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Abstract. This article presents a Stata program (sensatt) that implements
the sensitivity analysis for matching estimators proposed by Ichino, Mealli, and
Nannicini (Journal of Applied Econometrics, forthcoming). The analysis simulates
a potential confounder to assess the robustness of the estimated treatment effects
with respect to deviations from the conditional independence assumption. The
program uses the commands for propensity-score matching (att* ) developed by
Becker and Ichino (Stata Journal 2: 358–377). I give an example by using the
National Supported Work demonstration, widely known in the program evaluation
literature.

Keywords: st0130, sensatt, sensitivity analysis, matching, propensity score, pro-
gram evaluation

1 Introduction

During the last few years, using matching estimators in evaluation studies of treat-
ment effects has skyrocketed. In particular, two factors have favored the diffusion of
these methods in empirical works. First, the findings by Dehejia and Wahba (1999,
2002) about the promising performance of propensity-score matching estimators in ob-
servational studies have triggered the attention of theoretical and empirical researchers
to these techniques.1 Even though Dehejia and Wahba make it clear that these es-
timators do not represent a “magic bullet” and the later literature shows that they
are effective only in data contexts satisfying particular conditions, their use is now
widespread in applied studies. Second, many free user-friendly software routines have
been made available to apply matching estimators. In Stata, Becker and Ichino (2002)
provide a suite of commands (attnd, attnw, atts, attr, and attk) that carry out
different propensity-score matching estimators of the average treatment effect on the
treated (ATT); Leuven and Sianesi (2003) develop a program (psmatch2) that imple-

1. Using data from the influential study by LaLonde (1986), Dehejia and Wahba (1999) show that
propensity-score matching estimates are closer to the experimental benchmark than the ones produced
by traditional evaluation methods. This apparent “propensity score paradox” (i.e., that these estimators
seem to perform better with respect to alternative nonexperimental methods that rely on the same
identification assumptions) have contributed to the recent popularity of matching in empirical studies,
even though Smith and Todd (2005) have subsequently shown that matching estimators work well only
for a specific subsample of the LaLonde data, casting doubts on the generalizability of the results
by Dehejia and Wahba. See also, among others, Heckman, Ichimura, and Todd (1997, 1998); Imbens
(2004); and Michalopoulos, Bloom, and Hill (2004).

c© 2007 StataCorp LP st0130



T. Nannicini 335

ments full Mahalanobis matching and a variety of propensity-score matching methods;
Abadie et al. (2004) develop a command (nnmatch) that implements nearest-neighbor
matching estimators for average treatment effects.

As a combined result of the above two factors, matching estimators are now widely
known and easy to use. And, perhaps, too many users adopt them without care-
fully discussing whether the conditions for their application are met or how robust the
derived estimates are with respect to possible deviations from these conditions. In
particular, matching relies on the assumption of conditional independence of potential
outcomes and treatment assignment given observables, i.e., on the fact that selection
into treatment is driven only by factors that the researcher can observe. This is the
so-called conditional independence assumption (CIA), also known as “unconfounded-
ness” or “selection on observables” in the program evaluation literature.2 Moreover,
Heckman, Ichimura, and Todd (1997) show that, for matching estimators to reduce bias
as conventionally measured, it is crucial that 1) the same questionnaire be used for both
the treated and control units and 2) the nonexperimental comparison group be drawn
from the same local labor market with respect to the treated.3 In data contexts where
the CIA appears plausible and the above conditions are met, matching may be a bet-
ter strategy to control for observables than regression modeling (if there is no credible
source of exogenous variation), since it does not rely on linearity and allows checking
whether there is a substantial overlap of the distributions of covariates in the treat-
ment and comparison groups. However, every evaluation strategy that uses matching
estimators should contain some (possibly all) of the following steps:

1. To use data where the treated and control units come from the same local market
and are asked the same set of questions

2. To discuss (carefully) why the CIA should be verified in the specific context of the
evaluation question at hand

3. To test (indirectly) whether the available empirical evidence casts doubt on the
plausibility of the CIA4

4. To inspect how the observations are distributed across the propensity-score com-
mon support and how sensitive the estimates are with respect to using observations
in the tails of the common support5

5. To assess whether (and to what extent) the estimated average treatment effects
are robust to possible deviations from the CIA (e.g., implementing some type of
sensitivity analysis)

