when the aim is to develop a generalized response function
which will accurately estimate the importance of currently available soil
nutrient measurements in yield response (emphasis added).

~ Dynamic Nonsubstitution and Relative Yield Model

By pooling the conclusions achieved in the discussion of the main agronomic princi-
ples, the dynamic extension of the nonsubstitution relative-yield model can be formulated:

Yt © Awtsfj?yiln [gj()\jsb*jt. + xjt)] (1.24)
b* = hy(¥i.1p D71 + )\jslxjt-l) (1.25)
Y, = crop yield in period t
Awta = the yield plateau given w, (weather conditions in period t) and s (soil
type)
g, = the relative yield response to nutrient j [0 < g () < 1, jeM]
Ais = the proportionality factor which allows for the addition of soil test level
and applied fertilizer for nutrient j given soil type s
b* = the soil test level for nutrient j in period t
X;, = the quantity of the j-th nutrient incorporated into the soil in period t
h, = the carryover function for the j-th nutrient given soil type s
w, = the vector of weather conditions in period t.

In equation (1.24), the term (A ;b*;, + X,,) represents the total supply of nutrient j in
period t as measured in fertilizer units (e.g., kg P;05/ha), whereas the term (b*;,, + X'},
X..,) in equation (1.25) represents the total supply of nutrient j in period t-1 as mea-
sured in terms of soil test units (e.g., ppm P). '
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Algebraic specifications for the carryover functions h;,, equation (1.25), can be
obtained from the work reviewed in previous sections. For example, the algebraic pro-
position of Stauber, Burt, and Linse (19756) — see equation (1.19) — could be modified
to accommodate soil test observations:

bj; = ao(bji.t+ )\ﬁg xjt-l)alw;? 2 (1.26)

The incorporation of a soil test variable into Fuller’s carryover equation — see (1.15)
— would lead to: 1
* * k3(b *.it-l + )\jsxjt-l)
D% - (b%je1 + Ajdxep) (K - kqe ) _ (1.27)

Finally, a carryover formulation based on the proposition of Kennedy et al. — See
equation (1.18) — and allowing for soil tests, could be written:

b* = Vi(b*jy + Adx1); 0<V <1 (1.28)
where V; could be interpreted as the expectation of a random parameter V.

Recursive substitution of (1.28) leads to:

n=t

bt = Vib%p + 2V, )\:iéxt-n - (1.29)

n=1

so that the parameter V; is the rate of geometric decline of a distributed lag model.

The previous discussion on fertilizer carryover and soil tests strongly suggests that
the problem of making fertilizer recommendations can be profitably cast into an optimal
control framework. Target trajectories for the relevant variables would be set and a
welfare loss function, defined in terms of deviations from the target which are minimized
by the appropriate choice of control levels (Chow, 1975, p. 15). Thus, the techniques of
optimal control may yield significant improvements in the fertilizer recommendation
arena. The practical feasibility of implementing a system to design “prescription” fertil-
izer recommendations for the farmers, based on optimal control techniques, depends
mostly on the existence of reliable feedback information linkages between farmers and
the soil laboratory. From a computational point of view, it seems that optimal control
algorithms present definite advantages over the dynamic programming approach
(Athans, 1972, p. 454). On the other hand, if high speed computers and/or reliable
feedback channels are not available, the next best approach seems to be to embed
control rules into fertilizer recommendation tables. Such tables can be designed with the
help of dynamic programming or multistage mathematical programming. The latter
approach to table design will be developed in the next section.
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2. THE METHODOLOGY
Multinutrient Yield Response Function

The multistage programming model to be developed in this section is greatly simplified
when the multinutrient yield response function (1.24) is respecified equivalently as:

max y
subject to y; - Ay, o8i(Ab it t X)) = 0; jeM. (2.1)

The constraints of (2.1) represent single nutrient yield responses and indicate that yields
are limited by the lowest level of a single nutrient response. The concept of “nutrient
imbalance,” so frequently employed by soil scientists, now acquires a very clear meaning: If
the availability of a nutrient such as phosphorus is consistent with a yield of 1,800 kg/ha
(given w, and s), whereas the availability of another nutrient such as nitrogen allows only
for a yield of 1,600 kg/ha, the resulting yield will then be 1,600 kg/ha, ceteris paribus. In
this case, the supply of nutrients would be considered to be “unbalanced” in the sense that
individual nutrient supplies determine different yield potentials. On the other hand, the
nutrients would be “balanced” when all the constraints in (2.1) were binding.

The programming framework (2.1) permits the introduction of economic considera-
tions into the physical model. The quantities x;,'s of applied fertilizers should be viewed as
decision variables, whereas the b*;'s together with the y,’s are state variables. In this case,
the one period profit maximization problem can be written as:

| mﬁx_ m =Py - % Px,
subject to:
Y - Awsgi(Ab] + %)) < 0 : (2.2)
b; = given for jeM
X; E. O for jeM
and where the P/’s and P, stand for input and output prices, respectively.
Optimizing the _Use of- Fertilizers

Although a complete specification of the fertilizer problem requires a stochastic
dynamic framework, as argued by Stauber, Burt, and Linse (1975), a useful first approxi-
mation can be obtained from a multistate deterministic formulation. Farmers are
assumed to follow a fertilizer application strategy that maximizes the expected stream of
discounted profits from fertilizer use. Thus, the problem of economizing fertilizer use over
time can be written as: '

max ﬂ'; E‘T (1 + 1)YPyys - EM Py ) . (2.3)
subject to

Vi - Aws8i(Ajsb™e + Xj0) =0

b*i - Nis(¥e1, P¥je + AeXje 1) = O

b*; = given

X, = 0 jeM, teT

where
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= gtream of discounted profits,

= jnterest rate, |

= get of periods for planning purposes,
P, = output price in period t,

- P, = j-th input price in period t,

and other symbols retain the previous meaning.

2 e

~ This formulation assumes that both the prices (Py, t 2 1) and yield plateaus (_Aw, t
2 1) are known in advance. Because this is, in general, not a reasonable assumption,
these parameters are better understood as expected values. Capital constraints which
are easily introduced in the programming formulation, can, for example, be useful for
examining institutional credit conditions. The b*;; represent known soil test levels at the
beginning of the first planning period.

The solution of the programming problem (2.3) generates an optimal fertilizer
application strategy for the planning horizon T. Such a strategy is obviously dependent
upon the initial conditions b*;,. In practice, however, farmers periodically acquire new
information on fertility levels by means of soil tests and use this information for updat-
ing their fertilization strategy. A conceptual modification of the problem is required to
accommodate this situation. The incorporation of updating information into the pro-
gramming formulation can be achieved by the “moving horizon” concept. Under this
notion, “every decision made is then a first-period decision corresponding with a (finite)
horizon” (Theil, 1964, p. 1565). In other words, at the beginning of every planning period,
an optimal fertilizer strategy for the next T cropping periods is computed. However, only
“the policy for the current cropping period is actually implemented. At the beginning of
each cropping period, new information on soil test levels becomes available. New infor-
mation on input and output prices may be available also. The updated information is
substituted for the corresponding information in the problem and a new optimal stra-
tegy for the next T cropping periods is found. Again, only the first period policy is
actually implemented, since updated information will be available prior to the time for
implementing the next period policy. And so on.

Thus, from a parametric evaluation of the initial conditions b*;, and expected pri-
ces, one can derive a set of heuristic control rules for fertilizer use. This set may take the
form of a table where fertilizer recommendations are a function of current soil test levels
and expected prices. Fertilizer strategies derived from the moving horizon concept max-
imize (approximately) the expected stream of discounted profits for an infinite plan-
ning horizon (see Theil, 1964, pp. 164-167).2 Therefore, the control rules obtained as
presented above are along the lines discussed in Section 1: For a given set of expected
prices there will be an optimum stock of soil fertility to be maintained by means of
periodic supply of fertilizer inputs. The stock of soil fertility present at any given point in
time is measured via soil tests. The optimum Quantity of fertilizer (control) to apply in
any given period will be the difference between the current soil fertility level and its
desired stock level (target). |

Finally, the mathematical programming problem stated in (2.3) is likely to have
important nonlinearities. Therefore, the computation of exact solutions in an empirical
application may be very difficult and approximations may be required.

2As a general rule, the larger the number of planning periods used in the multistage programming formula-
tion, the better the approximation to the infinite horizon that results. However, if the response functions are steep
up to a plateau maximum and if fertilizer carryover is high, then it is likely that a relatively small number of
cropping periods is required to provide a very good approximation.
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Exact Versus Approximate Solutions

Where nonlinearities exist, approximate solutions can be computed under relatively
mild assumptions. By defining a;; = A;ib*;; + X;; as the total supply of the j-th nutrient
available in the soil at the beginning of period t (measured in terms of fertilizer units)

and a¥;, = *jt’ﬁl— A, 88 the sarne variable as measured in terms of soil test units, The program-
ming ormulatlon given in (2.3) may be rewritten as:

max m = ET (1 + 1) (Pyy; - E Pji ;) - (24)

subject to
B¢ - )‘Jé *jt; - X = 0
8% - b - AjsXj = 0
Vi - Ay s8(3) =0
b - (Y, 8%500) = 0
b* - given
X = 0; JeT.

Assuming that the carryover functions h (jeM) are additively separable, they can be
written as:

= hY, (V1) + hig(a8*)e).
Then, problem (2.4) can be solved by well-known approximation techniques of separable
programming (Wagner, 1969, pp. 561-667; Hadley, 1964, pp. 104-125; or Beale, 1968, pp.
124-134). Moreover, given that the first two sets of constraints in (2.4) are concave and
since the yield response constraints are assumed to be concave by the principle of
diminishing returns, the further assumption that h"j‘ﬂ (k =y,a) are concave would lead to
the conclusion that the set of feasible solutions for the programming mode] is convex
(see Zangwill, 1969, pp. 27, 31 and 32). The objective function, on the other hand, is
obviously concave. Under such circumstances, a local optimum is a global optimum for
the constrained maximization problem (see Mangasarian, 1969, p. 73). This result has
an important pragmatic implication: The separable programming problem can be solved
with conventional linear programming procedures because the appropriate convexity
and concavity conditions ensure that the rule of restricted basis entry (or adjacent

weights) is automatically satisfied by standard sunplex rules (see Hadley, 1964, pp
124 126)

Last, but not least, if the algebraic form (and parameters) of the g and h,, functions
were known exactly, the separable programming approach could provide approximate
solutions to any desired degree of accuracy by finer and finer divisions of the grid
around optimal solutions obtained in previous steps (Hadley, 1964, p. 123). The limita-
tions imposed by the choice of the separable programming method are, therefore, not
too severe. Thus, the actual difficulties in obtaining an exact solution for the economic
problem (2.4) do not lie mainly with the choice of technigues for solving the program-
ming problem. Rather, they stem from the more fundamental question of obtaining more
accurate estimates of the g; and h;, functions, This subject is discussed in the following
section.

