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Abstract. Normal-based confidence intervals for a parameter of interest are
inaccurate when the sampling distribution of the estimate is nonnormal. The
technique known as profile likelihood can produce confidence intervals with better
coverage. It may be used when the model includes only the variable of interest
or several other variables in addition. Profile-likelihood confidence intervals are
particularly useful in nonlinear models. The command pllf computes and plots
the maximum likelihood estimate and profile likelihood–based confidence interval
for one parameter in a wide variety of regression models.

Keywords: st0132, pllf, profile likelihood, confidence interval, nonnormality, non-
linear model

1 Introduction

Venzon and Moolgavkar (1988) inspired this article, and the next two paragraphs briefly
summarize their approach. The standard method of confidence interval (CI) construc-
tion is based on the asymptotic normality of the maximum likelihood estimate (MLE)

θ̂ of a parameter vector θ0. However, properties of θ̂ in small samples can be different
from the asymptotic properties. When, for example, θ0 is a scalar parameter, the usual
(1 − α) % CI is given by θ̂ ± t1−α/2s, where t1−α/2 is the (1 − α/2)th quantile of the

normal or t distribution and s is the standard error of θ̂. In well-behaved cases when
asymptotics nearly enough apply, the coverage of θ0 by the CI over repeated samples
from the population will be approximately 1 − α. A fraction α/2 of the sample of θ̂
values will exclude θ0 symmetrically at each end of the interval. In badly behaved cases,
the coverage may be far from 1 − α and may also be unequal at each extreme. Such
asymmetric coverage occurs when the sampling distribution of θ̂ is nonnormal, e.g.,
skewed.

A construction of confidence regions that is likely to be more robust in small samples
may be derived from the asymptotic χ2 distribution of the likelihood-ratio test statistic.
Suppose that dim (θ) = k ≥ 1 and that the log-likelihood l (θ) is defined for values of
θ in a suitable k-dimensional parameter space. An approximate (1 − α) % confidence
region for θ0 is the set of values of θ satisfying

[
θ : 2

{
l
(
θ̂
)
− l (θ)

}
≤ ck;1−α

]
(1)

c© 2007 StataCorp LP st0132
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where ck;1−α is the (1 − α)th quantile of the χ2 distribution on k degrees of freedom.
CIs for individual components of θ0 may be defined similarly, as in Cox (1970, 88).
This profile-likelihood method reduces l (θ) to a function of one parameter β of interest
by treating the other components of θ as nuisance parameters and maximizing the
likelihood over them. See Venzon and Moolgavkar (1988) for more details.

Let β, an element of θ, be a scalar parameter of special interest. We wish to construct
a profile-likelihood function of β. Let the population (true) value of β be β0 and the
profile log-likelihood (PLL) function of β be lp (β). The other components of θ are not
explicitly mentioned in the PLL. In practice, all that is required to compute lp (β) and
the corresponding likelihood-based CI for β0 is to fix the value of β, find the MLE of the
remaining components of θ, and evaluate lp (β). The process is repeated over a suitable
grid of values of β until (βleft, βright) are found nearly enough satisfying (1) for θ = β,
that is, satisfying

2
{
l
(
β̂
)
− lp (βleft)

}
= 2

{
l
(
β̂
)
− lp (βright)

}
= c1;1−α

By definition, l
(
β̂
)

= lp

(
β̂
)
. The command pllf aims to compute (βleft, βright) within

a multiparameter model. The special case that β is the only adjustable parameter
is supported. Furthermore, pllf plots lp (β) over a suitable range of values, defined
automatically or specified by the user.

Using a variant of the syntax, pllf can alternatively compute the MLE and a PLL-
based CI for one nonlinear parameter in a general regression model. Such a model is
typically conditionally linear. A specific example is the well-known exponential model,
e.g., E (y) = β0 + β1 exp (γx), where β0, β1, and γ are parameters to be estimated.
Writing the model as β0 + β1x

∗ with x∗ = exp (γx) gives a model linear in x∗ but
nonlinear in x. pllf can provide the MLE and PLL-based CI for γ not only in the
normal-errors regression setting just illustrated but also for a wide variety of the many
regression models implemented in Stata.

2 Syntax

pllf regression cmd regression cmd stuff
[
if

] [
in

] [
weight

]
,

profile(xvarname |
[
[eqname]

]
paramname) | formula(formula)

[
deviance gen(beta var pll var) difference level(cilevel) range(#1 #2)

maxcost(#) n(#) noci nodots nograph gropt(cline options twoway options)

levline(cline options) cilines(cline options) placeholder(string)

regression cmd options
]

where, in essence, any regression cmd for which the parameters are estimated by max-
imum likelihood may be used. This includes clogit, cnreg, glm, heckman, logistic,
logit, mlogit, nbreg, gnbreg, ologit, oprobit, poisson, probit, regress, reg3,
stcox, streg, and stpm (Royston 2001, Royston and Parmar 2002), among others.
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pllf has two basic syntaxes, depending on which option, profile() or formula(),
is used. Let us call these syntaxes 1 and 2. See section 3 for more information on what
these two syntaxes of pllf actually do.