2. See Imbens (2004) for a review of nonparametric estimation methods under this assumption.
3. The experimental evidence by Michalopoulos, Bloom, and Hill (2004) reinforces this second point

by showing that in-state comparison groups produce less bias than out-of-state groups.
4. For instance, multiple control groups could be used in this respect (Rosenbaum 1987a).
5. See Black and Smith (2004) for an excellent example.
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The sensitivity analysis proposed by Ichino, Mealli, and Nannicini (2007) allows ap-
plied researchers who use matching estimators to tackle the fifth step.6 The analysis
builds on Rosenbaum and Rubin (1983a) and Rosenbaum (1987b) and is based on a
simple idea. Suppose that the CIA is not satisfied given observables but would be sat-
isfied if one could observe an additional binary variable. This potential confounder can
be simulated in the data and used as an additional covariate in combination with the
preferred matching estimator. The comparison of the estimates obtained with and with-
out matching on the simulated confounder shows to what extent the baseline results are
robust to specific sources of failure of the CIA, since the distribution of the simulated
variable can be constructed to capture different hypotheses on the nature of potential
confounding factors. In this article, I summarize this econometric tool and present a
program (sensatt) that implements it in Stata.

2 Propensity-score matching

Consider Rubin’s (1974) potential-outcome framework for causal inference, where Y1

represents the outcome if the unit is exposed to treatment T = 1, and Y0 is the outcome
if the unit is exposed to treatment T = 0. Assume also that the average treatment
effect of interest is the ATT, defined as follows:

E(Y1 − Y0|T = 1)

Here one possible estimation strategy is to assume that, given a set of observable
covariates W , the potential outcome for no treatment is independent of treatment as-
signment:7

Y0 ⊥⊥ T |W (1)

This condition is the CIA. The behavioral assumption behind it is that the potential
outcome for no treatment (Y0) does not influence treatment assignment, whereas the
possibility that the selection process depends on the treated outcome (Y1) does not
have to be ruled out. Although strong, the plausibility of this assumption relies heavily
on the quality and amount of information contained in W . The CIA is an untestable
assumption, since the data are completely uninformative about the distribution of Y0

for treated subjects, but its credibility can be supported or rejected by theoretical
reasoning and more evidence.8 Besides the CIA, a further requirement for identification
is the common support or overlap condition, which ensures that for each treated unit
there are control units with the same observables:9

Pr(T = 1|W ) < 1 (2)

6. See Becker and Caliendo (2007) for implementing a different sensitivity analysis in Stata.
7. If the effect of interest were the average treatment effect for the whole population, both potential

outcomes should be conditionally independent of treatment assignment: (Y1, Y0) ⊥⊥ T |W .
8. See Imbens (2004) and Rosenbaum (1987a).
9. To estimate the average treatment effect, the overlap condition would require that 0 < Pr(T =

1|W ) < 1.



T. Nannicini 337

Under assumptions (1) and (2), within each cell defined by W , treatment assignment
is random, and the outcome of control subjects can be used to estimate the counter-
factual outcome of the treated for no treatment. However, with a high-dimensional
vector W , this task may be problematic. To deal with the dimensionality problem, one
can use the results by Rosenbaum and Rubin (1983b) on the so-called propensity score.
The propensity score is the individual probability of receiving the treatment given the
observed covariates: p(W ) = P (T = 1|W ). If the potential outcome Y0 is indepen-
dent of treatment assignment conditional on W , it is also independent of treatment
assignment conditional on p(W ). The propensity score can thus be used as a univariate
summary of all observable variables. As a consequence, if p(W ) is known, the ATT can
be consistently estimated as follows:

τATT ≡ E(Y1 − Y0|T = 1) =

E{p(W )|T=1}

[
E{Y1|p(W ), T = 1} − E{Y0|p(W ), T = 0}

]
(3)

In practice, p(W ) is usually unknown and has to be estimated through some prob-
abilistic model (e.g., probit or logit). Such a model should include all the pretreatment
observable variables that influence both the selection into treatment and the outcome.
Higher-order or interaction terms should be included in the specification of the model
only if they served to make the estimated propensity score satisfy the balancing prop-
erty, i.e., to have that within each cell of the propensity score the treated and control
units have the same distribution of observable covariates.10 However, the estimation of
the propensity score is not enough to estimate the ATT with (3), since the probability
of finding 2 observations with the same value of the score is extremely low. Various
methods have been proposed in the literature to overcome this problem and match
treated and control units on the basis of the estimated propensity score. The program
sensatt uses three different algorithms: nearest neighbor, kernel, and radius.11 These
methods differ in how they select the control units that are matched to the treated and
with respect to the weights they attribute to the selected controls when estimating the
counterfactual outcome of the treated: E{Y0|p(W ), T = 1}. However, they all provide
consistent estimates of the ATT under the CIA and the overlap condition.