Estimation of the Model

| Equations (1.24) and (1.25) constitute the structure of a theory that embodies rather
basic soil science principles. Yet, as for any theory, they represent an abstraction from a
more complex reality. In this regard, the introduction of random noise terms in both
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equations appears to be necessary® and leads to:

Ve = AwMin [gi(Abe + x50)] + v, (25)
b* = hig(¥e1, ¥ + )\j;]J(jt;a-l) + Uy (2.6)

where v, and u; (jeM) are assumed to be stochastically independent random errors with
Zzero mean, constant variances and zero lagged covariances.

The assumptions regarding the properties of the errors are admittedly restrictive
and will be relaxed later. However, the assumption that the response function noise (v,)
and the carryover function noise (u;) are stochastically independent variables will be
retained throughout and can be defended on the following grounds: y, is the yield
obtained at the end of period t. Thus, v, is a function mostly of excluded variables that
occur during cropping period t; examples include the intensity of attack of various pests
and weeds and the degree of success of plant establishment. On the other hand, the soil
test level b*;, is defined at the beginning of period t. Hence, the error u is a function
mostly of excluded variables that occur during cropping period t-1, such as the effects of
weather conditions not embedded in y, . Besides the assumption of independence con-
cerning v, and u;, equation (2.6) contains only one of the jointly dependent variables
(ie.,, b*;), whereas equation (2.5) contains both jointly dependent variables (i.e., b*. and
y.). Hence, model (2.6) - (2.6) is a recursive system. Therefore, little could be gained from
applying simultaneous equation techniques rather than single equation regression tech-
niques.t Because single equation techniques will be used and because of the particular
nature of (2.6), the equations will be discussed separately.

Estimation of the Multinutrient Yield Response Function

The yield response function (2.5) belongs to the class of nonsubstitution production
functions and was initially described in Lanzer and Paris (1981). Specification (2.5), is
closely related to recent models of markets in disequilibrium (see, for example, Fair and
Jaffee, 1972; Maddala and Nelson, 1974; Goldfeld and Quandt, 1975).

Maximum Likelihood Estimator of the Nonsubstitution-Relative Yield Response
Function

As a simplification at the outset, assume that relation (2.5) involves only two nut-
rients and that v~ N(0, o2]), i.e., the disturbance term is normally distributed with zero
expectation and variance o2, The log-likelihood function, L, corresponding to this speci-
fication is therefore:

L = - (N/2)log2ma? - (1/202)[y - min(f,, £;)]’ [y - min(f,, f,)] @n

where N is the number of sample points, f,(a;, X,), f5(as, X,) are the response functions
to the two nutrients, a;, a, are vectors of parameters, while X,, X, are the total quanti-
ties of nutrients. The maximization of (2.7) with respect to a;, a, and ¢ will provide
maximum likelihood estimates of the relevant parameters. The development of the

estimator, however, is greatly facilitated by operating with an equivalent specification of
(2.7): |

3With regard to the introduction of random error terms, Bellman and Kalaba (1965, p. 24) note: “Whether or
not one wishes to helieve in deterministic processes as fundamental with stochastic processes solely as a
mathematical device introduced to handle unkown or ‘hidden’ variables, or to believe that nature is basically
stochastic with determinism the result of averaging, again a mathematical device, is a matter of personal philo-
sophy which, fortunately has little effect upon the analytic models that arise.”

‘An alternative approach for the case when set M is composed of only one element, is to substitute (2.6) into
(2.5). This approach has been employed by Stauber, Burt, and Linse (1975). -
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max L = - (N/2)log2ma2 - (1/202) [y - ¥*|'[y - ¥*! | (2.8)
subject to .

y* = fi(ey, Xy) - 81 = X,y - 8

y* = fr(ag, X3) - 83 = Xpa, - S

0=s/8,

S, = 0, s, = 0, a;, as, Y* unrestricted

where y* is the vector of expected values of yield levels. A further assumption is made
that the response functions of f, and f, are linear in the parameters «; and a,, respec-
tively. This assumption is not restrictive, since any concave function can be approxi-
mated to any degree of satisfaction by linear segments. The vectors s, and s, are non-
negative slack vectors. The constraint s,'s, = 0 ensures that y* will be equal to either f, or

f,, whichever is smaller. More intuitively, the slack vectors s, and s, can be thought of as
dummy variables with unknown location.

The normal inequalities associated with the above formulation are obtained by '
differentiating the Lagrangean function corresponding to problem (2.8) with respect to
a;, 0, 8y, Sy, 02 and y*. The Lagrangean function is specified as follows:

max ¢ = - (N/2)log2mwa? - (1/202)[yy - 2y'y* + y*'y*]
+ (Vo)m/ [y* - Xjo; + 8] + (1/ 0Dy
¥ - Xpop + 5] - (1/o2)ws's, (2.9)
Since s,, s, are nonnegative, first order conditions for a maximum of (2.9) are
P =(1/o) (y-y'+mtm]=0 (2.10)

¢n!1 = (1/02) (ay*/aal)_ [y } y* +m ¥ 772] - (I/UZ)XII‘JTI = (

(1/62) (X/y - X/v* + X,/m,) =0 (2.11)

' b4, = (1/0%) (X'y* - Xy + Xy'mp) = 0 ' (2.12)
by = (1/02) (8y*/85,) (¥ - ¥* + my + m5) + (1/02) (m, - Wsp) < 0

= (1/02) (m, - Wws,) <O [using (2.10)] (2.13)

bep = (1/02) (my - Ws;) < O (2.14)

bey = (1/02) (v - Kyay +5,) = 0 3T

br, = (1/02) (y* - Xpap +83) = 0 | (2.16)

bw =8;8; =0 | (2.17)

¢,2=-(N/20%) + (1/2068) (y -y*)Y (y-¥*) =0 - (2.18)

Provided o2 < o0, from (2.10) is derived:
y*=y+m+m (2.19)

~ so that the vectors of dual variables 7; and m, must also be interpreted as the vector of
residuals, when added together as (; + my). Other important restrictions implied by the
dual of problem (2.2) are X,'m, = 0 and X,'m; =0. The conditions are easily obtained by
substituting (2.19) in (2.11) and (2.12), respectively. From (2.13), (2.14) and (2.17) we
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also have that m,'s, =0, m,'s, = 0, Given the structure of the above problem, conditions
(2.11) through (2.17) and the associated complementarity slackness requirements are
necessary and sufficient for a global maximum of (2.9).

Combining relations (2.11) through (2.16) with the condition that s,’s, = 0, we can
obtain maximum likelihood estimates of |, a,, ¥*, 8,, 85, 7|, ™y by solving the following
problem:

min ws,’s, ' (2.20)
subject to

X 0 0 0 0 0 -X/f v | = X,'y

X, 0 0 0 0 -X,, 0 a, | = X,y

I X, 0 I 0 0 O a, | = 0

I 0 X, 0 I 0 O s, | = 0

0 0 0 wI 0 O I S, | = 0

0 0 0 0 wI -l 0 m | = 0

T2

8= 0,8, =20,y a, m, m, unrestriced.

By increasing the penalty w to the level w — as necessary - 8,8, is driven to zero and the

associated solution ¥*, a,, a,, §,, 8, (if it exists) is a solution of the original maximum
likelihood problem. | I

Alternatively, using conditions X', = 0 and X,'m, = 0 and (2.19) as appropriate, it is
possible to reduce the dimension of the problem by solving the system

min ws,'s, (2.21)
subject to
0 0 X 0 0 0|[a ]| = 0
0 0 0 X,y 0 O 0l = 0
X, 0 1 I T O T = -y
0 X, 1 I 0 1 Mo = -y
0 0 0 -I wlI O 8 = 0
O 0 -I 0 0 wl]] s = 0

$; =0, 8,20, @), ap, 7, m unrestricted.

System (2.21) is equivalent to (2.20) but has the advantage of a smaller number of
variables since (y + m; + m;) has been substituted for y*.

Variance of the Estimates

The variance of the estimators of «,, ay, 5, and s, can efficiently be obtained as the
inverse of the information matrix associated with the Lagrangean function specified in
(2.9). In turn, the information matrix is the negative of the expectation of the matrix of
second partial derivatives of ¢ with respect to a;,, as, 8,, 8, and ¢2. It can be easily verified
that the information matrix associated with the problem discussed above is:
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XX, 0 X/ 0 0
0 XX, 0 X' 0
Ray, o 81,8, 0) = L | & ' o 1 wl o | (2.22)
’ 0 X, wl I O
0 0 0 0 N
202

where X, and 1?2 are the matrices corresponding to those values of the explanatory
variables which are limiting, as determined by the solution of the normal equations.

If XX, and X, X, are of full rank, the information matrix has an inverse, and the
variance of the estimates can be represented as:

a Ve Vas
Var =
' S |V, Ve,
where
Vi =02 [G - XXX 1)?] -1 (2.23)
Vos = VX (X'X) -1
= 02(X’X) 1+ g2(X'X) 1X'[G - X(X'X) 1X] 15{(52'5&) 1 (2.26)
~ X 0 I wl
and where X= | _ \ G= |
0 X, wl 1

A Log-Likelihood Ratio Test for the Nonsubstitution Hypothesis

" The null hypothesis of nutrient nonsubstitution can now be tested against any
alternative in which a tradeoff among nutrients is permitted. In general, agricultural
economists have elected to specify this alternative in the form of polynomial functions;
the same tradition will be followed here. The objective is to develop a test for the null
-hypothesis that the crop response function is of the nonsubstitution type or, equivalently.

Hy: y = min [fl.(_alz-..xl): fo(ag,X3)] + v
versus the alternative,
H;: y = polynomial function in X1 and X, + v,.

The classical theory for hypothesfs testing cannot be applied to the above problem
because the null and the alternatlve hypotheses are nonnested.

. The theory of nonested hypotheses is in the early stages of development, in spite of
the pioneering work of Cox nearly 20 years ago. Among the various procedures pro-.
posed for testing hypotheses belonging to disjointed families of probability density func-
tions, the T statistic elaborated by Cox seems to be the most relevant. Cox (1962) and
Pesaran (1974) present a thorough analysis of this test. Thus, the null hypothesis takes
on the following structure

Hpy=y" + v ¥ = X0y - 8y, ’.Y* = Xo0y - Sg, 0 = 8,8y,
s, 2 0, 8, = 0, vg ~ N(O, o3I);

while the alternative is stated as:
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Hi:y=1ZB + v;, vi ~ N(O, U?I).

