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Multiple imputation of missing values: further
update of ice, with an emphasis on interval

censoring

Patrick Royston
Cancer and Statistical Methodology Groups

MRC Clinical Trials Unit
London UK

Abstract. Multiple imputation of missing data continues to be a topic of consider-
able interest and importance to applied researchers. In this article, the ice package
for multiple imputation is further updated. Special attention in this article is paid
to imputing interval-censored observations, and a suggestion to use imputation of
right-censored survival data to elucidate covariate effects graphically.

Keywords: st0067 3, ice, uvis, micombine, ice reformat, multiple imputation, in-
terval censoring, visualization, censored survival data

1 Introduction

Royston (2004) introduced mvis, an implementation for Stata of MICE, a method of
multiple multivariate imputation of missing values under missing-at-random (MAR) as-
sumptions. In a second article, Royston (2005a) described ice, an upgrade incorporat-
ing various improvements and changes to the software based on personal experience,
discussion with colleagues, and user requests. An update of ice was described by
Royston (2005b), and this article presents a further update. The changes are less sub-
stantial than before but nevertheless, I feel, are important enough to warrant a paper.
I will focus particularly on the new interval() option for imputing interval-censored
observations. This option may be used with covariates recorded only in categories (such
as stated income in surveys or a different application) to impute the missing part of
left-, interval-, or right-censored time-to-event observations.

The current ice system consists of three ado-files: ice, uvis, and micombine. Pre-
vious components mijoin and misplit are out of date and have been removed. This
is the final release of micombine, since a related article (Carlin, Galati, and Royston
2008) describes a new ado-file, mim, which replaces micombine and has more facilities.

Finally, another ado-file, ice reformat, is included in the present release for back-
ward compatibility of data files. It converts .dta files created by earlier releases of ice
to the format required by mim.

c© 2007 StataCorp LP st0067 3
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2 Syntax

ice mainvarlist
[
if

] [
in

] [
weight

] [
, boot

[
(varlist)

]
cc(ccvarlist)

cmd(cmdlist) cycles(#) dropmissing dryrun eq(eqlist) genmiss(string)

id(string) m(#) interval(intlist) match
[
(varlist)

]
noconstant nopp

noshoweq nowarning on(varlist) orderasis passive(passivelist) replace

saving(filename
[
, replace

]
) seed(#) substitute(sublist)

trace(filename)
]

uvis regression cmd { yvar | llvar ulvar } xvarlisti
[
if

] [
in

] [
weight

]
,

gen(newvarname)
[
boot match noconstant nopp replace seed(#)

]
where regression cmd may be intreg, logistic, logit, mlogit, ologit, or regress.

All weight types supported by regression cmd are allowed. llvar ulvar are required
with uvis intreg.

micombine regression cmd
[
yvar

] [
covarlist

] [
if

] [
in

] [
weight

] [
, br detail

eform(string) genxb(newvarname) impid(varname) lrr noconstant

obsid(varname) svy
[
(svy options)

]
regression cmd options

]
where regression cmd includes clogit, cnreg, glm, logistic, logit, mlogit, nbreg,

ologit, oprobit, poisson, probit, qreg, regress, rreg, stcox, streg, or xtgee.
Other regression cmds will work but not all have been tested by the author. All
weight types supported by regression cmd are allowed.

ice reformat filename, replace

3 What is new?

The principal changes to ice (version 1.4.4), uvis (version 1.2.7), and micombine (ver-
sion 1.1.6) compared with the November 2005 release (Royston 2005b) (versions 1.1.1,
1.1.0, and 1.1.0, respectively) are as follows:

1. ice now checks for perfect prediction of the outcome when logistic regression
(logit, logistic, ologit, mlogit) is used to impute a binary, ordered or un-
ordered categorical variable. If perfect prediction is found, ice and uvis work
with a modified type of logistic regression command. The dataset is extended by
several pseudo-observations in such a way that nonperfect prediction results and
the estimated β regression coefficient and its SE are finite. This approach guaran-
tees sensible imputations in such cases. Treatment of the perfect prediction bug
can be suppressed by using the nopp option of ice or uvis.
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2. An interval() option has been added to ice. This option is the key change and
its functionality is the main topic of the present article.