3 Sensitivity analysis

This section borrows from Ichino, Mealli, and Nannicini (2007) and sketches the sensi-
tivity analysis for propensity-score matching estimators that they propose. One of the
central assumptions of the analysis is that treatment assignment is not unconfounded
given the set of covariates W , i.e., that assumption (1) no longer holds. Also, it is
assumed that the CIA holds given W and an unobserved binary variable U :

10. Usually, the balancing property is tested with reference to first moments.
11. See Becker and Ichino (2002) for a description of these matching algorithms and the commands
that implement them in Stata. See also Caliendo and Kopeinig (2007) for a discussion of the different
properties of these and other propensity-score matching algorithms.



338 Simulation-based sensitivity analysis for matching estimators

Y0 ⊥⊥ T | (W,U)12 (4)

As long as U is not observed, the outcome of the controls cannot be credibly used to
estimate the counterfactual outcome of the treated:

E(Y0|T = 1,W ) 6= E(Y0|T = 0,W )

On the contrary, knowing U (together with the observable covariates W ) would be
enough to consistently estimate the ATT as discussed in section 2, since

E(Y0|T = 1,W,U) = E(Y0|T = 0,W,U)

Assumption (4) is common to similar sensitivity analysis proposed in the econometric
and statistical literature,13 but the analysis discussed in this article is the only one that
assesses the robustness of point estimates without relying on any parametric model for
the outcome equation.

The next step characterizes the distribution of U to simulate this potential con-
founder in the data. U is assumed to be binary. It is also assumed to be independently
and identically distributed in the cells represented by the Cartesian product of the
treatment and outcome values. For simplicity, consider the case of binary potential
outcomes: Y0, Y1 ∈ {0, 1}.14 Also denote with Y = T · Y1 + (1 − T ) · Y0 the observed
outcome for a given unit, which is equal to one of the two potential outcomes depending
on treatment assignment. The distribution of the binary confounding factor U is fully
characterized by the choice of four parameters,

pij ≡ Pr(U = 1|T = i, Y = j) = Pr(U = 1|T = i, Y = j,W )

with i, j ∈ {0, 1}, which give the probability that U = 1 in each of the four groups
defined by the treatment status and the outcome value.15 To make the simulation of
the potential confounder feasible, we assume binary U and conditional independence
of U with respect to W . Ichino, Mealli, and Nannicini (2007) present two Monte Carlo
exercises showing that these simulation assumptions do not critically affect the results
of the sensitivity analysis.

As a final step, given arbitrary (but meaningful) values of the parameters pij , a
value of U is attributed to each unit, according to its belonging to one of the four groups
defined by the treatment status and the outcome value. The simulated U is then treated
as any other observed covariate and is included in the set of matching variables used to
estimate the propensity score and to compute the ATT according to the chosen matching

12. Using Rosenbaum’s (1987a) terminology, we are moving from (Y0|W )-adjustable treatment assign-
ment in condition 1 to (Y0|W, U)-adjustable treatment assignment in condition 4.
13. See Rosenbaum and Rubin (1983a); Rosenbaum (1987b, 2002); Gastwirth, Krieger, and Rosen-
baum (1998); Imbens (2003); and Altonji, Elder, and Taber (2005).
14. This assumption will be removed at the end of the section.
15. Using the parameters pij and the probabilities of having a positive outcome by treatment status,
Pr(Y = i|T = j), which are observed in the data, one can compute the fraction of subjects with U = 1
by treatment status only: pi. ≡ Pr(U = 1|T = i) =

P

1

j=0
pij · Pr(Y = j|T = i), with i ∈ {0, 1}.
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estimator (e.g., kernel). By using a given set of values of the sensitivity parameters,
the matching estimation is repeated many times (e.g., 1,000) and a simulated estimate
of the ATT is retrieved as an average of the ATTs over the distribution of U . Thus, for
any given configuration of the parameters pij , the sensitivity analysis retrieves a point
estimate of the ATT that is robust to the failure of the CIA implied by that particular
configuration.16

