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Abstract. This article concerns the nonparametric Fisher–Pitman tests for paired
replicates and independent samples. After outlining the theory of exact tests, I
derive Monte Carlo simulations for both of them. Simulations can be useful if
one deals with many observations because of the complexity of the algorithms in
regard to sample sizes. The tests are designed to be a more powerful alternative to
the Wilcoxon signed-rank test and the Wilcoxon–Mann–Whitney rank-sum test
if the observations are given on at least an interval scale. The results gained by
Monte Carlo versions of the tests are accurate enough in comparison to the exact
versions. Finally, I give examples for using both supplemented tests.

Keywords: st0134, permtest1, permtest2, nonparametric tests, Monte Carlo, per-
mutation tests

1 Introduction

In behavioral sciences, frequently used statistical tools are regression analysis and non-
parametric tests like Spearman’s rank correlation, the McNemar change test, the Fisher
exact test, the Kruskal–Wallis one-way analysis of variance, the Wilcoxon signed-rank
test, and the Wilcoxon–Mann–Whitney rank-sum test. This article deals with two
tests that can replace the last two tests mentioned if the observations are given at
least on an interval scale. These tests are the Fisher–Pitman test for paired replicates
and the Fisher–Pitman permutation test for independent samples (see Fisher 1935 and
Pitman 1937), also referred to as randomization tests. Why are the permutation tests
more powerful than the respective Wilcoxon tests? Siegel and Castellan (1988) com-
pare both Wilcoxon and permutation tests with the appropriate parametric test. They
find that the asymptotic power efficiencies of both the Wilcoxon signed-rank and rank-
sum tests compared with the respective parametric t test are only 95.5%, whereas both
permutation tests display power efficiencies of 100%.

Here I outline two algorithms for the well-known permutation tests: one for paired
replicates and one for two independent samples. Both algorithms are complex in regard
to sample size. Thus p-values are time consuming to compute even for moderate sample
sizes. After I outline the exact algorithms, I show a Monte Carlo simulation approach

c© 2007 StataCorp LP st0134



J. Kaiser 403

to approximate p-values. Later, I give an example of the supplemented implementations
of both tests before concluding the case for the permutation tests.

2 The tests

Below, I outline the exact algorithms first. Per Siegel and Castellan (1988), I limit the
description of the details to the extent necessary for specifying the respective algorithm.
You can find instructions on how to carry out the tests in the cited book. After deriving
two algorithms for the exact case, I show a method to facilitate Monte Carlo simulations.

2.1 One exact algorithm for each permutation test

The permutation test for paired replicates assumes as the null hypothesis that paired
observations of an outcome under two different conditions are randomly assigned to the
two conditions for each subject. Below, I summarize the rationale of the test before
deriving an algorithm to compute the significance levels.

Let Xi specify the interval-scaled outcome under the first condition for a subject
i ∈ {1, . . . , n} and Yi the outcome for the same subject under the second condition.
Let then di = Xi − Yi be the difference of the outcomes under the first and the second
condition. If H0 were true, a positive and a negative sign for di would be equally likely.
Because the size of the regarded sample is n, there are 2n possibilities for the distribution
of a positive or a negative sign among all differences in di, which would be all equally
likely if H0 were true.

For each possibility, one can calculate the sum of the differences,
∑
di, and compare

it with the
∑
di actually observed (the critical value). The relation of the number of

all theoretically possible sums that are less than or equal to the critical value of all
theoretically possible sums, 2n, is equal to the lower-tailed p-value; the relation of the
number of all theoretically possible sums that are greater than or equal to the critical
value of 2n is equal to the upper-tailed p-value. The two-tailed p-value is the minimum
of 1 and twice the value of the upper-tailed and the lower-tailed p-values.

The supplemented algorithm that facilitates the necessary computations uses binary
counting to derive all possible

∑
di. In particular, it performs the following steps:

• LetXi and Yi contain the observed values of subject i in a sample of n independent
observations.