Let the log-likelihood functions of H, and H, be den‘oted by Ly(6,) and L,(8,), respec-
- tively, where 6, = (o, as, Sy, S, 0¢2) and 6, = (B, ¢,2). Then, Cox’s T statistic is defined as:

To = [Lo(81) - Lu(81)] - Eo[Lo(B,) - Ly(8 )] (2:26)

where 8 , and 6 ; are the maximum likelihood estimators of parameters 6, and 8,, and E,
is the expectation of the log-likelihood ratio given that H, is true. The intuitive idea of the
T statistic is to construct a standardized variable which is asymptotically distributed as
a normal variate with zero mean and unit variance. Cox and more recently Pesaran have
shown that under H, and H, as specified above: ' '

To = (N/2)log[5,/(51 + (1/N)e;g'e;o)] _ _ ' (2.27)

where G2 = ey'eg/N, 6,2 = e,'e,/N. The vectors ¢, and e, are the residual vectors of models
H, and H,, respectively. Furthermore, ¢, is the OLS residual vector of the regression of
y* on the explanatory variables Z of model H;. The variance of T, can be shown to be:

Vo (Tp) = (8%e500€100)/ [62 + (1/N)eygle;o]2 (2.28)
where e, is the residual vector of the following model:

min wu,u, = 0

subject to
0 0O Xy 0 0 0O Y1 = 0
. 0 0 0 Xy 0 O Vo = 0
-X, O I I 1 O T = €10
0 X I 1 O .I o = -€10
0 O 0 -I wlI O u, = 0
0 0O -1 0 0 wI U, . 2 0

u, = 0, uy = 0, v, v, m, T UNrestricted.
Finally, the relevant statistic is defined as follows:
No = To/ [Vo(To)]1/2 (2.29)

which is asymptotically distributed as a standardized normal variate when H, is true.
The criterion for action is now rather straightforward. First of all, with nonnested
hypotheses it is appropriate to apply one-sided tests since the two parameter spaces are
usually disjointed. Second, when | N, | is less than the value of the standard normal
variate corresponding to a specified level of confidence, the null hypothesis is not

rejected. If| N, | is greater than or equal to the chosen level, H, is rejected in favor of H, if

Ny 1s negative. Otherwise, the test indicates that both hypotheses should be rejected.

Estimation of a Three- or More-Nutrient Response Function

The generalization of this approach to more than two nutrients is conceptually _

straightforward, although it may be computationally rather taxing. In principle, the
maximum likelihood problem specified in (2.8) can include as many individual nutrient
response functions as required. The only modification of the formulation (2.8) regards
the nonlinear constraints involving the slacks s;;, i=1,2,. . .k,j=1,. . . n, which, in this
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case, become s;8;,. . .85=0,j=1,. . .n,i,t,k=1,2,. . ., K. The estimation of this more
complex specification requires the availability of suitable nonlinear programming sub-
routines based upon efficient algorithms. For the time being, however, a more basic
obstacle, the lack of suitable data, prevents the implementation of the generalized model
(2.8). Because agronomists strongly believe in Liebig’s nonsubstitution hypothesis, sel-
dom do they design and execute fertilizer experiments involving three or more nut-
rients. Hence, the lack of suitable data, it must be emphasized, is not exclusively due to
the complexity and the cost of carrying out multinutrient experiments but rather to the
agronomists’ perceived lack of need of proving “the obvious.” |

Estimation of Individual Nutrient Response Functions by Meahs of Splines

The implementation of the estimation procedure and test development in the pre-
vious sections require data generated from experimental designs with two or more
nutrients. However, the yield response curve to the supply of macronutrients — such as
N, P and K — tends to present a relatively extensive plateau after a relatively short
phase of increasing total product. Under such circumstances, an experienced agrono-
mist has little difficulty in keeping the supply of all nutrients — but one — at nonlimiting
levels for a given experiment. Thus, if for a given set of data it is known a priori that
f,(x,;) is equal to or smaller than f,(X,;) for all j plots, the model of a Liebig-Mitscherlich
response functions to be estimated reduces to y; = f;(x;;) +v;,j = 1,. . ., m. In this case,
the set of available data from single nutrient experiments can provide estimates for the
parameters of f; only. Nevertheless, thisinformation can be obtained from conventional
simple regression procedures. To estimate the parameters of f,, a set of data for which it
is known that f,(x,,) is equal to or smaller than f,(x,;) for all j observations is required.
And so on. For example: The data from an experiment where the supplies of phosphorus
and potassium are known to be nonlimiting can be used to estimate the yield response to
nitrogen. The individual yield responses estimated in this fashion are combined in the
form prescribed by the nonsubstitution model. In this way, an estimate for the multiple
nutrient response surface is obtained.

Suppose, therefore, that a set of data from E experiments is available. Suppose also
that such experiments were executed at different places and/or different years. Sup-
pose, furthermore, that it is known that in all experiments the only limiting nutrient
was, say, potassium. In this case, the model to be estimated from these data is:

Ype = Av,s.8k(Aes K pe + Kpe) + Ve ' N - (2.30)
where
Ype = yield observed on the p-th plot of the e-th experiment, ecE,
A,,,,,,‘EE,‘E = yield plateau of the e-th experiment,

g, = relative yield response to potassium,

As, = Proportionality factor between soil test units and fertilizer units for potas-
sium for the soil type of e-th experiment,

K. = observed soil test level for the p-th plot of the e-th experiment,

Kp. = observed quantity of potash fertilizer applied on the e-th plot of the e-th

experiment, and
V,e = White noise error term.

Assume now that unbiased estimates of the Ais, factors are available,® so that one

5Such estimates can be obtained from fitting the carryover equations.
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can compute K = Aks K pe * Ky. that is, the total supply of potassium available for the
plants grown on the p-th plot of the e- th experiment. Thus, the model to be estimated
reduces to:

Yoo = AwgagBic(Kpe) + Voo ~ _ _ (23D

At this stage one generally chooses an (a set of) algebraic formulation(s) to repre-
sent the yield response functions. Whatever the final choice of an algebraic form, it will
never be more than an approximation of the empirical phenomena under study.
Awareness of this fact opens the doors to some specific statistical methods such as the
fitting of splines — one particularly well-suited to the problem at hand.

Poirier (1973a, p. 516) offers the following definition of a (cubic) spline:

Letthe set A= [x,<x, <. . .<x,.] of abscissa values be referred to as a mesh of (x,
X;) and the k + 1 > 3 individual points x,(j=0, 1,. . ., k) as knots. Lety = [yo, ¥y, - ., ¥}
be an associated set of ordinates. Then a cubic splme on A interpolating to y, denoted
- 8,(x), is a function satisfying:

(1) Sa(x) € CA(Xo, Xy),

(1) Sa(x) coincides with a polynomial of degree at most three on the mtervals |
[x.l 1; XJ]CJ ., K), and |

(i) M) =y (=01, .,k

One important special case of the cubic spline is the linear spline. In the linear
spline, as the name indicates, all arcs are linear (Figure 3). The main difficulties with
linear spline regression appear when the knots are unknown. In this case, not only
- computational difficulties arise, but also the statistical properties of least squares
~ estimators have not yet been well determined.

The estimation of linear splines with fixed (known) knots, however, can be obtained
with conventional multiple linear regression procedures. Moreover, under the classical
assumptions concerning the error term, the usual t and F tests apply in a straightfor-
ward manner.

The technique employed to estimate fixéd-knot~linear splines with conventional
regression procedures is described in Poirier (1973b, p. 2):

Suppose y is a linear spline in x consisting of k segments with knots at x,
X<, .., <Xy, (Where x, »»0). Then, for any value of X, y can be written as:

y= 8o+ 51?1 t Bl v .t By (2.31)
where '
21 ® X
Z, = Max [x - x,, 0]
.ZaﬁMax [% - Xg, O]
. |

Zk = Max [K * Xk-13 0]
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The coefficient B, represents the slope of the spline over the first interval,

~ and each of the remaining coefficients 8, (j = 1, 2, . . ., k) represent the
change in the slope from interval (j - 1) to interval j, respectively ... The
actual slope over the j-th segment is (8, + Bz + . . . + B)).

Thus, under the fixed-knot-linear spline assumption, model (2.31) can be writtah a8

Yoo = Avese(Biloe * BoZapa * - -+ BrnZimpa) * Vi ' - (232)
where ' |

Z1e = Kie

Zso = Max (K, - K;, 0)
Ly = Max (Kpe - Kg, 0)

Zmpe = Max (K}::e B Krrph 0)
and where the K; (j = 1, 2,. . ., m-1) are the abscissa knots assumed to be known.

Notice that (2.32) does not include a constant, because it is expected that g, =
(ZBZ) ~ 0 as KT - 0 (that is, if the total supply of potassium tends to zero, so does the
vield). Moreoever, for large values of KT — though not so large as to cause yield depres-
sion - one should expect that g, ~ 1. Convexity of the g, function, on the other hand
requires that 8; > 0 and g; < 0 for j = 2.

yr4 = | “-_““'“_H““_ﬂﬁﬂﬁﬂﬂﬁﬂﬂﬂﬂﬁﬁﬂﬂﬁﬂﬂﬂﬂﬁﬁ.ﬂﬁ T~

'
'
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Figure 3, Relative yield (yr) spline response to total supply
of nutrientX (X1).
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Finally Aweﬂe’ the yield plateau parameter of the e-th experiment, can be estimated
outside the regression model. An exogenous estimate for A, S is, clearly, the highest
average yleld among all treatments that have been tested on the e-th experiment. Let

Ay s, be such an estimate. The B, coefficients would then be estimated from the
regression:

Ype = BI =lJlipue + B2Z§pe ... 7 Bmzr:pe + Vpe - " | (233)
where '
e = Ab o Zpe  §=1,2,...,m.

There are four main reasons to emphasize fixed-knot-linear splines, rather than,
say, unknown knot-cubic splines: First, linear spline regression is the natural counter-
part to the separable programming problem presented in previous sections. Second,
fixed-know splines can be estimated with conventional — and widely available — multi-
ple linear regression procedures. This is an important consideration for researcher
working in developing countries. Third, there is the assumption that yield response
- functions are concave. Hence, no a priort need for either cubic or quadratic splines is
detected: Linear splines are sufficient. Fourth, the assumption that the knots are known
a priort is not as restrictive as it might appear. The help of scatter diagrams may be
valuable in determining the knots. Also, depending on the volume and density of the
data available, the number of knots can be made considerably large. In this case, the
degree of approximation to the true, but unknown, response function is likely to be high.

Finally, and strictly speaking, the Z} regressors of (2.33) are subject to observational
errors, because the Z% include estimates for the yield plateau — A*, — and for the
proportionality constants. However, from the proximity theorem (see Maddala, 1977, p.
153), it appears that the biases caused by this difficulty are likely to be small for the case
at hand; since the effects of weather are embedded in the Z} regressors, it is likely that
their variance is large with respect to that of the unexplained residuals.

Estimation of i:he Fertility Carryover Functions
The general specification adopted for the carryover functions is:
b = hig(¥i1, bYer + AeXjer) + uye JeM | (2.34)
where
¢ = soil test level for the j-th nutrient at the beginning of the t-th cropping period,

y: = crop yield obtained at the end of the t-th cropping period,

a

X3 = quantity of the j-th fertilizer applied at the beginning of the t-th cropping
period.

A = proportionality factor between soil test units and applied fertilizer units on
soil type s,

u;; = random error with zero mean and constant variance, and
M = set of macronutrients (N, P and K).