3.1 Standard errors

For computing a standard error for the simulated ATT, the imputation of U is considered
a normal problem of missing data, which can be solved by repeatedly imputing the
missing values of U . Let m be the number of imputations of the missing U , and let
ÂTTk and se2

k be the point estimate and the estimated variance of the ATT estimator at
the kth imputed dataset (with k = 1, 2, . . . ,m). The simulated ATT, ÂTT, is obtained by
the average of the ÂTTk over the m replications. In this setting, the within-imputation
variance is equal to

se2
W =

1

m

m∑

k=1

se2
k

whereas the between-imputation variance is given by

se2
B =

1

m− 1

m∑

k=1

(ÂTTk − ÂTT)2

As a consequence, the total variance associated to ÂTT can be expressed as follows:

se2
T = se2

W + (1 +
1

m
)se2

B (5)

For many replications, the statistic (ÂTT − ATT)/seT is approximately normal. One
could also consider either the within-imputation or the between-imputation standard
error as the basis for inference. The program sensatt allows using all three types.
The standard error in (5) leads to conservative inferential conclusions, since it is always
greater than the other two alternatives.

3.2 Extension to continuous outcomes

The above sensitivity analysis can be easily extended to multivalued or continuous
outcomes. Indeed, in such cases, one can define the simulation parameters pij on the
basis of T and a binary transformation of Y (instead of the outcome itself). Define

pij ≡ Pr(U = 1|T = i, I(Y > y∗) = j)

16. A high sensitivity of the baseline results could also come from a problem of weak identification,
should even small variations in the conditioning set cause large changes in the estimates. However,
this would reinforce the usefulness of the sensitivity analysis, since the harmful effects of a potential
confounder are even more severe in the presence of weak identification.
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with i, j ∈ {0, 1}, where I is the indicator function and y∗ is a chosen typical value of
the distribution of Y .17 Once the parameters pij are set thus, one can implement the
sensitivity analysis as described above. Of course, the ATT is still estimated for the
multivalued or continuous outcome Y .

4 Guidelines for implementing the simulations

To implement the sensitivity analysis described in section 3, one must have in mind
which kind of potential confounding factors would be useful to simulate in the data.
One must answer the following question: which values of the parameters pij should I
choose to learn something useful from the effect of a confounder U like the one associated
with the chosen values? I focus on two simulation exercises here. In the first one, the pij

are set so as to let U mimic the behavior of some important covariates. In the second
one, a grid of different pij is built to capture the characteristics of those potential
confounders that would drive the ATT estimates to zero or far away from the baseline
result. However, the above sensitivity analysis is a flexible tool and its application is
not restricted to the exercises suggested here.

Before I discuss these two sensitivity exercises, it is important to understand which
kind of potential confounders would represent a real threat for the baseline estimates.
Since the treatment is binary, we can assume without loss of generality that the ATT

estimated according to the matching strategy outlined in section 2 is positive and sig-
nificant. In a similar situation, before interpreting the baseline estimate as evidence of
a true causal effect of the treatment, we may want to investigate how sensitive this esti-
mate is with respect to the possible existence of an unobservable variable U that affects
both the potential outcome Y0 and the selection into treatment T (after controlling for
observable covariates W ). U would be a dangerous confounder (i.e., a confounder whose
existence might give rise to a positive and significant ATT estimate even without a true
causal effect) if we observed that

Pr(Y0 = 1|T,W,U) 6= Pr(Y0 = 1|T,W ) (6)

Pr(T = 1|W,U) 6= Pr(T = 1|W ) (7)

Expressions (6) and (7)—unlike the parameters pij —both includeW and refer to the
potential (not observed) outcome for no treatment. Hence, one may be worried that, by
simply choosing the parameters pij , it is not possible to simulate a dangerous confounder
like the one captured by these expressions. However, Ichino, Mealli, and Nannicini
(2007) demonstrate that the following implications hold:

p01 > p00 ⇒ Pr(Y0 = 1|T = 0, U = 1,W ) > Pr(Y0 = 1|T = 0, U = 0,W )

p1. > p0. ⇒ Pr(T = 1|U = 1,W ) > Pr(T = 1|U = 0,W )

17. The program sensatt allows using four y∗: mean, median, 25th, or 75th centile.
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As a consequence, by simply assuming that p01 > p00, one can simulate a confounding
factor that has a positive effect on the untreated outcome Y0 (conditioning on W ).
Similarly, by setting p1. > p0.,

18 one can simulate a confounding factor that has a
positive effect on treatment assignment (conditioning on W ).