3. The imputation and observation indicator variables have been changed from j
and i to mj and mi.

4. The original data, including missing values, are output by ice to the file of impu-
tations, indexed by mj = 0.

5. ice’s substitute() option has been improved by making it imply passive()
for the relevant variables. This saves typing and reduces the chance of making a
mistake in the specification.

6. dropmissing, orderasis, and nowarning options have been added to ice.

7. A nopp option has been added to ice and uvis.

8. The using filename syntax has been replaced with a
saving(filename

[
, replace

]
) option. The old syntax still works but is undoc-

umented.

9. The help file for ice/uvis has been modernized.

10. svy commands for Stata 8 and 9 are now supported by micombine.

11. uvis supports imputation of interval-censored variables with the uvis intreg
syntax.

12. ice reformat replaces filename with a new version of the data, with the following
changes:

a. i and j are renamed to mi and mj, respectively.

b. The contents of characteristic char dta[mi id] are changed from i to mi.

4 Options

Only new or changed options are described.

Options for ice

dropmissing is a feature designed to save memory when using the file of imputed
data created by ice. It omits from filename all observations that are not in the
estimation sample, that is, for which either (i) they are filtered out by if or in, or a
nonpositive weight, or (ii) the values of all variables in mainvarlist are missing. This
option provides a clean analysis file of imputations, with no missing values. The
observations not in the estimation sample are also omitted from the original data,
stored as the imputation indexed by mj==0 in filename.
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interval(intlist) imputes interval-censored variables. An interval-censored value is one
that is known to lie in an interval [a, b], where a and b are finite and a ≤ b; in (−∞, b];
or in [a,∞). When either terminal is infinite, we have left or right censoring, respec-
tively. intlist has the syntax varname: llvar ulvar

[
, varname: llvar ulvar . . .

]
,

where each varname is an interval-censored variable, each llvar contains the lower
bound (a) for varname and each ulvar contains the upper bound (b) for varname
(or a missing value to represent ±∞). The supplied values of varname are irrele-
vant because they will be replaced anyway; it is only required that varname exist.
Observations with llvar missing and ulvar present are left-censored for varname.
Observations with llvar present and ulvar missing are right-censored for varname.
Observations with llvar = ulvar are complete, and no imputation is done for them.
Observations with both llvar and ulvar missing are imputed assuming an uncensored
normal distribution.

nopp suppresses treatment of the perfect prediction bug.

nowarning suppresses warning messages.

orderasis enters the variables in mainvarlist into the MICE algorithm in the order
given. The default is to order them according to the number of missing values; the
variable with the least missingness gets imputed first and so on.

saving(filename
[
, replace

]
) saves the imputations to filename. replace allows file-

name to be overwritten with new data. Unless dryrun has been specified, saving()
is required.

4.1 Options for uvis

nopp suppresses treatment of the perfect prediction bug.

4.2 Options for micombine

svy
[
(svy options)

]
(Stata 9) performs survey regression. The prefix svy: is placed be-

fore regression cmd. If svy options are supplied then , svy options is placed between
svy and the colon. The data must be svyset before this option is used and before
ice is used to impute missing values. That the data have been svyset is inherited
by the file of imputations created by ice.

svy (Stata 8) performs survey regression. The prefix svy is placed before regression cmd,
so that for example micombine regress . . . , svy is interpreted as svy regress . . . .
Options for survey regression are included as options to micombine. The data must
be svyset before the svy option is used. This must be done before ice is used to
impute missing values. That the data have been svyset is inherited by the file of
imputations created by ice.
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5 Interval censoring

5.1 Introduction

A value x is said to be interval-censored on [a, b] if x is known to lie between a and b
but its exact value is not known. An example is a sample survey in which respondents
are asked to indicate an income range (e.g., $0–$5,000, $5,001–$10,000) but not their
precise income. In clinical medicine it is not uncommon for continuous or ordinal values
to be recorded only in categories. In node-positive breast cancer, for example, the most
important prognostic variable, the number of positive lymph nodes (say, nodes), is
sometimes converted to the lymph node stage (nstage), coded as 0 for node negative
(nodes = 0), 1 for 1–3, 2 for 4–9, and 3 for 10+ nodes. A dataset compiled from
different centers could even contain a mixture of nodes and nstage values, depending
on local practice.