A first approximation to the j-th nutrient cai'ryover function that satisfies the
separability requirement advanced in a previous section is:

b; = Gj(b’;t_l + Aj;ﬁ:-l ) + Bjyt-l + th. (2.35)
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Notice that (2.35) is the “reduced form” of the following distributed lag model:

M=

b* =

it 1

O-1 (BiA1x2  + By, ;) * e (2.36)

1) js Jjt-i-1

|

so that the parameter 6§, is a geometric rate of decline of the availability of the j-th
nutrient from one period to another. It is expected that 0 <8, < 1. Notice also that u =
e - 0e;,.,. Thus, consistent estimation of (2.35) by ordinary least squares (OLS) requires
the autoregressive assumption that e;, = 6,e;, | + v;;, where vy, is assumed to be white noise
(see, for example, Theil, 1971, p. 261).

The assumption that the autoregression coefficient is equal to the geometric decline

coefficient may be too strong. A less restrictive assumption on the properties of the error
term of (2.35) is: '

Ui = PjUit-1 T Vi | P; | <1

where v;, is assumed to be white noise. In this case, consistent estimates of the parame-
ters of (2.356) can be obtained from conditional OLS regressions on: |

* _ Ah* — * - nh* -1
bjt p-lbjt-l ej(bjt-l prjt-z ) + elh'js (xﬂit-l

- ij?t-Z) + Bi(¥Yi1 - AYi2) t Vi | (2.37)

where v, is a white noise term. The coefficient p; is made to vary until the sum of squared
residuals is minimized. Under the normality assumption, this procedure produces max-
imum likelihood estimates of 6;, A;; and B; (see Theil, 1971, pp. 414-424).

The estimates of the proportionality factors obtained from the estimation of the
carryover functions can be used in the estimation of the yield response equations.
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3. EMPIRICAL RESULTS
The Setting

During the 1970s, an intensive program of agronomic research was carried out in
southern Brazil. In the state of Rio Grande do Sul, the research centered around the
determination of wheat and soybean responses to variable fertilizer application rates.
These activities were initially performed under a cooperative contract between the
Universidade Federal do Rio Grande do Sul and the University of Wisconsin. The main
objective and result of this research program was the development of fertilizer recom-
mendation tables for wheat and soybeans. Today these tables are w1dely used by the
agricultural extension service in southern Brazil.6

From the beginning, the great variability of soil fertility and structure posed com-
plex measurement problems, which were simplified by cataloging soils into three broad
classes (Table 1). The large percentage of soils testing in the “low” category indicates why
soil research has been so important for this region of the country and ofters an explana-
“tion for the low average yields observed in Rio Grande do Sul. (The average wheat yield
in 1970-75 was 844 kg/ha, or 12 bu/acre; average soybeans yield was 1,340 kg/ha, or 20
bu/acre.)

Wheat and soybeans are very important crops for the Brazilian economy and play
significant roles in the Brazilian balance of payments (Table 2). Domestic production of
both wheat and soybeans is concentrated in southern Brazil: The state of Rio Grande do
Sul alone accounted for 59 percent of the wheat production and for 47 percent of the
soybean production in Brazil in 1974-76 (Table 3).

The 10-year-old program of fertilizer application practices and incentives has pro-
duced dramatic results. The use of fertilizers by wheat-soybean' growers is, by now, a
common practice in southern Brazil. In fact, FECOTRIGO, the Brazilian federation of
wheat and soybean cooperatives, estimates that fertilizer costs of the wheat-soybean
enterprise in Rio Grande do Sul amount to nearly one-fourth of the total production
expenditures (Fecotrigo, 1976). And this expenditure reflects a government subsidy
- instituted in 1974, for 40 percent of fertilizer prices. The Brazilian government, however,
suspended the subsidy at the beginning of 1977, For most wheat-soybean growers of
southern Brazil, this change of agricultural policy meant that decisions on fertilizer use
ought to be made with increased care. Helpful guidelines are still needed in this new and
more expensive environment. Extension specialists have been trained to formulate their
fertilizer recommendations based only on soil tests interpreted by means of the fertilizer
recommendation tables. Because principal objective of these tables is to restore soil
fertility to a level where it is no longer a binding constraint to the attainment of maxi-
mum yields, fertilizer recommendation tables are totally price insensitive, And so exten-
sion specialists tend not to take the price changes into account when making their
recommendations. |

Furthermore, most farmers rely heavily on agricultural credit for their production
activities. In many instances, banks require that farmers strictly follow extension spe-
cialists’ advice on fertilizer use. Therefore, at present, decisions on fertilizer use may not
easily be changed, in spite of wide price fluctuations.

The Data

Most of the data used here were provided by Dr. Joa®o Mielniczuck of the Depart-
ment of Soil Science of the Federal University of Rio Grande do Sul (DS/UFRGS) and by
Engeniero Agronomo Octa'vio Siqueira of the National Wheat Research Center (CNPT).

SDuring the decade the tables were revised twice and extended to cover most crops grown in the state.
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Table 1. Soil Test Results of 63,117 Soil Samples Taken by Wheat-Soybean Growers in Rio
Grande do Sul, Brazil, 1970-1975.

Soil
categorya Phosphorus - Potassium Nitrogenb pH
| SUNUUNNURI +1-1 ¢ o -1 1 | LA
Low 88 31 39 59
Fair 7 10 50 25
Good | 5 59 11 16
Total 100 100 100 100

“Based on fertilizer recommendation tables presently used in Rio Grande do Sul (“very low” and
“low" added together for P and K).

®Indirect measure through percentage content of organic matter. Indirect measure through
- “CaCO4 Requirements for pH = 6.5" (SMP method).
‘Percentage of sample tests for the respective factors falling in each soil category, e.g., 88
percent of the soils tested were low in phosphorus.
Source: Card records of the soil laboratory of the Universidade Federal do Rio grande do Sul.

Table 2. Main Items in the Brazilian international Trade (1974).

'Exports _ Value Impofts - Value
- miltion U.S. dollars - million U.S. dollars
Sugare . 1,262 Qil (crude) 2,979
Coffeeb | | 980 Machines 1,862
Soybeans® 888 Steel sheets - 894
Iron Ore | | 571 Wheat 522
Others 3,701 ~ Others 5,911
 Total - 7,402 Total 12,168

aCrystal and “demerara.”
bBeans and soluble.
°Beans and meal.
Source: FIBGE (1976b)

Tablé 3. Domestic Production of Wheat and Soybeans in Brazil in 1974/75.

State  Wheat _ _ Soybeans
| 1000 metric tons
Rio Grande do Sul 1,890 ° 4,688
Parana 915 | 3,625
Others .. 253 1,579

Total . 2 858 | 9 892
Source: FIBGE (1976a) ' ' '

Other data were from reports published by the DS/UFRGS, by the CNPT and by the

Institute of Agricultural Research (IPAGRO) of the Agncultural Department of the State
-~ of Rio Grande do Sul.

Thirty-eight independent experiments carried out in the wheat-soybean producing
area of Rio Grande do Sul from 1968 to 1976 were used. The duration of the experiments
varied from one single cropping period — either wheat or soybeans — to eight consecu-
tive cropping periods in a double cropping system. In most cases, three to five replica-
tions were used. Soil acidity had been corrected through the use of lime in all experi-
ments. The source for P was superphosphate (triple); for K, potassium chloride: and for
N, urea. The fertilizers were broadcast, and high yielding plant varieties were used in all
experiments. The North Carolina soil test extractant (H,SO, .00256 N + HC1 .005 N) was
used to evaluate the levels of P and K in the soil. The soil test method for N was an
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indirect measure through the organic matter percent content of the soil (H,SO, +
Na,Cr,0,/oxidation). Some of the experiments had a factorial design with three to five
levels of N, P and K. However, since the model allowed for the independent estimation of
yield responses to N, P and K. a number of experiments where only one of those elements
had been tested was also included. For these experiments, the supply of all but one
nutrient had been set at nonlimiting levels. The observations used in the statistical
analysis are treatment means.

Results from the Estimation of Carryover Functions

Carryover functions were estimated only for phosphorus and potassium. In south-
ern Brazil, soils have a low organic matter content and rain leaches surplus nitrogen.
Hence, soil scientists do not consider that nitrogen has any significant carryover effects
in the wheat-soybean double cropping system of southern Brazil. (Nitrogen is applied
only for wheat; soybeans are inoculated with Rhizobium bacteria for N fixation.)

The data used to estimate the carryover functions came from a set of seven experi-
ments conducted from 1973 to 1976 by the National Wheat research Center. Five of
those experiments were located on soil having a 20 to 40 percent clay, and classified as
“type 2.” The other two experiments were located on soils having more than 40 percent
clay, and classified as “type 1.” The soil classification is considered of paramount impor-
tance to soil tests for phosphorus. More than 10 years of research led the local soil
scientists to conclude that a soil test level of x ppm of P for a soil type 1 reflects the same
availability of P as a soil test level of 2x ppm of P for a soil type 2 (see UFRGS, 1973, p. 3).
The data had two important limitations for estimating the carryover functions. First,
straw residue from the crops was removed rather than incorporated into the soil, as is
the customary practice; therefore, fertilizer carryover may have been underestimated.
Second, fertilizers were applied only to wheat; soybeans were carried as a “residual” crop
making it impossible to estimate separate carryover functions for wheat and for soy-
beans. Thus, lagged yields were not considered in the carryover functions; rather “aver-
age” carryover functions were estimated for the two crops. Some of the results have been
reported in Lanzer and Paris (1981) and Lanzer, Paris and Williams (1981 ).

Phosphorus

The carryover model adopted for phosphorus is:

P=6, (B, + NPL) + (3.1)

P; = soil test level for P at the beginning of cropping period t (ppm of P),
P% = quantity of phosphate fertilizer applied on period t (P,04 kg per ha),”
6, = geometric decline paramefér,

A, = proportionality factor for phosphorus, and

u, = random error [u, = PpUe; + Vi V, V° N(O, a2D)].

The value of A, was known to vary with soil type. Agronomists consider that for
southern Brazil:

Aoy = 2\

pl

-1 = -1
p2 (OI‘ Apl _.L... A 2)

9 p

"Phosphorus is measured in P40; and potassium in K,0 (rather than in P and K) for two reasons. First, these
were the original units selected by Brazilian agronomists for carrying out the fertilizer experiments, Second,
fertilization tables in southern Brazil are, to this day, formulated in P,0, and K,0. The conversion between P,0,
and P, and between K,0 and K, can be easily performed using: P x 2.29 = P,0;, K x 1.20 = K,0,
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Thus, the phosphorus carryover function for soil type 1 is:

- Pi=6, (P, + )‘I;IIP?;-l) t u,

whereas, for soil type 2 it is:

P?;.= 0, (P, + APL ) + g,
p2

Thus, a combined carryover function can be written as:

- Pi=6, [P}, + AL (P, + Py D)) +u, ' (3.2)

where D is a dummy variable which equals zero for soil type 1 and equals 1 for soil type 2.