I must address one limitation, however. Following the above reasoning, it would
be tempting to interpret the difference d = p01 − p00 as a measure of the effect of U
on the untreated outcome, and the difference s = p1. − p0. as a measure of the effect
of U on the selection into treatment. But these two effects should be evaluated after
conditioning on W , whereas d and s do not account for the association between U and
W that shows up in the data. By setting the sensitivity parameters pij , we can control
the sign but not the magnitude of the conditional association of U with Y0 and T . To
sidestep this shortcoming, we can measure how each chosen configuration of the pij

translates in terms of the effect of U on Y0 and T (conditioning on W ). The program
sensatt performs this task in the following way. At every iteration, a logit model of
Pr(Y = 1|T = 0, U,W ) is estimated and the average odds ratio of U is reported as the
outcome effect of the simulated confounder:19

Γ ≡
Pr(Y =1|T=0,U=1,W )

Pr(Y =0|T=0,U=1,W )

Pr(Y =1|T=0,U=0,W )

Pr(Y =0|T=0,U=0,W )

Similarly, the logit model of Pr(T = 1|U,W ) is estimated at every iteration and the
average odds ratio of U is reported as the selection effect of the simulated confounder:

Λ ≡
Pr(T=1|U=1,W )

Pr(T=0|U=1,W )

Pr(T=1|U=0,W )

Pr(T=0|U=0,W )

By simulating U under the assumptions that d > 0 and s > 0, we know from the above
arguments that both the outcome and selection effects must be positive (i.e., Γ > 1 and
Λ > 1). Moreover, by displaying the associated Γ and Λ as an additional output of the
sensitivity analysis, we can easily assess the magnitude of these two effects, which end
up characterizing the simulated confounder U .

4.1 A first simulation exercise: calibrated confounders

Keeping in mind the above reasoning, one can pick the parameters pij (which in turn
determine the parameters pi.) to make the distribution of U similar to the empirical
distribution of important binary covariates (or binary transformations of continuous
covariates). Here the simulation exercise reveals the extent to which the baseline esti-
mates are robust to deviations from the CIA induced by the impossibility of observing
factors similar to the ones used to calibrate the distribution of U . This is a different ex-
ercise from the simple removal of an observed variable from the matching set W , since

18. After the choice of p01 and p00, this condition can be imposed by setting p11 and p10 appropriately.
19. With continuous outcomes, Γ is the odds ratio of U in the logit model Pr(Y > y ∗ |T = 0, U, W ).
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in every sensitivity-analysis estimation we still control for all the relevant covariates
observed by the econometrician. Of course, this exercise is interesting only when the
chosen covariates display pij that satisfy the conditions d > 0 and s > 0.

4.2 A second simulation exercise: killer confounders

Since the results of the previous exercise may be driven by the particular behavior of the
chosen covariates, another simulation exercise is even more instructive. One can search
for the existence of a set of parameters pij such that if U were observed the estimated
ATT would be driven to zero, and one can then assess the plausibility of this particular
configuration of parameters. If all the configurations leading to such a result could be
considered unlikely, the exercise would support the robustness of the estimates derived
under the CIA. To reduce the dimensionality problem of the characterization of these
killer confounding factors, one could fix at some predetermined values the probability
Pr(U = 1) and the difference d′ = p11 − p10. Since these quantities are not expected to
represent a real threat for the baseline estimate, they can be held fixed and the simulated
confounder U can be fully described by the differences d and s.20 For instance, one could
build a table of simulated ATTs such that d increases by 0.1 along each column, and
s increases by 0.1 along each column, looking for those configurations of these two
parameters that drive the ATT to zero or far away from the baseline estimate (d = 0,
s = 0).21 Moreover, when displaying the results of the sensitivity analysis, the values
of d and s should be associated with the estimated values of Γ and Λ, respectively. The
estimated odds ratios would thus provide a measure of the observed effects of U on the
untreated outcome and the selection into treatment, allowing the researcher to discuss
the plausibility of the existence of a similar confounder. If only implausible confounders
drove the ATT to zero or far away from the baseline estimate, the sensitivity analysis
would support the robustness of matching results.22