Interval-censored data includes some important special cases. For example, with
right censoring (e.g., time-to-event data), a datum x may be completely observed, in
which case, a = b = x, or known to be at least x0, in which case, a = x0 and b = +∞
and x is right-censored. A datum left-censored at x0 has a = −∞ and b = x0. In the
nodes example, observations in nstage category 0 are exact, whereas those in categories
1 and 2 are interval-censored and those in category 3 are right-censored.

Sometimes, for example, for modeling or descriptive purposes, the continuous values
underlying an interval-censored variable need to be imputed. For example, nodes is the
most powerful predictor of outcome in primary breast cancer. If nstage is recorded for
some patients and nodes for others, the most informative analysis of the dataset may
require imputation of exact value of nodes for cases with only nstage known. One may
also be faced with imputing missing values of nodes/nstage.

An interesting application of imputing interval-censored observations is with time-
to-event (e.g., survival) data. Visualization of survival times and other explorations
of the data may be more easily achieved with the censored observations replaced with
imputed values. I will illustrate this scenario in some detail in section 6.

5.2 The model

In ice, imputation of interval-censored observations is based on the assumption that the
underlying (latent) continuous variable is normally distributed. The Stata command
intreg is used to estimate the mean and variance of this distribution, based on the
interval-censored (doubly truncated) values and on covariates comprising the imputation
model. It is assumed that the underlying continuous variable follows a truncated normal
distribution in the observed categories. To help make the modeling more realistic, the
software allows the imposition of an absolute lower and/or upper limit on the imputed
values. This is implemented by truncation of the normal distribution at the specified
value(s).
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Figure 1 shows the principle of imputation sampling here. For example, an obser-
vation of x is known to lie in [1, 3] and a continuous value is sampled from the shaded
density. This density takes into account the mean and SD of the underlying normal
distribution (bell-shaped curve). These parameters are estimated by intreg from the
covariates comprising the imputation model. To ensure that the imputations are proper,
the parameter values actually used are drawn from their estimated posterior predictive
distribution, as is routinely done by ice.

Censored
obs

Upper
limit

Complete
obs

−4 −3 −2 −1 0 1 2 3 4

Figure 1: Interval censoring and the normal density function. The gray area indicates
an observation that lies somewhere between 1 and 3. ice with the interval() option
would sample from the density corresponding to the gray area.

5.3 In practice

To perform imputation with the interval() option, ice requires two variables: ll
containing the lower boundary a for each observation of a variable x, and ul, containing
the upper boundary, b. Each value of ll and ul may be missing or nonmissing, but ll
must never exceed ul. Missing values of ll indicate left-censored observations; of ul,
right-censored observations; and of both variables, truly missing observations.

The normality assumption must be plausible for the procedure to be successful in
the sense of generating imputations with a realistic distribution. When the variable
in question is intrinsically positive and positively skewed, a log transformation is of-
ten advantageous since the imputed values are guaranteed to be positive after back-
transformation (exponentiation). If a subset of exactly observed values is available, an
approximate transformation to normality can often be found by power transformation
followed by a normal plot of the transformed variable (qnorm command). One is look-
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ing for approximate linearity of the normal plot. If the variable has zeros, a common
practice is to add 1 before seeking such a transformation.