With syntax 1, profile() must be specified. regression cmd stuff typically takes
the simple form [depvar ] varlist, although more complex syntax is supported according
to the needs of regression cmd. For example, for regression cmd ivregress, regres-

sion cmd stuff takes the form depvar [varlist1] (varlist2 = varlistiv).

With syntax 2, formula() and range() must be specified. regression cmd stuff is
similar to that for syntax 1, except that regression cmd stuff must include the place-
holder, which by default is X. This is substituted by a variable calculated according to
the formula defined by formula(), which must also include the placeholder at least
once.

All weight types supported by regression cmd are allowed.

3 Description

pllf with the profile() option (syntax 1) computes the PLL function for the regression
coefficient of a covariate xvarname defined by profile(xvarname) or of a parameter or
a variable defined by profile(

[
[eqname]

]
paramname) within a model specified by

regression cmd, regression cmd stuff, and regression cmd options. Where possible, pllf
reports PLL-based confidence limits, computed by a simple grid search. For the simple
syntax regression cmd [depvar ] varlist, xvarname need not be a member of varlist,
although including it is harmless. The results are saved to new variables assigned by
the gen() option. The dataset length is increased if n() exceeds the current number of
observations ( N).

pllf with the formula() option (syntax 2) computes the PLL function of a non-
linear parameter denoted by X. X is symbolically included where necessary in regres-

sion cmd stuff. In effect, X is replaced on the fly by the variable created by substituting
the current value of X in formula. pllf reports the MLE and PLL-based confidence limits,
computed by a simple grid search. Normal-based confidence limits are not computed.
Other features are similar to those with syntax 1.

4 Options

profile(xvarname |
[
[eqname]

]
paramname) (syntax 1) is required. In the first for-

mat, the PLL function for the regression coefficient for xvarname is calculated. xvar-

name is a covariate in the main response model. In the second format, the PLL

function for the parameter defined by
[
[eqname]

]
paramname is calculated. Typ-

ically, paramname will be an auxiliary parameter of some kind, such as a scale
or shape parameter, with its own equation. For example, for the Weibull model,
profile([ln p] cons) would give the PLL function for the log of the shape param-
eter, p.
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formula(formula) (syntax 2) is required. formula defines a transformation involving
at least one variable in the dataset and the parameter X. formula may be any valid
Stata expression, i.e., formula(exp(-X*x5)).

deviance specifies the profile-deviance function, i.e., −2 times the PLL function. If
difference is also specified, deviance produces the profile-deviance difference, i.e.,
−2 times the PLL difference.

gen(beta var pll var) creates two new variables: beta var to contain the values of the
regression coefficient over which the PLL is evaluated and pll var to contain the PLL

values. If gen() is not specified, the variables are created with default names of
beta and pll, respectively.

difference computes the PLL function minus the maximized log likelihood for the
model. See also the deviance option. Except in pathological cases, the resulting
values are negative or zero. Pathological cases denote likelihood functions with
multiple maximums or no maximum.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.7 Specifying the width of
confidence intervals (Stata 10) or [U] 20.6 Specifying the width of confidence
intervals (Stata 9).

range(#1 #2) with syntax 1 evaluates the PLL function over #1 ≤ β ≤ #2 , where β
is the regression coefficient for xvarname. The default is for #1 and #2 to be the
confidence limits for β defined by the option level() and the usual assumption of
a normal distribution for the MLE of β.

range(#1 #2) with syntax 2 is required, and it evaluates the PLL function over
#1 ≤ X ≤ #2 , where X is the nonlinear parameter of interest. pllf also seeks
the MLE of X, but if the values of #1 and #2 are ill-chosen or the PLL function
behaves badly, it may fail to find the MLE or give an inaccurate estimate. The most
satisfactory situation is when the MLE lies between #1 and #2, and this may be
judged from the plot of the PLL function. Particularly with large sample sizes, the
PLL function is often approximately quadratic with one maximum.

maxcost(#) sets an upper limit of 2 × # on the number of additional evaluations of
the PLL when searching for the PLL-based confidence limits. You should rarely, if
ever, need this option. maxcost() prevents the program from cycling forever when
trying to find confidence limits in pathological cases (see the difference option).
The default # is n()/2.

n(#) evaluates the PLL function at # equally spaced points. The default is n(100).

noci suppresses calculation of the PLL-based confidence limits.

