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Stata tip 51: Events in intervals
Nicholas J. Cox
Department of Geography
Durham University
Durham City, UK
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Observations in panel or longitudinal datasets are often for irregularly spaced times.
Patients may arrive for consultation or treatment, or sites may be visited in the field, at
arbitrary times, or other human or natural events may occur with unpredictably uneven
gaps. Geophysicists might record earthquakes or political scientists might record inci-
dents of unrest; in either case, events occur with their own irregularity. Such examples
could be multiplied. One way researchers seek structure in such data is by counting
or summarizing data for each panel over chosen time windows. Usually we look back-
ward: How many times did something happen in the previous 6 months? What was the
average of some important variable over observations in the previous 30 days?

To see the precise problem in Stata terms, consider better behaved data in which we
have regular observations, say, monthly or daily. Then we can use windows with fixed
numbers of observations to calculate the summaries required. rolling ([TS] rolling)
can be especially useful here. This scenario suggests one solution: a dataset with
irregular data can be made regular by inserting observations for dates not present in
the data. tsfill ([TS] tsfill) is the key command. In turn the downside of that solution
is evident: the bulked-out dataset could be many times larger, even though it carries
no extra information.

A more direct solution is possible, typically requiring a few lines of Stata code. Once
you grasp the solution, modifying the code for similar problems is easy.

Suppose first that you want to count certain kinds of observations, say, how many
times something happened in the previous 30 days. We assume that the data include an
identifier (say, id) and a daily date (say, date) among other variables. A good technique
to consider is using the count command (Cox 2007a). First, initialize a count variable.
Our example will count observations with high blood pressure, so the variable name
reflects that:

gen n_high_bp = .

The idea is to loop over the observations, looking at each one in turn. A basic count
will be

count if some condition is true &
observation is in the same panel as this one &
time is within interval of interest relative to this one

The example above is part Stata code, part pseudocode. The parts in slanted type

are pseudocode. count will produce a number in your Results window, but that is less

c© 2007 StataCorp LP pr0033



N. J. Cox 441

important than count’s leaving the result in r(N). We must grab that result before
something else overwrites it or it just disappears. We can grab the result and use it:

replace n_high_bp = r(N) in this observation

We want to repeat this step for each observation. You may know that you can use
forvalues, often abbreviated forval, for automating a loop easily (see Cox 2002 for a
tutorial). Suppose that you have 4,567 observations. Then you can type

forval i = 1/4567 {
count if conditions are all satisfied

replace n_high_bp = r(N) in ‘i’
}

Naturally, your having 4,567 observations is unlikely. So, you could just substitute
the correct number for 4,567, or you could think more generally. N is the number of
observations.

local N = _N
forval i = 1/‘N’ {

count if conditions are all satisfied

replace nhighbp = r(N) in ‘i’
}

forval is fussy in its syntax, so we cannot use N directly. The local statement
sets a local macro, N, to contain its value. Once that exists, we can use its contents
by referring to ‘N’. As you might guess, i and ‘i’ refer to another local macro, which
the forvalues loop brings into being. Each time around the loop it takes on values
between 1 and the number of observations.

There are three slots to fill in the pseudocode. Here are three examples to match:

some condition is true

inrange(sys_bp, 120, .)

observation is in the same panel as this one

id == id[‘i’]

time is within interval of interest relative to this one

inrange(date[‘i’] - date, 1, 30)

Our examples use inrange() twice. In the first, we suppose that we are counting
how often systolic blood pressure was 120 mm Hg or higher. The inrange() condition
here has one special and useful feature: it excludes missing values. That is, for example,
inrange(., 120, .) is 0 (false). I do not expect you to find this behavior intuitive, but
it is a feature. In the second, the previous 30 days is specified. For more on inrange(),
see Cox (2006).

Now we can put it all together.
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gen n_high_bp = .
local N = _N
quietly forval i = 1/‘N’ {

count if inrange(sys_bp, 120, .) & ///
id == id[‘i’] & ///
inrange(date[‘i’] - date, 1, 30)

replace n_high_bp = r(N) in ‘i’
}

A new detail here is the quietly added to the loop to stop a long list of results from
being shown. Doing so is not essential. Indeed, at a debugging stage, seeing a stream of
output, and being able to check that the results are as desired, is useful and reassuring.

Experienced programmers usually reduce that by one line, starting like this:

gen n_high_bp = .
quietly forval i = 1/‘= _N’ {

The shortcut here is documented under the help for macro. We are evaluating an
expression, here just N, and using its result, all within the space of the command line.

Stata users sometimes want to do something like this:

quietly forval i = 1/‘= _N’ {
count if inrange(sys_bp, 120, .) & ///

id == id[‘i’] & ///
inrange(date[‘i’] - date, 1, 30)

gen n_high_bp = r(N) in ‘i’
}

That code will fail the second time around the loop. The first time around the loop,
when i is 1, all will be fine. The new variable n high bp will be generated. r(N) will
be put into n high bp[1]. All the other values of n high bp will be born as missing.
However, the second time around the loop, when i is 2, the generate command is
illegal, as the n high bp variable already exists, and you cannot generate it again.

The consequence is that within the loop we need to use replace. In turn, we need
to initialize the variable outside and before the loop (because, conversely, you cannot
replace something that does not yet exist). Initializing it to missing is good practice,
even when we know that the program will overwrite the value in each observation.

There are some disadvantages to this approach. Mainly, it will be a bit slow, espe-
cially with large datasets. Having to spell out a few lines of code every time you do
something similar could also prove tedious. That task could be an incentive to wrap up
the code in a do-file or even a program.

More positively, the logic here should seem straightforward and transparent and
fairly easy to modify for similar problems. The key will usually be to pick up whatever
we need as a saved result. Suppose that we want to record the mean systolic blood
pressure over measurements in the last 30 days. The main change is the use of the
summarize command rather than the count command.
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gen mean_sys_bp = .
quietly forval i = 1/‘= _N’ {

summarize sys_bp if id == id[‘i’] & ///
inrange(date[‘i’] - date, 1, 30), meanonly

replace mean_sys_bp = r(mean) in ‘i’
}

For the meanonly option of summarize and its advantages, see the previous Stata
tip (Cox 2007b).

Naturally, there are occasional problems in which the condition that we are consid-
ering only observations in the same panel is inappropriate. For those problems, remove
or change code like id == id[‘i’].

Finally, the technique is readily adaptable to other kinds of windows, say, with regard
to intervals of any predictor or controlling variable.
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