Variables that are integer-valued (e.g., nodes) and interval-censored (e.g., nstage)
present a further challenge. Clearly the distribution of the underlying latent variable
is not really continuous, but such an assumption is a convenient fiction. The case can
be handled by judicious rounding. Consider nstage. Recalling that the categories 1–3
of nstage represent nodes values of 1–3, 4–9, and 10+, one might assign the values
1, 4, and 10 to ll and 3, 9, and “.” (missing) to ul. However, with this scheme the
imputed continuous values will have gaps in the intervals (3, 4) and (9, 10). A better
scheme is to pretend that an observation of k nodes is really an underlying continuous
value in the range (k − 0.5, k + 0.5) and specify ll as 0.5, 3.5, and 9.5, and ul as 3.5,
9.5, and missing. The final step in such a scheme is to round the continuous imputed
values to the nearest integer. By making the lower limit of the lowest group 0.5, we are
guaranteed that imputed values will not be less than 1 after rounding.

If the variable requires a preliminary transformation to achieve approximate nor-
mality, the extra steps of pretransforming ll and ul and posttransforming them back to
the original scale after imputation must be performed. In the nodes example, rounding
to integers would be the final step.

5.4 Example

Preliminaries

I will illustrate the nodes example with real data. Consider the variable x5 (nodes,
number of positive lymph nodes) in the breast cancer dataset brcaex.dta analyzed by
Royston (2004). The distribution of x5 takes the integers 1, 2, . . . , and has coefficient
of skewness

√
b1 = 2.9, which is large. More than 25% of the values are 1.

Figure 2 shows two normal plots of x5.

(Continued on next page)
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Figure 2: Normal Q–Q plots of untransformed (left panel) and log-transformed (right
panel) nodes

However, these are not the usual normal plots. Instead, I have created the normal
scores variable, z, corresponding to x5 by using the ado-file nscore provided with this
article. The syntax used is simply nscore z = x5. The difference between nscore and
the factory-supplied program qnorm is that nscore averages normal scores corresponding
to ties in the source variable. This greatly facilitates a visual assessment of linearity,
because each horizontal sequence of markers representing tied values is removed from
the normal plot (i.e., scatterplot of x5 against z) and replaced with one point. If desired
the multiplicity of these points can be indicated by weighting the plot by the number
of values at each point.

Clearly untransformed x5 is far from normal, but log x5 is reasonably normal (it has√
b1 = 0.3). Further refinement could be achieved, for example, by adding a constant

to x5 before transformation and tuning the constant to make the normal plot as linear
as possible, but this is not really necessary.

Suppose that we did not have the raw values of x5 but have only the nstage cate-
gorization. Assessing normality is obviously more difficult now. However, provided we
have at least a reasonable idea of the mean of x5 in each category, perhaps from other
datasets, we can get some idea of whether a log transformation makes the data more
normal. We replace each category value (1, 2, or 3) with our estimate of the category
mean. Here we know the category means: 1.7, 5.9, and 15.2. In reality we might esti-
mate them as the category midpoints (2 and 6.5 for categories 1 and 2) and make an
informed guess, say, 14 for category 3. A simple measure of normality (equivalent, in
fact, to the Shapiro–Francia statistic) is the correlation coefficient between the mean
(or log mean) category values and the category normal equivalent deviates (NEDs). As
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before, the NEDs are computed by nscore and averaged over tied values, here giving just
three distinct values: −0.72, 0.54, and 1.55. The resulting correlations are 0.9768 for
the untransformed and 0.9985 for the log-transformed means. The log transformation
is therefore favored.

Imputation

I will now illustrate how to use ice to impute plausible values of x5 from nstage as
discussed above. A preliminary multivariable analysis showed that nstage is associated
with x3 (tumor size) and x4a/x4b (dummy variables for tumor grade 1/2/3), so these
two variables are included in the imputation model. I added one minor modification:
instead of allowing imputed numbers of nodes to be unlimited, I restricted them to a
maximum of 55 (the maximum in the original data being 51). Limiting the range of
imputed values is often sensible. Stata code to create m = 10 imputations is as follows:

. gen llnodes = log(0.5*(nstage==1) + 3.5*(nstage==2) + 9.5*(nstage==3))

. gen lunodes = log(3.5*(nstage==1) + 9.5*(nstage==2) + 55*(nstage==3))

. gen lnodes = .
(686 missing values generated)

. ice lnodes llnodes lunodes x3 x4a x4b, saving(nodesimp)
> m(10) interval(lnodes: llnodes lunodes)

#missing
values Freq. Percent Cum.