Lagging and multiplying (3.2) by p,, the autocorrelation coefficient, and subtracting
the result from (3.2) yields:

Pi = ppPey + 6,[Pyy + Ai)ll (Pea + Piy D)) - ppf, [Po
tAL (P + P D) + v, (3.3)

where v, is assumed to be a white noise term. Under this assumption, the least-squares
estimates of p;, 6, and A;l are maximum likelihood estimates (Draper and Smith, 1966,
p. 266). |

_ The parameters of model (3.3) were estimated using the Gauss-Newton nonlinear
least-squares procedures.8 Results are presented in Table 4; the fit to the data is satisfac-
tory. The estimates of A;; =48.2 and A, = 24.1 suggest that one ppm of P, for soil type 1,
is equivalent to a fertilizer application of 48.2 kg of P,0; per ha and 24.1 kg of P,O; per ha
for type 2 soils.? The estimated geometric decline coefficient is relatively high, that is,
close to unity; thus, the level of soil phosphorus is seen to decrease at a relatively low
rate across time, and phosphate fertilizers are estimated to possess a highly significant
carryover effect. In summary, the estimated phosphorus carryover functions were:

P = 0.8895(P°, + 0.0207P2,) + u,, for soil type 1, (3.4)

P; = 0.8895(P; , + 0.041P%,) + u,, for soil type 2. (3.6)

Table 4. Statistical Results for the Phosphorus Carryover Function.

Asymptotic Standard

Parameter Estimate Error
Pp -0.6747 0.0416
0, 0.8895 | - 0.0209
- 0.0207 0.0023

RZ2 = 0.7881; MSE = 86.45; N = 345 observations

SProgram BMDO7R (Dixon, 1974).

An unconstrained model was also fitted to the available data. The estimates obtained in this case were Apl =
51.7 and A, = 22.8. The MSE for the unconstrained model was 85.96.
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Potassium

Agronomists’ interpretation of southern Brazilian soil tests for potassium is cur-
rently made without allowance for soil classification. Therefore, the model to be esti-
mated is reduced to:

K = 6 (Kt + AdKG) +u (3.6)
where

K: =so0il test level for potassium at the beginning of cropping period t (ppm of K).

K% = quantity of potassium fertilizer applied on cropping period t (KEO kg per ha),

6, =rate of geometric'decline,

Agl = reciprocal of the proportionality constant for potassium, and

u, = arandom error [u, = pu., +v, Vv, vev~N (0, o2)].

Lagging (3.6), multiplying both sides by p, and subtracting the result from (3.6),
yields at:

K: = oKt + 0u(Kiq + AdKE ) - pby (Kt + ALKS) + v, (3.7)

where v, assumed to be a white noise term. Results from the nonlinear least-squares
estimation of (3.7) are presented in Table 5. While R2 is considerably lower than that for
the phosphorus carry over model (3.3), the asymptotic standard errors are small rela-
tive to their associated parameter estimates for the potassium carryover function, lead-
ing to some confidence in the use of the estimates. The estimate that A, = 3.73 suggests
that each ppm of K is equivalent to an application of 3.73 kg of K,0 per ha, The estimated
potassium carryover equation is:

K® = 0.8139 (K%, + 0.2682 K,) + u.. _ (38

Table 5. Statistical Resuits for the Potassium Carryover Function.

Asymptotic Standard

Parameter | Estimate Error o
O -0.4154 0.0488
O 0.8139 0.0128
N 0.2682 0.0365

R2 = 0.3542; MSE = 797.50; N = 420 observations

Results from the Estimation of Yield Response Functions

The first step in estimating the yield response functions was to sort the observations
according to the response to a single nutrient. For example, to estimate the wheat
response to phosphorus, only data were used for which the levels of both potassium and
nitrogen were considered “high,” based on the fertilizer recommendation tables cur-
rently in use.

The observation row includes: observed yield (y;;), soil test level (x{;), applied fertil-
izer (x%;), and maximum observed yield of the experiment (M;). The subscript i stands
for the fertilizer treatment; the subscript j, for the experiment. Note that in contrast to
its previous usage, “experiment” now assigns both a geographical and a temporal dimen-
sion to data subsets.
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The total availability of nutrient was computed:

XTij - Axxsij + Xaﬂ

where x"‘;j is the total availability of nutrient x for the i-th treatment of the j-th location,
and A, is the proportionality constant estimated from the respective carryover func-
tions. Note that x; is defined in terms of fertilizer units rather than in soil test units.

Given the mesh of knot points 0, x,, X, . . ., Xx.; and the definitions:
Zyy = X

Z2li = max (XTU - X1 0)

Zau = max (XTU - Xo; 0)

*

*

»

T
Dy = (X5 - Xiep; 0),

the spline formulation of the yield response to the total availability of x becomes:

Yij = Aj (% Bmzmlj) + i) | (3..9)
m-] -

where e;; 1s assumed to be a white noise term. For this analysis, the knots were located at
the middle of the soil test ranges that are used in current fertilizer recommendation
tables.

Model (3.9) assumes that A, the expected yield plateau of the j-th experiment, is
observable. The maximum observed yield of the j-th experiment, (M;), on the other hand,
Is an order statistic that is likely to overestimate A;. Thus, (3.9) was modified to:

m=Kk

Yy = aM; (X BZpy) + € (3.10)

where parameter ¢ is considered as the expectation of a random coefficient X; such that
M = o;!A;, In words: The highest order statistic for the yields of a given experiment is
assumed to be (stochastically) proportional to the expected maximum of that experi-
ment. Under this random coefficient assumption, e; must now be viewed as an hetero-
skedastic error term (see, for example, Theil, 1971, p. 623, but the least-squares esti-
mates of the 8, are unbiased. Thus, since the set of available data for this research was
relatively large, and since only point estimates are required by the optimization frame-
work, (3.10) was estimated by a direct least-squares procedure.

The max (2BnZn) = 1, that is, the maximum for relative ﬁe'lds equals 1. Figure 3
depicts the relative yield response (yr) to the total supply of nutrient X (XT), For m = 1,

2, 3, 4

Yo = BiX1 + (Br+ Be) Kp-X) +. ..+ (B +. . . +B) K- Xppr) (3.11)
where the X, are known fixed knots and B, = tgy;, (8, + B5) = tgv,, etc.

But concavity of the yield response requires that By = 0 for m 2 2. Suppose that it
were known that yr equals its maximum for some range of XT starting at X, (m < 4)
and extending at least to X,. In this case, the spline function must satisfy:

BX,+ (B +B)(Xo-X V4. .. +(B+...+B8)(Xe-Xo) = 1. (3.12)
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Solving for 8,, yields:

By =L - K X) g . KXy g . _X-X5) g (3.13)
X, X, X, X,

Equation (3.13) is a linear constraint on the parameters of (3.10) that ensures that
relative yields attain a maximum which equals 1 at X (for m < 4) and extends at least

to X4 (provided that 8, < 0 for m = 2). Substituting (3.13) into (3.10), assuming k = 4,
and rearranging terms yields: |

m=4
Yij = ﬂfMj [1/X,+ % B (Zmii - (X4 - Xi1) Zlij)] t €;; (3.14)
m=2 _"'“"_X
| 4
or
yi; = aZi; + ool + absZ3;; + abyZy;; + € (3.15)
where

Eij - MJ [Z2ij - M Zlij]? etc.
4

The parameters of (3.15) were estimated with a nonlinear least-squares algorithm
which allowed the B, estimates (k > 2) to be constrained to be nonpositive. The con-
straint assures that the resulting spline be a quasi-concave function (except for the
possibility of an initial range of increasing returns if both 8, and B8, are positive).

Soybean Response Functions

Two yield response functions were estimated for soybeans: one for phosphorus and
one for potassium.

Phosphorus
The knots chosen for the phosphorus response were:
X, = 75 kg P>,0z/ha (approx. 1.6(3.0) ppm P fof soil type 1(2)),
X, = 22b kg P,05/ha (approx. 4.56(9.0) ppm P for soil type 1(2)),
X3 = 375 kg P,0s/ha (approx. 7.5(15.0) ppm P for soil type 1(2));
X, = 525 kg P,0;/ha (approx. 10.5(21.0) ppm P for soil type 1(2)),
X, = 675 kg P,05/ha (approx. 13.5(27.0) ppm P for soil type 1(2)),

Because agronomists consider that a soil test level of 9(18) ppm P for soil type 1(2)
is high for Southern Brazil the spline function was constrained to attain a maximum of
1, at 675 kg P,0z/ha or below. The model fitted to the empirical data was: |

| m=6
yij = an (675’1 + 3 Bmzt:ij) + eij | (3.16)

m=2
where

. _g, . (675T5) 4
WO s W



Giannini Monograph ® Number 41 ® August 1987 | S : 33 .

. g . (675:225) 5
W e W

WO Ters B

and giveh that
= 48.26 P* + P? for soil type 1
u =24.13 P° + P? for soil type 2
Zo;j = max (Zlij - 75; 0)
Zg;; = max (Z,;; - 225; 0), etc.
(Recall that subscripts i, j stand for i-th treatment of the j-th experiment.)

Once the estimates of B,(m = 2, 3, . .., 6) are available, the estimate of B, is
obtained from:

g, = _1 600 o . 450 300 p . 160 5 (3.17)

675 675 . 676 675 675

Constraint (3.17) does not include B4 because it requires the spline to attain its
maximum at or below the level of 675 kg P,0;/ha. The constraint, however, does not
prevent relative yields from falling after this level. An additional condition that 8; = 0
could be imposed to keep yields from falling after this maximum phosphorus application.

Model (3.16) was fitted to the empirical data using nonlinear least-squares. Parame-
ter o was constrained to the interval (0.5, 1.6), and parameters 8, (m = 3,4,5,6) were

constrained to be nonpositive (in order to ensure concavity of the response functions for
levels of PT equal to or above 225 kg (P,05/ha).

Results of the estimated soybean response to phosphorus application are summar-
1zed in Table 6; the fit is satisfactory. The estimated grid of points for the relative yield
(yr) spline function (as a fraction of maximum expected yield) is:

At PT = 0O kg P,0,/ha yr =0,

at PT = 75 kg P,0s/ha  yr = 0.549,
at PT = 225 kg P,0;/ha  yr = 0.868,
at PT = 525 kg P,0,/ha  yr = 0.997
at PT = 675 kg P,0,/ha  yr = 1.

No change of slope occurred at the level of 375 kg P,0;/ha (the nonpositive constraint of
B4 was binding). The estimate for 8, indicates that yields tend to decrease very slowly
after the level of 675 kg P,05/ha. This result, together with the relative yield estimate of
99.7 percent for PT = 525 kg P,05/ha, strongly suggests the presence of a yield plateau.
Using separable programming, the relative yield response of soybean to total phospho-
rus can also be expressed as:

PT = Ow, + 75w, + 226w, + 526w, + 675w,

yre = Ow, + 0.549w, + 0.968w; + 0.997w, + 1.000w, (3.18)
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Table 6. Spline Regression Results for Soybean Response to Phosphorus.

Asymptotic Standard

Parameter Estimate Error

a 0.806100 0.013332
By 0.007324a —

B -0.005194 0.000604
Ba -0.001706 0.000299
Ba ' 0.0000000 —
Bs . -0.000397 0.000248
Be 0.000060 0.000180

R2 = 0.7885; MSE = 125.300; N = 340 observations.
aComputed according to equation (3.17).
bBinding constraint.