• Create the differences di = Xi − Yi.

• Compute the critical value c =
∑
di.

• Create an n-rows sign vector S> = (−1,−1, . . . ,−1).

• Let l = 0 and u = 0.
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• Repeat the following steps:

1. For every j ∈ {1, . . . , n}:
a. If sj = −1, set sj = 1 and end this loop.

b. Set sj = −1.

2. Compute the test statistic a =
∑n

i=1 si × |di|.
3. If a ≤ c, increase l by one.

4. If a ≥ c, increase u by one.

5. If si = (1, 1, . . . , 1), end this loop.

• The upper-tailed p-value equals pupper = u
2n .

• The lower-tailed p-value equals plower = l
2n .

• The two-tailed p-value equals ptwo = min(1, 2 × pupper, 2 × plower).

Since this test considers not only the signs but also the size of the difference of the
observations, it accounts for more of the data than the Wilcoxon signed-rank test.

The Fisher–Pitman permutation test for independent samples is a powerful alter-
native to the Wilcoxon–Mann–Whitney rank-sum test. It tests the difference between
the means of two independent samples. Let Xi contain the interval-scaled outcome of a
subject i among m subjects in the first group and Yj the outcome of a subject j among
n subjects in the second group. The null hypothesis states that there is no difference in
the mean of the population from which Xi is drawn to the mean of the population from
which Yi is drawn, i.e., that all of the m+n observations may be considered to be from
the same population. If H0 yielded true, it would be equally likely that an observed
value occurs in X or in Y . This scenario creates

(
m+n

n

)
equally likely possibilities of

distributing all observed values among X and Y .

For each possibility, one can calculate the difference of the sums of both theoretically
possible samples

∑
Xi −

∑
Yj and compare it with the same measure of the observed

values. The latter one is the critical value for the test. The relation of the number
of all theoretically possible sums that are less than or equal to the critical value to
all theoretically possible sums,

(
m+n

n

)
, is equal to the lower-tailed p-value; the relation

of the number of all theoretically possible sums that are greater than or equal to the
critical value to

(
m+n

n

)
is equal to the upper-tailed p-value. The two-tailed p-value is

the minimum of 1 and twice the value of the upper-tailed and the lower-tailed p-value.

The supplemented algorithm performs the necessary computations as described here:

• Let Xi contain the observed value of an individual, i, in the first group of m
independent observations and Yj contain the observed value of another individual,
j, in the second group of n independent observations.

• Let Z be the concatenation of X and Y . Thus, Xi = Zi ∀i ∈ {1, . . . ,m} and
Yj = Zm+j ∀j ∈ {1, . . . , n}.
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• Compute the critical value c =
∑m

i=1 Zi −
∑m+n

j=m+1 Zj .

• Let l = 0 and u = 0.

• Create a (m+ n) ×
(
m+n

n

)
matrix M that contains in its columns all possibilities

to distribute m times the number 1 and n times the number −1 in the m+n rows.
This is done by using Mata’s cvpermute() function (see [M-5] cvpermute( )).

• For every e ∈
(
1, . . . ,

(
m+n

n

))
:

1. Calculate the test statistic a =
∑m+n

i=1 Mie × Zi.

2. If a ≤ c, increase l by one.

3. If a ≥ c, increase u by one.

• The upper-tailed p-value equals pupper = u

(m+n

n )
.

• The lower-tailed p-value equals plower = l

(m+n

n )
.

• The two-tailed p-value equals ptwo = min(1, 2 × pupper, 2 × plower).

Just like the Fisher–Pitman permutation test for paired replicates, this test is superior
to the respective Wilcoxon tests if the observed values are given on at least an interval
scale.

The realization of either test turns out to be time consuming: for the permutation
test for paired replicates, the outer loop has a complexity of O(2n). The permutation
test for independent samples can be similarly intensive in computation: the complexity
totals to O(

(
m+n

n

)
). Below, I draw a method to approximate the significance levels by

using Monte Carlo simulations.