1 686 100.00 100.00

Total 686 100.00

Variable Command Prediction equation

lnodes intreg x3 x4a x4b
llnodes [Lower bound for lnodes]
lunodes [Upper bound for lnodes]

x3 [No missing data in estimation sample]
x4a [No missing data in estimation sample]
x4b [No missing data in estimation sample]

Imputing
[Only 1 variable to be imputed, therefore no cycling needed.]
1..2..3..4..5..6..7..8..9..10..file nodesimp.dta saved)

. use nodesimp, clear
(German breast cancer data)

. gen int nodes = round(exp(lnodes), 1)
(686 missing values generated)

ice reports 686 occurrences of 1 missing value because we initially assigned all values
of lnodes to missing.

Figure 3 compares the imputed nodes values with the known values of x5 in the first
imputation ( mj==1).
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Figure 3: Imputation of interval-censored values of x5; comparison of original with
imputed values in imputation 1

Because the imputation model does not explain much of the variation, there is
considerable uncertainty in the imputations and hence scatter. The Spearman rank
correlation between nodes and x5 is between 0.82 and 0.84 across the imputations.
Nevertheless, the imputation seems to have done a good job. Using Rubin’s rules for
combining estimates across imputations, the mean (SE) of nodes is 5.18(0.23) and of x5
(the gold standard) is 5.01(0.21). The bias in the mean is negligible. The mean (SE)
of the regression coefficient in a univariate Cox model on log(nodes) is 0.556(0.068),
compared with 0.543(0.063) for log(x5).

6 Imputing right-censored survival data

6.1 Why bother?

As Royston, Parmar, and Altman (2008) discuss and illustrate, with censored survival
data it is difficult to visualize and therefore to understand the distribution of the time-
to-event outcome variable in relation to covariates. The Cox model, for example, is
conceived in terms of hazard ratios, but these are rather indirectly related to differ-
ences in survival times. In a clinical trial, the experimental treatment may exhibit a
substantial reduction in risk of an event compared with the control arm, as evidenced
by a hazard ratio of, say, 0.7. The corresponding Kaplan–Meier survival curves for the
two arms may look impressively separated in a plot. However, the actual distributions
of time to event may overlap considerably. A scatterplot of these times will go a long
way to correcting an overoptimistic impression of the effectiveness of the treatment.
Judicious imputation of the right-censored times to event can provide the analyst with
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a tool that greatly assists inspection of such distributions and hence allows a more re-
alistic assessment of the effect of a treatment at the level of individual survival times.
Similar comments apply to the effects of prognostic variables.

6.2 Quantile–quantile plot of censored survival times

In primary breast cancer, time-to-disease recurrence is approximately lognormally dis-
tributed (Royston 2001). The marginal distribution of time to event may be assessed
in a modified version of a normal quantile–quantile plot. Let t(1) ≤ · · · ≤ t(n) be the
ordered survival or censoring times of n individuals with estimated survival probabilities
(obtained by the Kaplan–Meier or some other suitable method) S1 ≥ · · · ≥ Sn. Write
zj = −Φ−1(Sj) [in Stata, use the invnormal() function for Φ−1(·)]. A scatterplot of
the t(j) against the zj is a normal quantile–quantile plot for censored data. Figure 4
shows such a plot for the breast cancer example dataset.
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Figure 4: Normal quantile–quantile plot of censored recurrence-free survival time (RFS)
data. Vertical axis is a log scale. Linearity suggests that the time-to-event is approxi-
mately lognormally distributed.

The times have been plotted on a log scale. The relationship is roughly linear,
supporting a lognormal distribution as a reasonable approximation.