=4
'21Wi =1, w,=0fori=1234
i= |

at two (adjacent) weights w; 70, where PT stands for total supply of phosphorus (in kg. '
P,0;/ha) and yrse stands for relative yield response of soybeans to phosphorus (as a
fraction of the expected maximum). PT is computed as;

= 48.26 Ps + P2 for soil type 1
PT
= 24.13 Ps + P for soil type 2

where P° stands for soil test (ppm P) and Pa stands for applied phosphate (kg P,05/ha).

Postassium
The knots chosen to estimate the soybean response to potassium were:
X; = 40 kg K,0/ha (approx. 10 ppm K),
X, = 110 kg K,0/ha (approx. 30 ppm K),
X3 = 186 kg K,0/ha (approx. 50 ppm K),
X, = 260 kg K,0/ha (approx. 70 ppm K),
X5 = 410 kg K,0/ha (approx. 110 ppm K).

The spline function was constrained to attain a maximum of 1 at or below the level of
410 kg K,0/ha, because agronomists consider a soil test level of 60 ppm K as nonlimiting.
The model fitted to the empirical data was:

m=6

g = oM(4101 + X BuZiy) + ey (3.19)
m= ' .
where
7t = 7. . (410-40) o
21 2] --—---—-——-—-410 14§
2= Z, - (410-40) 7 ete.
N o 410 n

and given that
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Ly = 3.7 Ky; + Ky
Zgu = mMnax (lej - 40; 0)
Zaij = mMax (Zlij - 110; O) etc.

(Again, recall that subscripts i, j stand for the i-th treatment of the j-th experiment.) The

point estimate of 8,, that is, the inclination of the yield response function in the interval
KT = (0;40)kg of K,0/ha, is given by:

— ———— e ——— —— e ——— 51

410 410 110 ° 410 410

The estimation procedure for model (3.19) was the same as for phosphorus, already
described. The regression results are reported in Table 7. The R2 statistic and the rela-
tively small standard errors associated with the estimated parameters indicate that the
fitted equation has a high predictive power. The estimated grid of points for the soybean
response to potassium as a fraction of maximum expected yield and computed from the
information presented in Table 7 is: |

at KT=0 kg K,0/ha yr=90

at KT = 40 kg K,0/ha  yr = 0.534
at KT = 110 kg K,0/ha  yr = 0.721
at KT = 186 kg K;0/ha  yr = 0.915
at KT = 260 kg K.0/ha yr = (0.970
at KT = 410 kg K,0/ha yr = 1.

The small numerical estimate for B, indicates that relative yields tend to decrease very
slowly beyond KT = 410 kg K,0/ha. Again, the existence of a yield plateau is strongly
suggested, The relative yield response of soybean to total potassium can also be
expressed as:

KT = Owl + IIOW3 + 185W4 + 2BOW5 + 410W6
yrek = Ow, + 0.534 w, + 0.721w, + 0.916w, + 0.970w + 1.000w, (3.21)

=6
S w=1Lw=0fori=1,...,6
i

Table 7. Spline Regression Results for Soybean Response to Potassium.

Asymptotic Standard

Parameter Estimate Error

Qo | 0.91240 0.010010
B ' 0.013352 —

B> -0.01068 0.003481
Ba -0.00008 | 0.000003
Ba -0.00186 0.000975
Bs | -0.00053 0.000394
Be ) | ~0.00028 0.000198

R2 = 0.8819; MSE = 50.960: N = 273 observations.
aComputed according 1o equation (3.20).
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™

at two (adjacent) w, #0, where KT stands for total potassium (kg K,0/ha) and yrsk
stands for relative yield response of soybean to potassium (fraction of the expected
maximum yield). KT is defined as:

KT =373 K®* + K*

where K® stands for soil test level (ppm K) and K*® stands for applied potassium (kg
K,0/ha).

Wheat Response Functions

Yield response functions for phosphorus, potassium, and nitrogen were estimated
for wheat. The methods employed for P and K are identical to those estimated for
soybeans (including the choice of knots); therefore, the results are presented directly.
The nitrogen function will be presented in more detail.

Phosphorus

The results from fitting a spline to the wheat response to phosphorus (Table 8) are
statistically satisfactory. The 8, > 0 implies increasing returns for relatively low levels of
phosphorus — a finding not observed for soybeans. The estimated grid of points for the
wheat response to phosphorus (as a fraction of maximum expected yield) is:

at PT=0kg P,O;/ha yr=20
at PT =75 kg P,O;/ha yr = 0.197
at PT = 226 kg P,0s/ha  yr = 0.799
at PT = 375 kg P,0g/ha  yr = 0.905
at PT = 675 kg P,O;/ha  yr = 1.
Another way of expressing the estimated spline is:
PT = Ow, + 76w, + 226w, + 376w, + 67bwy

yr*p = Ow; + 0.197w, + 0.799w; + 0.906w, + 1.00w, (3.22)

i=5

E Wi=l;wi20f0ri=l,. . .,5
i=1

Table 8. Spline Regression Results for Wheat Response to Phosphorus.

Asymptotic Standard

Parameter Estimate Error
o 0.883700 0.017720
B1 | 0.0026304 —
B 0.001386 0.001091
B3 -0.003316 0.000653
B4 | ' -0.000380 0.000413
Bs | 0.000000°0 —_—
Bg -0.000313 0.000146

'R2 = 0.9009; MSE = 59.070; N = 179 observations.
aComputed according to equation (3.17).
®Binding constraint.
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at two (adjacent) w; #0, where PT stands for total phosphorus (kg P,0;/ha) and yrwp
stands for relative yield of wheat. Recall of PT is defined as:
= 48.26P° + P2 for soils type 1
PT
= 24.13P° + Pa for soils type 2

where Ps stands for soil test level (ppm P) and P2 stands for applied phosphate (kg
P205/ ha)

Potassium

The results from fitting a spline for wheat response to potassium (Table 9) are also
satisfactory. The estimated grid of points for the wheat response to potassium (as a
fraction of maximum expected yield:

at KT=0kg k,0/ha yr=0

at KT = 40 kg k,0/ha yr = 0.83
at KT = 110 kg k,0/ha  yr = 0.553
at KT = 186 kg k,0/ha yr = 0.885
at KT = 260 kg k,0/ha yr = 0.970
at KT = 410 kg k,0/ha yr = 1.

The negative estimate, -0.83 at KT = 40 kg k,0/ha is meaningless because there were
no observations in the range of 0 to 40 kg K,0/ha. Therefore, the first spline segment
“floated” free in order to link the lower point estimate for the second spline segment; for

all practical purposes, the knot (40, -0.83) can be excluded from the analysis. Thus, the
estimated spline can also be written as:

KT = Ow, + 110w, + 185w, + 260w, + 410w
yrwk = Ow, + 0.666w, + 0.886w; + 0.970w, + 1.000w (3.23)
i=5
3 wi=L,w=0fori=1,...,5

i=1

at two (adjacent) w, #0.

Table 9. Spline Regression Results for Wheat Response to Potassium.

Asymptotic Standard

Parameter Estimate Error
o 0.88230 0.01916
B4 -0.02074e —
B> 0.04048 0.03755
B4 -0.01531 0.01525
B4 -0.00331 0.00308
Bs -0.00092 0.00148
Ba | -0.00032 0.00037

R2 = 0.9485: MSE = 34,440; N = 125 observations.
aComputed according to equation (3.20).
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Nitrogen

The estimation method for wheat response to nitrogen (Table 10) differs from that
for phosphorus and potassium for two main reasons. First, the agronomists’ soil test
method used to evaluate the supply of N is not a direct measurement, as it is in the case
of P and K. Rather, nitrogen is indirectly evaluated by analyzing the organic matter
content of the soil. Second, nitrogen carryover is not important in the wheat-soybean
double cropping system, in part because soybeans can produce their own nitrogen via
the Rhizobium bacteria. Therefore, an explicit carryover function was not needed for N.
Instead, the relation between soil nitrogen, applied nitrogen, and yields was estimated
directly via the yield response function. The model adopted was based on the work of
Mitscherlich and of Bray (recall equation (1.1)):

vy = A (1- ™) + vy . (3.24)
where '

Vij = Yield obtained on the i-th treatment of the j-th experiment (kg of wheat per
ha)

A; = expected asymptotic yield plateau of the j-th experiment (as before, it is
assumed that M; = a;'!A; and E(a;) = o; M; is the maximum yield observed on the
j-th experiment)

Nij= soil test level for nitrogen (percent organic matter)
N%= quantity of applied nitrogen fertilizer (kg N/ha)

white Gaussian noise term and

s
{

O
*
i

a parameter of the model such that ¢* = ¢cA,, where A is the proportionality
factor between percentage organic matter and kg N/ha.

In (3.24), the term in parenthesis is the relative yield response of wheat (yr) to total
nitrogen (NT), Total nitrogen, in turn, is defined as:

NT = A N® + N°. . (3.26)

From (3.25) it is clear that NT will be measured in kg N/ha. Model (3.24) was estimated
by nonlinear least-squares with A, being substituted for oM, of (3.10). Results (Table 10)
indicate a statistically satisfactory fit for the wheat response to nitrogen. The estimated
- proportionality factor for nitrogen is A, = 13.1 (=¢*/c), suggesting that each percentage
unit of organic matter is equivalent to an application of 13.1 kg N/ha. Thus, the esti-
mated wheat response to nitrogen can also be written as:

Y = A (1 - e00420NT) | (3.26)
NT = 13,1 N° + N, ' - (3.27)

Table 10. Regrassion Results for Wheat Response to Nitrogen.

Asympto'tic Standard

Parameter | Estimate Error
o 0.8507 _ 0.0133
ol -0.5634 | 0.0557
C -0.0429 0.0299

R?2 = 0.8823; MSE = 60,040; N = 158 observations.
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The term in parentheses in (3.26) is the relative yield response of wheat to total nitrogen

(yr»v). Because a grid of points approximately this relative yield response was needed
for the separable programming model, the following function was specified:

NT = Qw, + 30W2 + 60W3 + 90W4 + 120w,
yrow = Ow, + 0.724w, + 0924w, + 0.978w, + 1.000w; (3.28)
i=0

2 wi=lLw=0fori=l, ..., 5
j=1

at two (adjacent) w; #0.

This completes the estimation of the physical relationships among yields, soil tests
and applied fertilizers. Based on these relationships we turn to the economic optimiza-
tion of fertilizer use.

Programming Results and Economic Analysis

The moving horizon concept for a planning period of four years (or eight consecu-
tive cropping periods) was used for the economic analysis. Besides the estimates of
carryover and relative yield functions, the programming formulation requires estimates
for expected yield plateaus of wheat and soybeans which in southern Brazil are 1,800
kg/ha and 2,800 kg/ha, respectively.10 The prices used in the basic programming model
were:11

nitrogen: Cr$ 5.61/kg of.N
phosphorus: Cr$ 7.06/kg of P,0,
~ potassium: Cr$ 2.49/kg of K,0
wheat: Cr$ 2.03/kg
~soybeans: Cr$ 1.84/kg

These prices, which we will refer to as 1976 prices, do not include the 40 percent subsidy
for fertilizers that went into effect in 1974 and was revoked at the beginning of 1977.