nodots suppresses dots. By default, the program displays a dot at each evaluation of
the PLL.

nograph suppresses the line plot of the results.
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gropt(cline options twoway options) supplies graph options to enhance the plot of
the PLL (or a transformation of it) against β or X. The default graph is a line
plot showing the PLL-based CI for β as vertical lines parallel to the y axis and the
corresponding PLL value (or a transformation of it) as a horizontal line parallel to the
x axis. Appropriate linear transformation of the PLL is applied when the deviance

or difference option is specified.

levline(cline options) specifies the rendition of the horizontal line showing the profile
likelihood at the confidence level for the PLL-based CI.

cilines(cline options) specifies the rendition of the vertical lines representing the
bounds of the PLL-based CI.

placeholder(string) defines the placeholder character(s) used in syntax 2. Spaces or
other punctuation characters are not allowed. The default string is X (capital).

regression cmd options may be any of the options appropriate to regression cmd .

5 Example 1

We will use the breast cancer dataset, which Sauerbrei and Royston (1999) analyzed.
The data are provided in brcancer.dta and relate to a set of 686 patients with lymph
node–positive breast cancer. The outcome of interest is the recurrence-free survival
time, that is, the duration in years from entry into the study (typically, the time of
diagnosis of primary breast cancer) until either death or disease recurrence, whichever
occurred first. There were 299 events for this outcome and the median follow-up time
was about 5 years.

These authors derived a Cox proportional hazards model for recurrence-free survival
time that included five covariates: age (x1) with a fractional polynomial transformation
with powers −2 and −0.5, tumor grade 2/3 (x4a), number of positive lymph nodes (x5)
with the exponential transformation x5e = exp (−0.12 × x5 ), progesterone receptors
(x6) with a fractional polynomial transformation with power 0.5, and hormonal therapy
with tamoxifen (hormon). The commands to obtain a PLL-based CI for the covariate
x4a within the above-mentioned model are as follows:

. use brcancer

. stset rectime censrec

. fracgen x1 -2 -0.5

. fracgen x6 0.5

. pllf stcox x1_1 x1_2 x4a x5e x6_1 hormon, profile(x4a) gropts(saving(fig1))

Figure 1 shows the resulting graph.
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Figure 1: PLL function of the regression coefficient for x4a in a multivariable Cox model
for the breast cancer data

The horizontal line represents the χ2 quantile c1;1−α for 1 − α = 0.95, linearly
transformed to the scale of the log likelihood for the model. (Since a Cox model is fitted,
we use the partial log likelihood rather than the log likelihood here.) In this example,

β̂ = 0.517 and lβ

(
β̂
)

= −1,711.62. The horizontal line is drawn at −1,711.62−3.84/2 =

−1,713.54, where c1;1−α = 3.84 is the 95th centile of χ2 on 1 degree of freedom. The
vertical lines show the 95% PLL-based confidence limits, which are (0.057, 1.041). They
should be compared with the normal-based 95% CI, which is (0.029, 1.006). Although
the difference between the two CIs is not huge, it is not nothing either, demonstrating
that even in a reasonably large sample (686 patients, 299 events) PLL-based CIs may
have something to offer.

The tails of the curve in figure 1 extend unequally on both sides of the CI because
of how pllf selects its grid of β values. The terminals of the grid are taken as β̂ ±
1.2t1−α/2s, the idea being that a normal-based CI stretched by 20% should (and usually

does) cover the PLL-based CI. The asymmetry of the PLL-based CI about β̂ in this
example causes the unequal tail lengths of the profile-likelihood curve. One could achieve
a more visually appealing plot by a better choice of terminals through the range()

option.

5.1 Asymmetry of the PLL-based CI

A convenient measure of nonnormality of the sampling distribution of β̂ is the asym-
metry, say, A, of the PLL-based CI. A reasonable definition of this measure is length of
upper arm minus length of lower arm, divided by length of CI. Multiply the measure by
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100 to express it as a percentage. By definition, a normal-based CI has no asymmetry,
so A = 0. The asymmetry of the CI for x4a is

A = 100 × {(1.041 − 0.517) − (0.517 − 0.057)} / (1.041 − 0.057) ' 6.5

i.e., the difference in arm length is about 6.5% of the CI length.

5.2 Effect of sample size

Figure 2 shows how the PLL and normal CIs change as the sample size increases.

−
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Normal−based
PLL−based
MLE of beta

Figure 2: Comparison of normal- and PLL-based CIs for β for x4a. The sample size is
varied between 5% and 100% of the original sample of 686 patients.