6.3 Doing the imputations

The right-censored times can be imputed by using ice with the interval() option.
First, an imputation model is needed to allow for the possible effects of covariates.
Because we are working with a lognormal distribution, a sensible approach is to build a
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multivariable model by using some type of censored-normal regression of the log times
on prognostic factors in the dataset. First, let us consider what may be a reasonable
upper limit for the imputed survival times. The lognormal distribution is longtailed.
Unless we are careful, we may find ourselves creating implausible imputed times (e.g.,
a recurrence-free survival time of 300 years). We get around this problem by specifying
the upper limit of time to be something realistic, for example, 90 minus the age of the
patient (x1) at entry to the study. (All patients were well under 90 years of age at
entry.) We can then use Stata’s mfp command with intreg to find a predictive model
based on fractional polynomial transformation of the influential continuous predictors,
where needed:

. stset rectime censrec, scale(365.25) // time in years

. gen lnt = ln(_t)

. gen ll = lnt

. gen ul = cond(_d==0, ln(90-x1), lnt)

. mfp intreg ll ul x1 x2 x3 x4a x4b x5 x6 x7 hormon, select(.05) df(x5:2)
(output omitted )

The selected model has the following variables (with power(s) in parentheses, when
transformed—power 0 meaning log): x1 (−1,−1), x4a, x5 (0), x6 (0), and hormon.
The residual SD (parameter sigma) is reported as 0.842. The variance explained by
the model may be estimated as R2 = 1−var(y|x)/var(y) and here is 1 − 0.8422/0.9762

or about 26%. The value of var(y) = 0.9762 was found by running intreg with no
covariates (i.e., intreg ll ul). The reported value of sigma is 0.976.

We now use this imputation model with ice to create 10 imputed datasets. The
variables ll and ul are needed again:

. gen lnt = ln(_t)

. gen ll = lnt

. gen ul = cond(_d==0, ln(90-x1), lnt)

. fracgen x1 -1 -1
-> gen double x1_1 = X^-1
-> gen double x1_2 = X^-1*ln(X)

(where: X = x1/10)

. fracgen x5 0
-> gen double x5_1 = ln(X)

(where: X = x5/10)

. fracgen x6 0
-> gen double x6_1 = ln(X)

(where: X = (x6+1)/1000)
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. ice lnt ll ul x1_1 x1_2 x4a x5_1 x6_1 hormon, saving(brcaexi, replace) m(10)
> interval(lnt:ll ul)

#missing
values Freq. Percent Cum.

0 686 100.00 100.00

Total 686 100.00

Variable Command Prediction equation

lnt intreg x1_1 x1_2 x4a x5_1 x6_1 hormon
ll [Lower bound for lnt]
ul [Upper bound for lnt]

x1_1 [No missing data in estimation sample]
x1_2 [No missing data in estimation sample]
x4a [No missing data in estimation sample]

x5_1 [No missing data in estimation sample]
x6_1 [No missing data in estimation sample]

hormon [No missing data in estimation sample]

Imputing
[Only 1 variable to be imputed, therefore no cycling needed.]
1..2..3..4..5..6..7..8..9..10..file brcaexi.dta saved

6.4 Plots using the imputed data

Let us now consider visualizing the effect of hormonal treatment (hormon) on recurrence-
free survival time. Figure 5 shows a Kaplan–Meier plot of the original, censored time
variable according to hormon treatment status.
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Figure 5: Kaplan–Meier plot of recurrence-free survival time according to hormonal
treatment status (hormon)
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There is visible white space between the curves, suggesting a large difference in
survival. The parameter estimate for hormon in the original intreg model (adjusted
for other predictors) is 0.27 (SE 0.08), suggesting that the treatment increases log RFS

time on average by 0.27 or RFS time by about 31%.

Figure 6 is a dot plot of the observed and imputed RFS time in the first imputation
(results for the other 9 imputations are similar).
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Figure 6: Comparison of time to RFS event for the patients untreated or treated with
hormonal therapy (hormon) for the first imputation of the RFS time. Horizontal lines
show the medians. The vertical scale of the dot plot is logarithmic.