5 Syntax

sensatt outcome treatment
[
varlist

] [
if

] [
in

] [
weight

] [
, alg(att*)

reps(#) p(varname) p11(#) p10(#) p01(#) p00(#) se(se type)

ycent(#) pscore(scorevar) logit index comsup bootstrap
]

The following remarks should be taken into account:

• The program uses the commands for the propensity-score matching estimation
of average treatment effects written by Becker and Ichino (2002): attnd, attnw,

20. Keeping Pr(U = 1) and d′ fixed, and substituting Pr(Y = i|T = j) and Pr(T = j) by their sample
analogues, the parameters d and s are enough to characterize the distribution of U .
21. At http://www.tommasonannicini.eu, there is an ancillary Matlab code that, once d′ and Pr(U = 1)
are specified and the estimated Pr(Y = i|T = j) and Pr(T = j) are given, retrieves all the pij parameters
that can be used to simulate U with d and s varying from 0.1 to 0.6.
22. See Ichino, Mealli, and Nannicini (2007) for a concrete example.
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attk, and attr. Before using sensatt, you should install them and be familiar
with their use.

• The treatment must be binary.

• It is important to clean up the dataset before running the program, in particular
to delete observations with missing values.

6 Options

6.1 Options specific to sensatt

alg(att*) specifies the name of the command (i.e., of the matching algorithm) that is
used in the ATT estimation. One of the following commands can be specified: attnd,
attnw, attk, and attr. The default is attnd.

reps(#) specifies the number of iterations, i.e., how many times the simulation of U
and the ATT estimation are replicated. The default is reps(1000).

p(varname) specifies the binary variable that is used to simulate the confounder. The
parameters pij used to simulate U are set equal to the ones observed for varname.
Instead of selecting this option, the user can directly specify the parameters pij .

p11(#), p10(#), p01(#), and p00(#) jointly specify the parameters pij used to
simulate U in the data. Since they are probabilities, they must be between zero and
one. For each parameter, the default is zero.

se(se type) allows the user to decide which standard error should be displayed with
the simulated ATT. Three se types are possible: tse uses the total variance in a
multiple-imputation setting; wse uses the within-imputation variance; and bse uses
the between-imputation variance. The default is tse.

ycent(#) is relevant only with continuous outcomes. It means that U is simulated on
the basis of the binary transformation of the outcome I(Y > y∗), where y∗ is the
#th centile of the distribution of Y . Three centiles are allowed: 25, 50, and 75. If
ycent(#) is not specified by the user, but the outcome is continuous, U is simulated
on the basis of the transformation I(Y > y∗), where y∗ is the mean of Y .

6.2 Options common to attnd, attnw, attk, and attr

pscore(scorevar) specifies the name of the user-provided variable containing the es-
timated propensity score. If this option is not selected, the propensity score is
estimated with the specification provided in varlist.

logit uses a logit model to estimate the propensity score instead of the default probit
model when the option pscore(scorevar) is not specified by the user.

index requires the use of the linear index as the propensity score when the option
pscore(scorevar) is not specified by the user.
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comsup restricts the computation of the ATT to the region of common support.

bootstrap bootstraps the standard errors of the estimated ATTs. This option should
not be used in association with the nearest-neighbor algorithm (attnd); see Abadie
and Imbens (2006).

7 Saved results

sensatt saves the following in r():

Scalars
r(att) simulated ATT
r(se) default standard error
r(sew) within-imputation standard errors
r(seb) between-imputation standard errors
r(yodds) estimated outcome effect of the confounder U (odds ratio)
r(todds) estimated selection effect of the confounder U (odds ratio)

8 Example

Per Becker and Ichino (2002), I use data from Dehejia and Wahba (1999), which are
publicly available at http://www.nber.org/%7Erdehejia/nswdata.html. The data come
from LaLonde’s (1986) well-known evaluation of nonexperimental evaluation methods,
which combines the treated units from a randomized study of the National Supported
Work (NSW) training program with nonexperimental comparison groups drawn from
public surveys. As mentioned in section 1, Dehejia and Wahba use this dataset to
show that propensity-score matching estimates are closer to the experimental bench-
mark than those produced by traditional evaluation methods. I restrict my example
to the comparison group drawn from the Panel Study of Income Dynamics (PSID-1).23