The programming formulation to establish the optimum levels of soil fertility for the
wheat-soybean double-cropping system was:

(1) Objective Function
. max PV, = PVR - PVVC
'where %
PV, = present value of expected net revenués.
PVR = present value of expected total revenues, and

PVVC = present value of expected fertilizer costs;

10The estimates were derived at a series of seminars held by the National Wheat Research Center; they are

based on opinions of researchers, extension specialists, and farmers who attended the seminars (see EMBRAPA,
19764, and 1976b).

This set of prices reflects average prices in the wheat-soybean producing area of southern Brazil in 1976
(see Stulp, 1977).
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(2) Constraints

First:
PVR = 3654 yr, + 5152 yr, + 3654 yra + 5152 yr, + ... + 5152 VIg
1.03 1.032 1.033 1.034 1.038

where yr; is relative yield obtained in the j-th cropping period. The index j = 1,3,5,7
indicates wheat, while j = 2,4,6,8 indicates soybeans. The coefficient 3,654 (= 1.800 kg of
wheat/ha times Cr$ 2.03 per kg of wheat) represents the expected revenue plateau per
ha of wheat (in Cr$/ha). The coefficient 5.152 (= 2,800 kg of soybeans/ha times Cr$ 1.84
per kg of soybeans) represents the expected revenue plateau per ha of soybeans (in
Cr$/ha). A subsidized semiannual interest rate of 3 percent is used to discount future
revenues — the rate officially adopted for savings accounts (“cadernetas de poupanya”)
in Brazil. The cost of fertilizer applications is assumed constant.

Second:
PVVC = H.6IN® + 7.06P* + 249K* + 7.06 P> + 249 K* + 561 N°®
1 1 1 2 2 —l 03
1.03 1.03 1.03
<+ 706 Pa + 249 Ka + o + 2.49 Kﬂ.
1.032 3 1.032 3 1.037 8

where x3 is the quantity of nutrient X added to the soil (fertilizer) at the beginning of the
J-th cropping period. Recall that no nitrogen is applied for soybeans.

Third:
N; = given
N = 13.13 Nj + N2, j=1,305"7

where qu represents the total quantity of nitrogen available for the plants (kg N/ha) in
the j-th cropping period, Nj is the percentage of organic matter in the soil (assumed to
be constant because of lack of information), and Nj is nitrogen applied to the soil as
fertilizer in the j-th cropping period (kg N/ha).

Fourth:
P = given,
P;. = 48.26 P; + P, i=1,...,8,
P;,; = 0.8895(P; + 0.02072 P9), i=1,...,8.

This set of equations describes the phosphorus supply over time. P% is the quantity of
phosphorus available for the plants in the beginning of the j-th cropping period (kg
P,0:/ha). P‘j’ 1s the soil test level for phosphorus in the beginning of the j-th cropping
period (in ppm of P). P9 is the quantity of phosphorus applied in the beginning of the J-th
cropping period (kg P,0; per ha). The coefficients for soil type 1 were used in the
analysis; the only difference between soil types 1 and 2 is the “exchange rate” factor Aps
so the adjustment of results later is straightforward.

Fifth:
K®= given
KT=3.73 Kj + Kj

j+1= 0.8139 (K; + 0.2692 K3).
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This set of equations describes the dynamics of potassium supply. K7 is the quantity of
potassium available for the plants in the beginning of the j-th cropping period (kg
K,0/ha). Kj is the soil test level of potassium in the beginning of the j-th cropping period
(ppm K). K3 is potassium fertilizer applied in the beginning of the j-th cropping period
(kg K,0/ha). .

Sixth:

yI; < Owy, + 0.72wyy + 0.924w,, + 0.978w,,; + 1.000ws,
NT = 0wy, + 30Wyy; + 60Wz; + O0W,y + 1205,

1 = Wy + Wopy + Wapj + Wypy + Weyj j=1,35,7
yr; < Ow,p,; + 0.197w,,; + 0.799w35,,; + 0.906w, + 1.000wy,;
PT = 0w, + TBWyp; + 220wy, + 376w, + 670W5,

1 = Wip; + Wapy ¥ Wapy + Wapj + Wep; = 1,3,5,7
V< Owpy + 0.655wy + 0.880Wgy + 0.970wy,,; + 1.000wg,,
KT = 0wy + 110wy + 186wy, + 260w 4 + 410wg,,

1 = Wy + Wog + Wayy + Wy + Wpy;, j =1,3,5,7.

This set of restrictions describes the relative yield of wheat in the first, third, fifth and

seventh cropping periods as a function of the available supplies of N, P and K, see

equations (3.22), (3.23) and (3.28).

Seventh:
erS Owlpj + 0549W2F'J + 0.868W3pj + 0'997W4pj + 1.000W5pj

PT = 0wy, + TBWyy,; + 226Wgpy; + D2OWypy + 675wg

L = Wy + Wapj + Wagy + Wap + Wepj j=24068
YT, < Oy + 0.534Wy + 0.721 Wy + 0.915W, + 0.970Wgy + 1.000Wey
KT - 0w, + 40Wyy + 110wy + 185wy + 260Wsy; + 410Wey

1 = Wy + Waig + Waig T Wy + Wi + Wegs j=24,68

This set of restrictions describes the relative yield of soybean in the second, fourth, sixth,

and eighth cropping periods as a function of the available supplies of P and K; see
equations (3.18) and (3.21).

The programming model was completed with nonnegativity constraints on all vari-
ables. There were 196 variables in all (excluding slacks) and 127 constraints. However,
only the optimum levels of nutrients found for the first two cropping periods (N1, P, K7,
P; and K:) are of interest for the analysis, because these levels constitute “soil fertility
targets” or optimum nutrient stocks to be maintained for wheat and soybeans. This
interpretation derives from the moving horizon concept applied here: It is assumed that '
the decision maker (farmer) is continuously either on the first (wheat) or second (soy-
bean) period of a total of eight consecutive planning periods.

The computations were carried out by conventional linear programming proce-
dures. No separable programming algorithm was required because the model had the
appropriate convexities.
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Of special interest in the analysis was an evaluation of the stability of the soil
fertility targets (N, PT, K}, PL and K}) with respect to changes in input prices. First, it
was found that parameterization of the initial soil fertility conditions (N}, P, and K}) did
not affect the computed optimum soil fertility targets (N7, PL, Kj, T3 and K3):

(a) optimurm soil fertility targets for wheat (1976 prices)
NT = 57.2 kg N/ha or 4.35 percent organic matter

P! = 375 kg P,0s/ha or 7.8(15.6) ppm P for soil type 1(2)
KT = 202 kg K,0/ha or 54.3 ppm K.

(b) optimum soil fertility targets for soybean (1976 prices)
P = 456 kg P,05/ha or 9.4(18.8) ppm P for soil type 1(2)
K3 = 260 kg K,0/ha or 69.7 ppm K.

Next, the input prices were made to vary within the interval of 0.6 to 1.4 times the
1976 prices (Table 11 and Figure 4). Figures 4A, 4B, and 4C show the stability or the
fertility targets for wheat (dashed lines) and for soybeans (solid lines). The optimum
fertility targets (stocks) for both wheat and soybeans are relatively stable with respect
to changes in fertilizer prices (particularly with respect to increases in fertilizer prices).
For example; A decrease of 30 percent in fertilizer prices, certeris paribus, increases
the nitrogen target for wheat by only 4.9 percent whereas the phosphorus and potas-
sium targets for the same crop are increased by 16.0 and 8.3 percent, respectively. The
relative changes in output levels would be even smaller. Such a stability is possibly due to
the high carryover effect of both phosphorus and potassium fertilizers. In any event, it
seems that the optimum fertility targets computed at current prices can be viewed as
solid lower bounds for the purpose of making fertilizer recommendations. In this regard,
it appears that these recommendations are relatively well protected against the possibil-
ity of small errors in the estimates of the coefficients of the programming model (partic-

ularly against a possible overestimation of the expected yield plateaus for wheat and
soybeans).

With these results in mind, the analysis turns to a critical evaluation of the fertilizer
recommendation tables currently used for the southern Brazilian wheat-soybean double
cropping system. The tables do not make a distinction between soil fertility targets for
wheat and for soybeans, i.e., for both cases, soil scientists recommend that a level of 9
(18) ppm of P for soil type 1(2) and of 60 ppm of K be maintained in the soil (UFRGS,
1973). Thus, it appears that only minor modifications to the tables are required with
respect to target levels for phosphorus and potassium; the relative differences from the
table targets to the computed optima are in the range of 5 to 15 percent. In the analysis
to follow, the targets in the tables will be assumed to be satisfactory approximations to
the optima.!2

In order to maintain the levels of soil fertility for P and K at their desired level, soil
scientists in souther Brazil recommend an application of 76 kg P;05/ha and 40 kg K,0/ha
for each cropping period. Such “maintenance recommendations;, can be evaluated by
‘the carryover equations (3.4}, (3.6) and (3.8). By treating (3.4) and (3.5) deterministi-
cally, letting P}, = P} = P? (where PT is defined as the desired target level for P in ppm)

12A gtatic (one period) optimization for wheat and for soybeans independently leads to soil fertility targets
that are 20 to 50 percent below the targets computed under the moving horizon concept. The static optimization
targets for wheat, under current prices, are: NT = 165.6 kg K,0/ha. The static optimization targets for soybeans,
under current prices, are; PT = 225.0 P,0./ha and KT = 167.2 kg K,0/ha. These results further illustrate the need
for considering fertilizer carryover in the economic analysis of fertilizer data.
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Table 11. Stability of Optimum Soil Fertility Stocks (Targets) for Wheat and Soybeans with
Respect to Fertmzer Prlce Changee

Percentage |
change in Targets for Wheat Targets for Soybeans
fertilizer o | - o o
pricee | Na pb Ke yrd pPb Ke yrd
-40% 60.0 435.0 219.4 92.4 525.0 410,0 100.0
(4.6) (9.0) (68.8) (10.9) (109.0)
~30% - 60.0 435.0 2194 92.4 525.0 410.0 100.0
(4.6) (9.0) (58.8) (10.9) (109.0)
~20% 60.0 435.0 219.4 92.4 489.0 331.0 98.4
(4.6) (91.0) (58.8) | (10.1) (88.7)
-10% 67.2 375.0 202.6 90.5 489.0 331.0 08.4
o (4.3) (7.8) (54.3) - (10.1) (68.7)
0% 57.2 375.0 2026 80.5 456.0 = 260.0 97.0
(4.3) (7.8) (64.3) (9.4) (69.7)
+10% §7.2 375.0 202.6 90.5 454.0 258.8 96.9
(4.3) - (7.8)  (54.3) (9.4) (69.4)
+20% 657.2 375.0 202.6 90.5 454.0 258.8 96.9
| (4.3) (7.8) (54.3) (9.4) (69.4)
+30% 67.2 375,0 - 202.6 90.5 421.6 239.3 96.9
| (4.3) (7.8) (54.3) (8.7) (64.2)
+40% 54.2 346.7 185.0 88.5 4216 239.3 95.5
- (4.1) (7 8) (54 3) (B 7) (64.2)

2The first entry ls in kg N/ha the entry in parenthesle is in percentage orgamc matter.