The large degree of overlap between the two survival time distributions is now ob-
vious. The therapy certainly has some effect but is not a miracle cure.

Figure 7 shows a smoothed scatterplot of the relationship between log RFS time and
the strongest predictor (number of positive lymph nodes, x5) in the first imputation.
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Figure 7: Relation between log RFS time and number of positive lymph nodes (x5) in
the first imputation, with running-line smooth and 95% pointwise confidence interval

The smoothing was done by using a running-line smoother (Sasieni, Royston, and
Cox 2005). A clear nonlinear relationship is present, but there is considerable random
variation around the regression line. The Spearman correlation between time and x5 is
−0.31.

6.5 To model or not to model?

Having obtained m complete imputed datasets and having seen the advantages of really
getting to grips with the times to event at the individual patient level, it is tempting to
try to build new models with the imputed data. First, the parameters of the imputation
model are faithfully reproduced (apart from minor random variation) in the multiply
imputed dataset. Because intreg assumes a truncated normal distribution on the
log survival times, it is appropriate to use regress on log t followed by application of
Rubin’s rules (Rubin 1987) to estimate the parameters of the original imputation model
in the imputed data. The original (intreg) and reestimated (regress) parameters are
shown in table 1.

(Continued on next page)
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Table 1: Comparison of regression coefficients and their standard errors for the intreg
model on the original data and the regress model on the imputed data

Predictor Original (intreg) Imputed (regress)
β̂ SE β̂/SE β̂ SE β̂/SE

x1−2 −9.65 2.38 −4.05 −9.51 2.50 −3.81
x1−0.5 17.53 4.62 3.79 17.15 4.70 3.65
x4a −0.294 0.127 −2.31 −0.284 0.124 −2.28
ln x5 −0.328 0.039 −8.41 −0.328 0.040 −8.24
ln (x6+1) 0.126 0.020 6.32 0.125 0.021 6.02
hormon 0.270 0.079 3.41 0.260 0.077 3.36
cons −1.99 1.04 −1.91 −1.90 1.06 −1.80

Apart from a small amount of random variation, the parameter estimates from the
two models are identical; the SEs are usually slightly larger and the β̂/SE values slighter
smaller in the imputed data. This is as expected, because the imputation involves the
injection of random variation, and with only m = 10 imputations, a little information
is inevitably lost. As m is increased, the similarity of the β̂s and of the SEs increases
(data not shown).

The imputed dataset faithfully reproduces the characteristics assumed in the orig-
inal model on which the imputations are based. We assumed a truncated lognormal
distribution for the log survival times with certain parameters and functional forms for
the effects of covariates, which is what we got.

Going beyond the imputation model may cause problems, however. For example, it
is known that there is an interaction between hormonal treatment (hormon) and estro-
gen receptor status (x7). Royston and Sauerbrei (2004) showed that the interaction can
be adequately modeled by the product term hormon×(x7+1)−0.5. Let us call this inter-
action variable x7h. Suppose that we extended the original intreg model by including
the terms hormon and (x7+1)−0.5 (i.e., the main effects for the interaction) and x7h,
estimated the parameters, and then reestimated them by using micombine regress or
mim: regress in the imputed dataset. Table 2 shows the resulting parameter estimates.
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Table 2: Comparison of regression coefficients and their standard errors for the intreg
model on the original data and the regress model on the imputed data. The interaction
between x7 and hormon is examined.

Predictor Original (intreg) Imputed (regress)
β̂ SE β̂/SE β̂ SE β̂/SE

hormon 0.433 0.108 3.99 0.370 0.113 3.29
(x7+1)−0.5 0.113 0.174 0.65 0.089 0.182 0.49
x7h −0.554 0.252 −2.20 −0.386 0.257 −1.50

In the original intreg model, x7h is significant at the P = 0.02 level, whereas in
the regress model in the imputed dataset, we have P = 0.13; the corresponding β̂ is
reduced in magnitude from −0.55 to −0.39. Imputing using a wrong (or rather, incom-
plete) model has introduced a nontrivial amount of bias into the estimated interaction
between hormon and x7.