The outcome of interest is continuous and is represented by the postintervention real
earnings (RE78). The treatment indicator (T) coincides with the participation to the
NSW treated group. Control variables are age (age), education (educ), black dummy
(black), Hispanic dummy (hisp), marital status (marr), real earnings in 1975 (RE75),
and real earnings in 1974 (RE74).24 At the end, there are 185 observations in the treated
group and 2,490 in the control group. For this subsample of the NSW treated group, the
experimental estimate of the ATT is 1,794 (with a standard error equal to 633). I focus
on the nearest-neighbor matching estimate, which is the default in sensatt. Assume
that we want to calculate this estimate and assess its robustness with respect to a po-
tential confounder that behaves like an important observed covariate: the probability
of being nonemployed in 1974 (U74). The following three Stata outputs are produced
by running sensatt with the above specification of the propensity score and simulating
U to mimic the variable U74:

23. See LaLonde (1986) and Dehejia and Wahba (1999, 2002) for more data details.
24. Throughout this example, to replicate Becker and Ichino’s results, which in turn replicate those by
Dehejia and Wahba, the propensity-score specification also includes the following variables: squared
education (educ2), squared earnings in 1974 (RE742), squared earnings in 1975 (RE752), and the inter-
action of the black dummy with a dummy for nonemployment in 1974 (blackU74).
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. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p(U74) r(100) comsup logit

*** THIS IS THE BASELINE ATT ESTIMATION (WITH NO SIMULATED CONFOUNDER).

The program is searching the nearest neighbor of each treated unit.
This operation may take a while.

ATT estimation with Nearest Neighbor Matching method
(random draw version)
Analytical standard errors

n. treat. n. contr. ATT Std. Err. t

185 57 1667.644 2113.592 0.789

Note: the numbers of treated and controls refer to actual
nearest neighbour matches

First, sensatt shows the ATT calculated by the command for propensity-score
matching that has been selected (attnd in this example). Correctly, the above estimate
is the same of the example by Becker and Ichino, and it is close to the nearest-neighbor
matching estimate in Dehejia and Wahba’s original paper, which is equal to 1,691 (with
a standard error of 2,209). The baseline ATT point estimate is close to the experimental
benchmark, even though the standard error is high. The fact that we can compare the
nonexperimental estimates with this unbiased benchmark makes the sensitivity analysis
useless. But let us assume that this is not the case, and we would like to assess the
robustness of the above matching estimate. After the simple step of reproducing the
output by attnd, the program moves on and simulates the confounder U to retrieve the
associated ATT:

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 0.78
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.70
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.02
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.15

The probability of having U=1 if T=1 (p1.) is equal to: 0.71
The probability of having U=1 if T=0 (p0.) is equal to: 0.09

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.

The iteration step can be time consuming, especially when, unlike in this exam-
ple, one selects the bootstrap option to calculate the standard error of the chosen
propensity-score matching estimator. At the end of the iteration step, sensatt displays
the simulated ATT, as well as the outcome and selection effects of U :
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ATT estimation with simulated confounder
General multiple-imputation standard errors

ATT Std. Err. Out. Eff. Sel. Eff.

2122.280 3548.766 0.132 15.946

Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

As one would expect, the simulated ATT (2,122) is even greater than the baseline
estimate (1,668) since, even though the selection effect of the confounder is large, the
outcome effect is negative (i.e., d < 0). One may want to test the robustness of the
baseline ATT with respect to a confounder that is more dangerous (i.e., a confounder U
such that both d > 0 and s > 0) but still behaves like other relevant observable variables.
Let us run sensatt with the confounder U calibrated to mimic the constructed variable
young (i.e., being below the 75th centile of the age distribution):

. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p(young) comsup logit;

(output omitted )

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 1.00
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.97
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.75
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.72

The probability of having U=1 if T=1 (p1.) is equal to: 0.97
The probability of having U=1 if T=0 (p0.) is equal to: 0.73

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.

ATT estimation with simulated confounder
General multiple-imputation standard errors

ATT Std. Err. Out. Eff. Sel. Eff.