2.2 One Monte Carlo–based algorithm for each permutation test

Monte Carlo simulations are an appropriate device to reduce complexity while setting
aside accuracy only to a small extent. Instead of the test statistic’s being computed for
the complete set of the sign vectors, the test statistic is calculated only for randomly
drawn sign vectors (with the possibility of repetition). The p-value equals the ratio of
the number of sign vectors for which the test statistic is less than or equal to (or greater
than or equal to for a right-tailed test) the critical value to the total number of sign
vectors drawn. Of course, this approach is less accurate and leads to an error term in
the p-values, but with a sufficiently high k the error term influences only their fourth
or fifth decimal place.

In detail, the Monte Carlo–based algorithm for the Fisher–Pitman permutation test
for paired replicates looks as follows:
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• LetXi and Yi contain the observed values of subject i in a sample of n independent
observations.

• Let k be the number of simulation runs to facilitate.

• Create the differences di = Xi − Yi.

• Compute the critical value c =
∑
di.

• Let l = 0 and u = 0.

• Repeat the following steps:

1. For every j ∈ {1, . . . , k}:
2. Create a sign vector S> = (s1, . . . , sn) by setting si = 1− 2R ∀i ∈ {1, . . . , n}

with R ∼ Bernoulli (p = 0.5).

3. Compute the test statistic a =
∑n

i=1 si × |di|.
4. If a ≤ c, increase l by one.

5. If a ≥ c, increase u by one.

• The upper-tailed p-value equals pupper = u
k .

• The lower-tailed p-value equals plower = l
k .

• The two-tailed p-value equals ptwo = min(1, 2 × pupper, 2 × plower).

Limiting the number of investigated sign vectors to k drastically reduces the overall
computational effort. By default, the supplemented test carries out a total of k = 2×105

runs of the simulation.

How is the permutation test for independent samples carried out as a Monte Carlo
simulation? The algorithm is conducted as follows:

• Let Xi contain the observed value of an individual i in the first group of m
independent observations and Yj contain the observed value of another individual
j in the second group of n independent observations.

• Let Z be the concatenation of X and Y . Thus, Xi = Zi ∀i ∈ {1, . . . ,m} and
Yj = Zm+j ∀j ∈ {1, . . . , n}.

• Compute the critical value c =
∑m

i=1 Zi −
∑m+n

j=m+1 Zj .

• Let l = 0 and u = 0.

• Create a sign vector S> = (s1, . . . , sm+n) with si = 1 if 1 ≤ i <= m and si = −1
if m < i ≤ m+ n.

• For every i ∈ (1, . . . , k):
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1. Shuffle the sign vector S. This is done by using Mata’s _jumble() function
(see [M-5] sort( )).

2. Calculate the test statistic a =
∑m+n

i=1 Si × Zi.

3. If a ≤ c, increase l by one.

4. If a ≥ c, increase u by one.

• The upper-tailed p-value equals pupper = u
k .

• The lower-tailed p-value equals plower = l
k .

• The two-tailed p-value equals ptwo = min(1, 2 × pupper, 2 × plower).

Just as for the permutation test for paired replicates, the supplemented test carries
out a total of k = 2 × 105 runs of the simulation by default.

3 Comparison of exact and Monte Carlo results

To get an idea on the size of the difference in the p-values given by the exact and the
Monte Carlo versions of the tests, I conduct a simulation study.