Of course, such a finding is neither surprising nor specific to this situation. An
inadequate imputation model can always induce bias of this sort; hence, the generally
accepted advice is to use a large imputation model rather than a parsimonious one and
to include interactions when necessary. We went against such advice here by building
the imputation model with selection of variables and functions at the 5% significance
level and not considering interactions at all.

Nevertheless, there is certainly a question as to whether one should include interac-
tions or other higher-order terms in the imputation model. Generally, the issue is how
to strike a satisfactory balance between a sufficiently comprehensive imputation model
and the possibility of instability due to a grossly overfitted model. In the current ex-
ample, we already knew from earlier work that an interaction existed, but usually such
prior information will not be available. Developing a satisfactory imputation model is
still an open issue in the practical analysis of multiple imputed datasets.

With right-censored survival times, a pragmatic approach may be to use imputation
simply as a tool to explore the implications of a model fitted to the original data in more
detail, as we have done here with the intreg approach. For example, the availability
of scatterplot smoothers for the imputed data makes it easier to get a feel for the
relationships within the data and to look for lack of fit. Nevertheless, to make this
process safer and more informative, it is probably sensible to start with a rather larger
imputation model. Here we could have included all the available predictors in the
intreg model and perhaps allowed mfp to detect and model nonlinearity at a more
relaxed significance level, such as 0.2. We could have also included in the model the
interaction between (x7+1)−0.5 and hormon.
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6.6 Incompatibility between imputation and substantive models

Suppose that, having obtained m imputations as described above, we had contemplated
doing not ordinary regression but Cox regression on the imputed dataset. Let us com-
pare the regression coefficients of a Cox model estimated on the original and imputed
datasets. The imputation model assumes one type of error structure (linear regression
on log time) whereas the Cox model assumes another (a proportional hazards model).
What effect does this incompatibility have on the β̂s?

Table 3 compares the β̂s and shows the percentage bias between the two ways of
fitting the Cox model.

Table 3: Parameter estimates for a Cox model on the original data and imputed data
assuming an incompatible imputation model

Predictor β̂ in Cox model for % bias
Original data Imputed data

x1−2 16.6 15.1 −9
x1−0.5 −30.1 −29.0 −3
x4a 0.497 0.231 −54
ln x5 0.508 0.366 −28
ln (x6+1) −0.179 −0.130 −27
hormon −0.390 −0.273 −30

The results show that the incompatibility between the imputation and substantive
models induces major bias in most of the estimated βs. The bias is always toward the
null (i.e., brings the β̂s closer to zero than they should be).

Clearly, there are pitfalls that the user should beware of when contemplating imput-
ing a censored outcome variable. These will also apply (but to a lesser extent, because
extrapolation is less likely to be involved) to imputing missing values of a noncensored
outcome variable.

7 Final comment

Here I have focused on multiple imputation of interval- or right-censored observations
using ice and illustrated how judicious use of the interval() option may be helpful. I
have also pointed out serious pitfalls when the method is used without care to complete a
right-censored time-to-event variable. I believe that the user should be wary of literature
claims of robustness to misspecification when such a type of imputation is used. For
example, Hsu et al. (2007) use proportional hazards models to derive risk scores that
help impute interval-censored outcome variables in a nonparametric way. The authors
state “In addition to its robustness in this application, the general approach of multiple
imputation methods has features that make it attractive. One such feature is that after
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imputation the data analyst is now free to choose and can easily perform any analysis
appropriate for the goals of their study. Conditions for the appropriateness of this
philosophy are discussed in Reference [23]”. This advice appears to me dangerous—
unless the reader carefully consults (and is sufficiently equipped to understand the
implications of) Hsu et al. (2007)’s Reference 23 (Meng 1994). I would not, for example,
advocate applying linear regression methods to such a multiply imputed dataset, because
as far as I understand it, the imputation method implicitly assumes proportional-hazards
effects of covariates. The result would be seriously biased regression estimates, as in
table 3.
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