1593.286 3006.708 1.149 19.643

Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

Here the simulated ATT is lower, but the potential confounder kills only by a small
amount the baseline estimate. The sensitivity analysis is telling us that the existence
of a confounder U behaving like the young dummy might account for nearly 5% of the
baseline estimate: (1,668 − 1,593)/1,668 = 0.05. Since the outcome is continuous, one
may want to check whether the sensitivity conclusions depend on the fact that U is
simulated on the basis of the binary transformation of Y that uses the mean of the
outcome (see sec. 3). In the following Stata output, U is again simulated to mimic
young, but the parameters pij refer to the binary transformation of Y that uses the
median of the outcome. Moreover, the between-imputation standard error is shown, to
use only the variability of the simulated ATT across iterations.
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. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p(young) ycent(50) se(bse) comsup logit;

(output omitted )

ATT estimation with simulated confounder
Between-imputation standard errors

ATT Std. Err. Out. Eff. Sel. Eff.

1526.429 867.942 1.179 21.676

Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

Using the median instead of the mean of Y does not affect the results of the sensitivity
analysis, since the simulated ATT is close to the previous one. On the contrary, the
between-imputation standard error is much lower than the default one. However, the
sensitivity conclusions should be drawn more as the comparison of the point estimates
than as the significance of the simulated ATT.

The above simulations convey an image of robustness of the nearest neighbor match-
ing estimate equal to 1,668. This image, however, might be produced by the particular
characteristics of the covariates used to simulate U (U74 and young), rather than by
the fact that the baseline ATT is robust to possible deviations from the CIA. Similar
sensitivity conclusions, however, arise from the second simulation exercise proposed in
section 4. For brevity, I do not calculate a table like the one suggested in the discussion
about the search for killer confounders. Two simple examples will suffice. Assume that
you wish to simulate U according to the following parameters: p11 = 0.8, p10 = 0.8,
p01 = 0.6, and p00 = 0.3. We expect this potential confounder to represent a real threat
for the baseline estimate and to be associated with large selection and outcome effects
(s = 0.34 > 0 and d = 0.3 > 0).

. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p11(0.8) p10(0.8) p01(0.6) p00(0.3) se(bse) comsup logit;

(output omitted )

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 0.80
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.80
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.60
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.30

The probability of having U=1 if T=1 (p1.) is equal to: 0.80
The probability of having U=1 if T=0 (p0.) is equal to: 0.46

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.
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ATT estimation with simulated confounder
Between-imputation standard errors

ATT Std. Err. Out. Eff. Sel. Eff.

1588.864 1093.235 3.502 9.757

Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

On the contrary, even though U is associated with large selection and outcome effects
(Λ = 9.8 and Γ = 3.5), the simulated ATT is still close to the baseline estimate. But
when U is simulated so that it displays a large outcome effect, the ATT is driven closer
to zero:

. sensatt RE78 T age age2 educ educ2 marr black hisp RE74 RE75 RE742 RE752
> blackU74, p11(0.8) p10(0.8) p01(0.6) p00(0.1) se(bse) comsup logit;

(output omitted )

*** THIS IS THE SIMULATED ATT ESTIMATION (WITH THE CONFOUNDER U).

The probability of having U=1 if T=1 and Y=1 (p11) is equal to: 0.80
The probability of having U=1 if T=1 and Y=0 (p10) is equal to: 0.80
The probability of having U=1 if T=0 and Y=1 (p01) is equal to: 0.60
The probability of having U=1 if T=0 and Y=0 (p00) is equal to: 0.10

The probability of having U=1 if T=1 (p1.) is equal to: 0.80
The probability of having U=1 if T=0 (p0.) is equal to: 0.36

The program is iterating the ATT estimation with simulated confounder.
You have chosen to perform 100 iterations. This step may take a while.

ATT estimation with simulated confounder
Between-imputation standard errors

ATT Std. Err. Out. Eff. Sel. Eff.

274.110 2640.772 13.220 31.413

Note: Both the outcome and the selection effect
are odds ratios from logit estimations.

To let U explain about 84% of the baseline estimate ((1,668 − 274)/1,668 = 0.84),
such a confounder must have a large effect on both the outcome and the selection into
treatment. More precisely, U must increase the relative probability of having Y above
the mean (T = 1) by a factor greater than 13 (31). The presence among unobservable
factors of a confounder with similar characteristics can be considered implausible in the
present setting (where the set of matching variables W is rich). These simple simulation
exercises support the robustness of the matching estimate.
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