~ PThe first entry is in kg P,05/ha; the entry in parenthesis is in ppm P for soil type 1 (for soil type 2:
multiply the entry by 2).

¢The first entry is in kg K,0/ha; the entry in parenthesis is in ppm K.

dPredicted relative yields, in terms of percentage of the expected yield plateau.

and solvirig for P%, = P*, (where P? is defined as the maintenance application of P in kg
P,0s/ha/cropping perlod), the estimated fertilizer application to maintain the level of
soil phosphorus at any level P? is given by: |

P2=5996 P*  for soil type 1 (3.29)

or,

P?=2008 P for soil type 2 (3.30)

Similarly, from equation (3.8), by letting K} , = K; = K% (where K°® is defined as the desired
target for K in ppm) and solving for K%, = K? (where K? is defined as the maintenance
application of K in kg K,0/ha/ croppmg period), the fertilizer appllcatlon required to
‘maintain the level of soil K at its desired level is given by:

K!=0863 K° for all soil types. (3.31)

The soil fertility targets associated with current recommendations are P = 9 (18)
ppm of P for soil type 1(2) and K? = 60 ppm of K for all soil types. By substituting these
values into (3.29) to (3.31), the maintenance application levels for P and K should be,
-approximately, P} = 54 kg P,05/ha/cropping period and K® = 51.2 kg K,0/ha/cropping
period, These levels contrast with the maintenance levels recommended in southern
Brazil of 76 kg P,05/ha/cropping period and 40 kg K,0/ha/cropping period. Therefore,
the recommendations for “maintenance P” are overestimated by about 48 percent,
whereas the recommendations for “maintenance K” are underestimated by about 28
percent. If these recommendations were followed for a long period of time, it seems
likely that soil phosphorus would be built up to a level above the 9(18) ppm target for
soil type 1(2). For potassium, the maintenance recommendation of the tables seem to be
insufficient for keeping the level of soil K at its desired target (60 ppm of K of all soil
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types).!3 In short: Even though the target levels for P and K are close to the computed
optimum (the relative differences were in the range of 5 to 15 percent), it seems that
major modifications of the tables are required as far as maintenance P and maintenance
K are concerned, for the relative differences found here are in the range of 30 to 50
percent (Table 12). |

Table 12. Target Levels and Maintenance Applications Recommendations for Phosphorus and
Potassium.

Adjusted
Current Recommendations Recommendations
Nutrient Targeta Maintenance®.c Targeta Maintenanceb.c
Phosphorus 9.0 75.0 9.0 54.0
Potassium 60.0 40.0 60.0 51.2
Optima for Wheat Optima for Soybeans
Nutrient Targeta Maintenanceb.c Targeté Maintenanceb:¢
Phosphorus 7.8 46.8 9.4 56.4
Potassium 54.3 47 4 69.7 60.9

aTarget levels in ppm units (soil typé 1 units for P).
bMaintenance levels in kg P,0s/ha/cropping period for P and kg K,0/ha/cropping period for K.
cComputed from equations (4.29) and (4.31).

The carryover equations can also provide the information on how much fertilizer is
required to change the soil test level found at the beginning of cropping period t to the
desired target at the beginning of cropping period t+1. The fertilizer used for the purpose
of this change is generally called “corrective fertilizer” (in contrast to the “maintenance
fertilizer,” the amount required to keep the soil fertility at the desired target through
time). To attain soil fertility targets of 9 ppm of P (for soil type 1) and 60 ppm of K in the
beginning of cropping period t, given that the soil test levels of period t-1 were P§, and

t.1 the corrective fertilizer requirements are given by:

P2 =4888 - 4831 P, (3.32)

Q

rl
K2 =2749-373 K%, (3.33)

(Equations (3.32) and (3.33) were computed from equations (3.4) and (3.8) by setting
Psf and K®' at their target levels and solving for the applied fertilizer quantity.) However,
since a maintenance recommendation is also made for each period (54.0 kg P,0:/ha/
cropping period and 51.2 kg K,0/ha/cropping period), the corrective recommendations
should be diminished by that amount. Thus, the corrective recommendation for soil
targets of P; = 9.0 ppm of P (soil type 1) and K% = 60 ppm of K should be modified to:

P2 . =4348 - 4831 P*, (3.34)
d

5

K2, =2237-373K};, | - - (3.35)

- 1We note that the fertilizer recoinmendation tables have been recently revised in order to increase the
maintenance K recommendation from 40 to 50 kg K,0/ha/cropping period.
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Equations (3.34) and (3.35) are graphed in Figures 5A and 5B, These figures also include
the corrective recommendations from the tables currently employed by southern Brazi-
lian agronomists (dashed lines). Figures BA and 5B show that corrective recommenda-
tions are quite conservative for soils of every low fertility levels. In other words: It seems
unlikely that the corrective fertilizer recommendations of P and K currently adopted in
southern Brazil can actually drive soil test levels to their desired targets within only one
cropping period. If these recommendations are followed sequentially, farmers may need
two to three “corrective” applications (plus “maintenance”) in order to hit the desired
target levels. On the other hand, this fractioning of the corrective fertilization may be an
optimal strategy under capital rationing conditions, Therefore, this point is less of a
problem than it might at first appear.

The optimum target level computed for nitrogen was 57.2 kg N/ha/cropping period
of wheat. The same level of N is equivalent to a soil test level of 4.5 percent organic
matter (using the proportionality factor for N of 13.1), Current nitrogen recommenda-
tions for wheat are overestimated with respect to the computed optimum (Figure 5C).
The differences accentuate as the level of organic matter increases from O to 5 percent.
It also seems advisable to make a finer division of classes of soil organic matter percen-
tage content in the tables: Only three classes are currently adopted. At very low levels of
soll organic matter, the computed optimum recommendation is close to the current
recommendation. The larger difference between the recommendations for higher levels
of soil organic matter is caused by a difference in the estimates of nitrogen supply
capacity from soil organic matter; in this study it has been estimated that each percen-
tage point of soil organic matter can supply 13.1 kg N/ha/cropping _period of wheat. The
estimate adopted in the tables, however, is more conservative: approximately 8 kg N/ha/
cropping period of wheat for each percentage point of soil organic matter. The differ-
ence between there estimates is probably due to the fact that soil pH correction
(through limestone applications) has been made for all observations included in this
study, and when soil pH is corrected, the supply of nitrogen produced by any given
amount of organic matter is significantly increased. The recommendations made by the
agronomists, on the other hand, do not necessarily assume that soil pH has been cor-
rected through the use of lime. The result is the agronomists’ more conservative estimate
for the equivalence factor between soil organic matter and applied nitrogen. In any
event, since pH correction itself is also recommended in the tables, consistency requires
that the pH factor should be taken into account in making fertilizer recommendations. -

In conclusion, it seems that some adjustments on fertilizer recommendation tables for
the wheat-soybean system would be highly worthwhile. The maintenance levels recom- -
mended for P are too high; a reduction from 75 to 55 kg P,05/ha/cropping period is
strongly suggested. For potassium, on the contrary, it appears that the maintenance
recommendation should be increased from 40 to 50 kg K,0/ha/cropping period (and
perhaps even a little more for soybeans). For nitrogen it was found that the recommen-
dations could be somewhat reduced, particularly for soils where lime has been applied.
It is also suggested that the number of classes of soil organic matter be increased from
the current number of three (Figure 5C). The above suggestions are based on the
assumption that soil fertility targets are kept at the levels adopted in the tables, as these
levels were found to be relatively close to the computed optima (see Table 12). Neverthe-
less, it is also suggested that the tables could be improved by making a distinction
between fertility targets for wheat and for soybeans. Moreover, as the optimum target
levels of P and K for soybeans were found to be higher than those computed for wheat, it
seems reasonable to recommend higher maintenance levels for soybeans and no P and K
at all for the sequential wheat crop.

Finally, it seems important to evaluate the probable gains from the recommended
changes, First, since the suggestions assume that current fertility targets will be main-
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tained, no change in output levels would be expected. The gains from the changes would
come instead from reduced fertilizer costs. Table 13 summarizes the likely results of the
changes in recommended levels of fertilizer use. |

Under the table’s recommendations, the yearly fertilizer costs of one ha of wheat-
soybeans are approximately Cr $1,426. If the suggested changes are implemented, this
cost can be reduced to Cr $1,137. The reduction in costs for fertilizer is Cr $288/ha/ year
or US $27.30/ha/year, at July 1976 exchange rates. The relative decrease in yearly
fertilizer costs would be around 20 percent, a significant amount. The costs of changing

the tables, on the other hand, are small and, in practice, can be assumed to be
insignificant.

4. CONCLUSIONS AND THE ROAD AHEAD

The explicit adoption of agronomists’ conception of the fertilizer application prob-
lem has produced a series of analytical results of interest to both agricultural econo-
mists and soil scientists, albeit for different reasons. For agricultural economists, the
significance may lie in the possibility of better understanding the fertilizer problem for
what it really is: a dynamic phenomenon subject to specific agronomic principles. Soil
scientists, who had correctly perceived and treated the fertilizer problems as a dynamic
phenomenon, may benefit from its formalization here. For both groups of scientists, a
rebirth of the idea of common goals and scientific collaboration based upon shared
conceptions and language seems now a distinct possibility. |

These conclusions, however, are preliminary and will require additional verification.
The hypothesis of nutrient non-substitution needs to undergo a rigorous statistical test.
One main result of this study is the development of such a test. Appropriate experi-
ments can now be designed and executed, and the relevant information collected in a
form suitable for performing the test suggested here. The resolution of this question for
agronomists and agricultural economists seems of paramount importance for future
collaboration between the two groups of scientists.

This study also suggests that more attention be paid to the analytical formulation
and solution of the fertility carryover problem. It would appear that in this area agron-
omists might benefit from a closer association with agricultural economists who are

already rather familiar with analogous capital investment issues cast in the form of
optimal control problems.

Table 13. Yearly Fertilizer Costs Required to Maintain the Soil Fertility at Desired Targets for the
Wheat-Soybean Double Cropping System, 1976 Prices.

Current Recommendation Suggested Recommendation

Item Quantitya CostP Quantity® Costb
Maintenance N for Wheat¢ 30 168 20 112
Maintenance P for Wheat 75 529 55 388
Maintenance K for Wheat 40 100 50 125
Maintenance P for Soybean 75 | 529 55 388
Maintenance K for Soybean 40 100 50 124

Total Cost — 1,426 — 1,137
8ln kg N/ha, kg P,0s/ha and kg K,0/ha for N, P and K, respectively.
bin Cr$/ha.

CAssuming a 3 percent organic matter.
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