
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College

Rino Bellocco
Karolinska Institutet, Sweden and
Univ. degli Studi di Milano-Bicocca, Italy

A. Colin Cameron
University of California–Davis

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin–Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zürich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington–Seattle

Roger Newson
Imperial College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editor

Lisa Gilmore

Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are

registered trademarks of StataCorp LP.



The Stata Journal (2007)
7, Number 3, pp. 440–443

Stata tip 51: Events in intervals
Nicholas J. Cox
Department of Geography
Durham University
Durham City, UK

n.j.cox@durham.ac.uk

Observations in panel or longitudinal datasets are often for irregularly spaced times.
Patients may arrive for consultation or treatment, or sites may be visited in the field, at
arbitrary times, or other human or natural events may occur with unpredictably uneven
gaps. Geophysicists might record earthquakes or political scientists might record inci-
dents of unrest; in either case, events occur with their own irregularity. Such examples
could be multiplied. One way researchers seek structure in such data is by counting
or summarizing data for each panel over chosen time windows. Usually we look back-
ward: How many times did something happen in the previous 6 months? What was the
average of some important variable over observations in the previous 30 days?

To see the precise problem in Stata terms, consider better behaved data in which we
have regular observations, say, monthly or daily. Then we can use windows with fixed
numbers of observations to calculate the summaries required. rolling ([TS] rolling)
can be especially useful here. This scenario suggests one solution: a dataset with
irregular data can be made regular by inserting observations for dates not present in
the data. tsfill ([TS] tsfill) is the key command. In turn the downside of that solution
is evident: the bulked-out dataset could be many times larger, even though it carries
no extra information.

A more direct solution is possible, typically requiring a few lines of Stata code. Once
you grasp the solution, modifying the code for similar problems is easy.

Suppose first that you want to count certain kinds of observations, say, how many
times something happened in the previous 30 days. We assume that the data include an
identifier (say, id) and a daily date (say, date) among other variables. A good technique
to consider is using the count command (Cox 2007a). First, initialize a count variable.
Our example will count observations with high blood pressure, so the variable name
reflects that:

gen n_high_bp = .

The idea is to loop over the observations, looking at each one in turn. A basic count
will be

count if some condition is true &
observation is in the same panel as this one &
time is within interval of interest relative to this one

The example above is part Stata code, part pseudocode. The parts in slanted type

are pseudocode. count will produce a number in your Results window, but that is less

c© 2007 StataCorp LP pr0033



N. J. Cox 441

important than count’s leaving the result in r(N). We must grab that result before
something else overwrites it or it just disappears. We can grab the result and use it:

replace n_high_bp = r(N) in this observation

We want to repeat this step for each observation. You may know that you can use
forvalues, often abbreviated forval, for automating a loop easily (see Cox 2002 for a
tutorial). Suppose that you have 4,567 observations. Then you can type

forval i = 1/4567 {
count if conditions are all satisfied

replace n_high_bp = r(N) in ‘i’
}

Naturally, your having 4,567 observations is unlikely. So, you could just substitute
the correct number for 4,567, or you could think more generally. N is the number of
observations.

local N = _N
forval i = 1/‘N’ {

count if conditions are all satisfied

replace nhighbp = r(N) in ‘i’
}

forval is fussy in its syntax, so we cannot use N directly. The local statement
sets a local macro, N, to contain its value. Once that exists, we can use its contents
by referring to ‘N’. As you might guess, i and ‘i’ refer to another local macro, which
the forvalues loop brings into being. Each time around the loop it takes on values
between 1 and the number of observations.

There are three slots to fill in the pseudocode. Here are three examples to match:

some condition is true

inrange(sys_bp, 120, .)

observation is in the same panel as this one

id == id[‘i’]

time is within interval of interest relative to this one

inrange(date[‘i’] - date, 1, 30)

Our examples use inrange() twice. In the first, we suppose that we are counting
how often systolic blood pressure was 120 mm Hg or higher. The inrange() condition
here has one special and useful feature: it excludes missing values. That is, for example,
inrange(., 120, .) is 0 (false). I do not expect you to find this behavior intuitive, but
it is a feature. In the second, the previous 30 days is specified. For more on inrange(),
see Cox (2006).

Now we can put it all together.



442 Stata tip 51

gen n_high_bp = .
local N = _N
quietly forval i = 1/‘N’ {

count if inrange(sys_bp, 120, .) & ///
id == id[‘i’] & ///
inrange(date[‘i’] - date, 1, 30)

replace n_high_bp = r(N) in ‘i’
}

A new detail here is the quietly added to the loop to stop a long list of results from
being shown. Doing so is not essential. Indeed, at a debugging stage, seeing a stream of
output, and being able to check that the results are as desired, is useful and reassuring.

Experienced programmers usually reduce that by one line, starting like this:

gen n_high_bp = .
quietly forval i = 1/‘= _N’ {

The shortcut here is documented under the help for macro. We are evaluating an
expression, here just N, and using its result, all within the space of the command line.

Stata users sometimes want to do something like this:

quietly forval i = 1/‘= _N’ {
count if inrange(sys_bp, 120, .) & ///

id == id[‘i’] & ///
inrange(date[‘i’] - date, 1, 30)

gen n_high_bp = r(N) in ‘i’
}

That code will fail the second time around the loop. The first time around the loop,
when i is 1, all will be fine. The new variable n high bp will be generated. r(N) will
be put into n high bp[1]. All the other values of n high bp will be born as missing.
However, the second time around the loop, when i is 2, the generate command is
illegal, as the n high bp variable already exists, and you cannot generate it again.

The consequence is that within the loop we need to use replace. In turn, we need
to initialize the variable outside and before the loop (because, conversely, you cannot
replace something that does not yet exist). Initializing it to missing is good practice,
even when we know that the program will overwrite the value in each observation.

There are some disadvantages to this approach. Mainly, it will be a bit slow, espe-
cially with large datasets. Having to spell out a few lines of code every time you do
something similar could also prove tedious. That task could be an incentive to wrap up
the code in a do-file or even a program.

More positively, the logic here should seem straightforward and transparent and
fairly easy to modify for similar problems. The key will usually be to pick up whatever
we need as a saved result. Suppose that we want to record the mean systolic blood
pressure over measurements in the last 30 days. The main change is the use of the
summarize command rather than the count command.



N. J. Cox 443

gen mean_sys_bp = .
quietly forval i = 1/‘= _N’ {

summarize sys_bp if id == id[‘i’] & ///
inrange(date[‘i’] - date, 1, 30), meanonly

replace mean_sys_bp = r(mean) in ‘i’
}

For the meanonly option of summarize and its advantages, see the previous Stata
tip (Cox 2007b).

Naturally, there are occasional problems in which the condition that we are consid-
ering only observations in the same panel is inappropriate. For those problems, remove
or change code like id == id[‘i’].

Finally, the technique is readily adaptable to other kinds of windows, say, with regard
to intervals of any predictor or controlling variable.

References

Cox, N. J. 2002. Speaking Stata: How to face lists with fortitude. Stata Journal 2:
202–222.

———. 2006. Stata tip 39: In a list or out? In a range or out? Stata Journal 6:
593–595.

———. 2007a. Speaking Stata: Making it count. Stata Journal 7: 117–130.

———. 2007b. Stata tip 50: Efficient use of summarize. Stata Journal 7: 438–439.