The data were sorted in random order and the first 5%, 10%, . . . , 100% of the
observations used in the PLL calculation. The plot shows that although the width of
the two types of CI is similar, the asymmetry is different. In effect, the PLL-based CIs
are shifted upward by an amount that increases with reduced sample size. Figure 3
shows the asymmetry statistic A.
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Figure 3: Asymmetry (A) of the PLL-based CI for x4a as a function of the proportion
of observations included in the analysis

When only 5% of the observations are included, difference in arm lengths is nearly
25% of the total arm length, which is substantial. Figure 2 shows that in absolute terms,
the two types of CI in this example differ markedly only when the small sample is less
than about 40% of the original 686. The asymmetry is then greater than 10%.

6 Example 2

We will use the breast cancer dataset again to illustrate the use of syntax 2 of pllf

to obtain a CI for a parameter in a nonlinear regression. Sauerbrei and Royston (1999)
reported the value of γ in the negative exponential transformation x5e = exp (−γ × x5 )
to be 0.12 but gave no standard error or CI for γ. One can obtain a PLL-based CI for γ
within a Cox regression model for the data by using pllf. Let us suppose that we have
no idea of the MLE of γ or its CI. We choose a wide initial range, e.g., (−1, 1), for γ and
proceed as follows:

. use brcancer
(German breast cancer data)

. pllf stcox X, formula(exp(-X*x5)) range(-1 1)

...................................................................
> ............

_t Coef. Std. Err. [95% PLL Conf. Int.]

X .1183861 .038756 .0619803 .213901

Note: Std. Err. is pseudo standard error, derived from PLL CI
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Figure 4 shows the resulting plot.
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Figure 4: PLL function for the nonlinear parameter γ in a Cox regression on
exp (−γ × x5) for the breast cancer dataset, derived from pllf using the option
range(-1 1). Vertical lines show the PLL-based 95% CI. Since the curve is far from
quadratic, the distribution of γ̂ is clearly far from normal.

The overall shape of the PLL function is far from quadratic, but on the basis of the
wide range of PLL values on the vertical axis, the required range has been overshot by
some considerable margin. The MLE of γ̂ is reported as 0.118 with a PLL-based CI of
(0.062, 0.214). With this in mind, we repeat the command with a narrower range of,
say, 0.05–0.25:

. pllf stcox X, formula(exp(-X*x5)) range(.05 .25)

...................................................

_t Coef. Std. Err. [95% PLL Conf. Int.]

X .1174223 .0392578 .0603041 .2141917

Note: Std. Err. is pseudo standard error, derived from PLL CI

The MLE and CI change a little, to 0.117 and (0.060, 0.214), respectively. The asymmetry
A is 25.8%, which is large; you can clearly see it in figure 5.
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Figure 5: PLL function for the nonlinear parameter γ in a Cox regression on
exp (−γ × x5) for the breast cancer dataset, derived from pllf using the option
range(0.05 0.25). Vertical lines show the PLL-based 95% CI. Even within this re-
stricted range and with the rather large sample size, the distribution of γ̂ is not normal.

Normal-based confidence limits would be inaccurate in this example.

Finally, a reviewer suggested that it would be useful if pllf could also compute the
score function, that is, the first derivative of the log likelihood evaluated at β. Since
lp (β) is a smooth function of β, this calculation can be done with good accuracy by
using the standard Stata program dydx, which calculates first derivatives. For example,
to compute and plot the score function for the above example, one could code

. pllf stcox X, formula(exp(-X*x5)) range(.05 .25)

. dydx _pll _beta, gen(score)

. line score _beta, sort xline(.1174) yline(0) ytitle("Score function")

Figure 6 shows such a plot.

(Continued on next page)
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Figure 6: Score function for the nonlinear parameter γ in a Cox regression on
exp (−γ × x5) for the breast cancer dataset. The horizontal line shows y = 0, and
the vertical line shows the MLE of γ.

If the parameter estimate were normally distributed, the plot would be linear. Such is
clearly not the case here.

7 Comments and conclusions

Both examples indicate that using profile likelihood improves on normal-based CIs. The
main reason is that the likelihood-ratio statistic tends to approach its asymptotic χ2

distribution more rapidly than the equivalent Wald statistic. One may also view pllf

as a convenient tool to check the validity of the normal assumption in critical cases.
In principle, one could do so also by using the bootstrap. However, for CI calculations
not assuming normality, the bootstrap can become computationally expensive. The
bootstrap is usually assumed valid, even in small samples, but that may not be so; the
bootstrap gives only asymptotically correct results. Also, in applications in nonlinear
modeling for which syntax 2 of pllf is required, computing the MLE of a nonlinear
parameter in each bootstrap sample may not be straightforward.

To prove the worth of the PLL approach empirically would require extensive simula-
tion studies. For present purposes, relying on theoretical arguments on the superiority
of PLL-based CIs suffices.
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