For the test for paired replicates, one draws two samples, x and y, with the same sam-
ple size, n = 12, with specific underlying distributionsX ∼ N(µx, 1) and Y ∼ N(µy, 1).
Lower-tailed p-values are calculated for both exact and Monte Carlo versions of the test,
and the absolute difference between the p-values is stored. This process is repeated c
times for each µx and µy in question. For two independent samples, one proceeds
analogously with a combined sample size of 12. Figure 1 displays the average absolute
differences in p-values for c = 5, µx = 0, and µy = i× 0.01 ∀i ∈ Z ∧ 0 ≤ i < 20.
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Figure 1: Mean absolute difference in p-values of exact and Monte Carlo tests for random
samples of N(0, 1) against N(µy, 1)
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The differences in p-values are negligibly small, that is, smaller than 0.001 (paired
replicates, significant at p = 0.0016, one-tailed Wilcoxon signed-rank test; independent
samples, significant at p = 0.0004, same test). The difference in means of the under-
lying distributions also appears not to be correlated with the simulation error (paired
replicates, Bravais–Pearson’s product moment correlation coefficient r = −0.0145; in-
dependent samples, r = 0.0142). Thus the Monte Carlo versions of the tests seem to be
accurate enough for the investigated distributions.

4 Usage

Below are Stata implementations of both tests. This section deals with a command
synopsis of both tests and illustrates both in the context of a study.

Two new commands are available: permtest1 executes the Fisher–Pitman permu-
tation test for paired replicates (one-sample case), and permtest2 executes the Fisher–
Pitman permutation test for independent samples (two-sample case).

4.1 Fisher–Pitman permutation test for paired replicates

Syntax

[
by varlist:

]
permtest1 varname=exp

[
if

] [
in

] [
, runs(integer) exact

simulate
]

where varname specifies the variable to test and exp specifies the expression to test the
variable against. exp may be a constant, another variable, or any other expression.

Options

runs(integer) specifies the number of Monte Carlo simulation runs to perform. It
defaults to 2 × 105.

exact forces the calculation of exact significance levels. Specifying this option may
increase run time even with moderate sample sizes.

simulate forces the estimation of significance levels by using Monte Carlo simulations.
This method is less accurate but also less time consuming (see sec. 2.2). By default,
the test uses Monte Carlo simulations automatically if the sample size exceeds 13.

The options exact and simulate may not be specified at the same time, and the
runs(integer) option makes sense only with Monte Carlo simulations.
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Saved results

permtest1 saves the following in r():

Scalars
r(criticalValue) critical value
r(zero) number of zeros in the difference vector
r(negative) number of negative values in the difference vector
r(positive) number of positive values in the difference vector
r(runs) number of simulation runs conducted
r(mode) 1 if the exact test, 2 if Monte Carlo simulations were used
r(N) sample size
r(twotail) two-tailed p-value
r(uppertail) upper-tailed p-value
r(lowertail) lower-tailed p-value

4.2 Fisher–Pitman permutation test for independent samples

Syntax

[
by varlist:

]
permtest2 varname

[
if

] [
in

]
, by(varname)

[
runs(integer)

exact simulate
]

where varname specifies the variable to test.

Options

by(varname) is required and specifies the grouping variable. It must be numeric, and
there must be exactly two different groups in the specified sample.

runs(integer) specifies the number of Monte Carlo simulation runs to perform. It
defaults to 2 × 105.

exact forces the calculation of exact significance levels. Specifying this option may
increase run time even with moderate sample sizes.

simulate forces the estimation of significance levels by using Monte Carlo simulations.
This method is less accurate but also less time consuming (see sec. 2.2). By default,
the test uses Monte Carlo simulations automatically if the sample size exceeds 15.

The options exact and simulate may not be specified at the same time, and the
runs(integer) option makes sense only with Monte Carlo simulations.

(Continued on next page)
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Saved results

permtest2 saves the following in r():

Scalars
r(criticalValue) critical value
r(n1) number of observations in the first group
r(n2) number of observations in the second group
r(runs) number of simulation runs conducted
r(mode) 1 if the exact test, 2 if Monte Carlo simulations were used
r(N) sample size
r(twotail) two-tailed p-value
r(uppertail) upper-tailed p-value
r(lowertail) lower-tailed p-value

4.3 Example using both tests

Consider the following (fictional) setting: six high school and six graduate students are
asked independently of each other to collect receipts that show money spent on cinema
visits and on music CDs over 3 months. The receipts are then collected and totaled for
each student. The students are classified by the age group they belong to: a student
aged 15–18 years belongs to the age group 1; a student aged 22–25 years belongs to the
age group 2. Here is the dataset:

age group expd cinema expd music

1 65.22 68.02
1 72.13 83.77
1 58.69 55.96
1 66.72 90.13
1 64.38 70.54
1 81.29 82.43
2 45.08 55.15
2 60.09 61.12
2 33.22 39.75
2 59.67 57.09
2 18.39 26.88
2 22.82 33.64

We can use the Fisher–Pitman permutation test for paired replicates to determine the
statistical significance, if any, of a subject’s spending more money for movies or music.
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. use permtest_example

. permtest1 expd_cinema = expd_music

Fisher-Pitman permutation test for paired replicates

difference vector expd_cinema-expd_music

observations 12
- positive 2
- negative 10
- zero 0

critical value -76.77999305725098

mode of operation: exact (complete permutation)

Test of hypothesis Ho: expd_cinema>=expd_music : p = .00415039
Test of hypothesis Ho: expd_cinema<=expd_music : p = .99609375
Test of hypothesis Ho: expd_cinema==expd_music : p = .00830078

How can we interpret this result? The output states that the probability of falsely
rejecting the null hypothesis that the expenditure for cinema visits is greater than
or equal to the expenditure for music CDs is only 0.415%—this probability can be
considered highly significant.

We can use the same dataset to demonstrate the permutation test for independent
samples. Suppose that one wants to know if the expenditures for music CDs differ
significantly between age groups. We can use the Fisher–Pitman permutation test for
independent samples to investigate this research question.

. permtest2 expd_music, by(age_group)

Fisher-Pitman permutation test for two independent samples

age_group obs mean std.dev.

1 6 75.141665 12.586086
2 6 45.605 14.084001

combined 12 60.373333 20.00247

mode of operation: exact (complete permutation)

Test of hypothesis Ho: expd_music(age_group==1) >= expd_music(age_group==2) :
> p=.9978355 (one-tailed)
Test of hypothesis Ho: expd_music(age_group==1) <= expd_music(age_group==2) :
> p=.00324675 (one-tailed)
Test of hypothesis Ho: expd_music(age_group==1) == expd_music(age_group==2) :
> p=.00649351 (two-tailed)

The permtest2 command claims that the probability of falsely rejecting the null hy-
pothesis that the expenditure for music CDs in the first age group is lower than or equal
to that for music CDs in the second age group is only 0.325%. Just as for the first case,
this probability can be regarded highly significant.
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5 Conclusion

In this article, I outlined the rationale of two powerful nonparametric tests. The Fisher–
Pitman permutation test for paired replicates provides p-values for the difference in
means of two outcomes of one subject in a sample, whereas the Fisher–Pitman per-
mutation test for independent samples provides p-values for the difference in means of
two independent groups. The complexity of the underlying algorithms requires approx-
imating the p-values if the sample size is large; thus, we use a Monte Carlo simulation
approach. A comparative simulation study demonstrates that the difference in p-values
of exact and Monte Carlo approaches is small enough. I explained the usage of the
supplemented code and then gave an example using a fictitious dataset.

There is still some room for future work. On one hand, calculating confidence
intervals from both tests could be possible. One could extend the provided code to
perform this task. On the other hand, the number of simulation runs to perform is set
to a fixed value and can be modified manually. Doing so should not be necessary. One
could derive a statistical proof for the number of permutations to test in a Monte Carlo
situation to reduce the error term in p-values to a fixed minimum given the sample size.
Nevertheless, the tests in their present design provide the scientist with a serviceable
tool to investigate significance levels of differences in means.
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