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Abstract. Item response theory models are measurement models for categorical
responses. Traditionally, the models are used in educational testing, where re-
sponses to test items can be viewed as indirect measures of latent ability. The test
items are scored either dichotomously (correct–incorrect) or by using an ordinal
scale (a grade from poor to excellent). Item response models also apply equally for
measurement of other latent traits. Here we describe the one- and two-parameter
logit models for dichotomous items, the partial-credit and rating scale models for
ordinal items, and an extension of these models where the latent variable is re-
gressed on explanatory variables. We show how these models can be expressed as
generalized linear latent and mixed models and fitted by using the user-written
command gllamm.

Keywords: st0129, gllamm, gllapred, latent variables, Rasch model, partial-credit
model, rating scale model, latent regression, generalized linear latent and mixed
model, adaptive quadrature, item response theory

1 Introduction

A latent variable is a characteristic that is not directly observable. Examples include
intelligence, happiness, satisfaction, and attitudes. Latent variables can be measured
indirectly through their effects on observable indicators, such as items in achievement
tests or psychological questionnaires.

Item response theory (IRT) provides statistical models for the relationship between
item responses and the latent variable. Unfortunately, Stata and other traditional sta-
tistical packages, such as SAS and SPSS, do not provide commands specifically for IRT

model estimation. In Stata, one can use clogit for conditional maximum-likelihood es-
timation of the fixed-effect logistic model and xtlogit for marginal maximum-likelihood
estimation of the one-parameter logistic model. The user-written command raschtest

(Hardouin 2007) uses these commands as well as gllamm for fitting IRT models and
obtaining related fit statistics and graphs. However, this command cannot be used for
ordinal response models. This article shows how the binary logit models for dichoto-
mous items and the partial-credit and rating scale models for ordinal items can be
placed within the generalized linear latent and mixed modeling (GLLAMM) framework
and fitted by using the Stata program gllamm (see Rabe-Hesketh, Skrondal, and Pickles

c© 2007 StataCorp LP st0129



314 Estimating parameters with gllamm

[2004a] and Rabe-Hesketh and Skrondal [2005] for the graded response model). We also
show how the models can be extended by regressing the latent variable on explanatory
variables.

2 IRT models

2.1 One- and two-parameter logistic models

The Rasch model (Rasch 1960, 1961) is the most well-known IRT model for dichotomous
responses. It was first proposed by Georg Rasch and further developed by Wright (1977)
and Fischer (1995). In the Rasch model, the probability of a correct or positive response
for item i by person n is modeled as a function of an item parameter, δi, representing
item difficulty, and a person parameter, θn, representing the person’s magnitude of the
latent trait:

Pr(xin = 1|θn) =
exp(θn − δi)

1 + exp(θn − δi)

The model is referred to as a one-parameter logistic (1PL) model because there is
one parameter, δi, per item. For achievement tests, the latent trait is often referred to
as person ability. An appealing property of the model is that persons and items are
placed on a common scale. The probability of a correct response increases with person
ability (for a given item) and decreases with item difficulty (for a given person) and
equals 1/2 when the person ability equals the item difficulty.

Birnbaum (1968) introduced the two-parameter logistic (2PL) model, which includes
a slope parameter, λi, in addition to the intercept parameter δi:

Pr(xin = 1|θn) =
exp {λi(θn − δi)}

1 + exp {λi(θn − δi)}
(1)

The slope parameter λi is referred to as a discrimination parameter because it deter-
mines how well an item discriminates among different trait levels (at least, for θn near
δi). The terms in the curly braces are sometimes written as (λiθn − βi), where βi is
equivalent to λiδi in (1). In the alternative formulation, the item difficulty is represented
by βi/λi. In both the 1PL and 2PL models, it is usually assumed that θn ∼ N(0, ψ). In
the 2PL model, either ψ or λ1 is set to 1 for identification.

2.2 Partial-credit model

The partial-credit model (PCM; Masters 1982) is an extension of the Rasch model to
polytomous items with ordered response categories 0, 1, . . . ,mi for item i.
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The PCM specifies the probability of responding in the jth category of item i for
person n as a function of the person ability θn and step parameters δij (j > 0)

Pr(xin = j|θn) =
exp

∑j
l=0(θn − δil)∑mi

k=0 exp
∑k

l=0(θn − δil)
j = 0, 1, . . . ,mi

where
∑0

l=0(θn − δil) = 0. This is a special case of a multinomial logit model, namely,
an adjacent category logit model (Agresti 2002) with

ln
Pr(xin = j|θn)

Pr(xin = j − 1|θn)
= θn − δij

The parameter δij is known as the step difficulty associated with category j of item i.
It represents the added difficulty when moving the step from category j− 1 to category
j (Embretson and Reise 2000; Wilson 2004).

A 2PL PCM (Muraki 1992) can also be specified by including a slope parameter, λi,
that allows each item to have a different discrimination.

2.3 Rating scale model

The rating scale model (RSM; Andrich 1978) is a special case of the PCM. It is appropriate
if the mi = m response categories have the same meaning for all items and assumes
that the differences in the step difficulties for different categories are the same for all
items.

The RSM structures the step difficulties of main effects δi of items i and τj of response
categories j (j > 0):

Pr(xin = j|θn) =
exp

∑j
l=0 {θn − (δi + τl)}∑m

k=0 exp
∑k

l=0 {θn − (δi + τl)}
j = 0, 1, . . . ,m

where
∑0

l=0 {θn − (δi + τl)} = 0. Interpretation of the model parameters depends on
the choice of constraints for τj . Traditionally, the constraint

∑
l τl = 0 is used so that

δi represents the scale value (Wright and Masters 1982) of item i, reflecting its overall
difficulty relative to other items. Then τj (j = 1, 2, . . . ,m) is the threshold parameter
(Wright and Masters 1982) of category j, representing the location of the jth step of
each item relative to its scale value. An alternative constraint is τ1 = 0, so that δi
represents the first step difficulty for item i and τj (j = 1, 2, . . . ,m) represents the extra
step difficulty of subsequent steps compared with the first step. The generalized RSM

includes a slope parameter, λi.

(Continued on next page)
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3 IRT models in the GLLAMM framework

3.1 GLLAMM framework for IRT models

GLLAMMs (Rabe-Hesketh, Skrondal, and Pickles 2004a; Skrondal and Rabe-Hesketh
2004) are a class of multilevel latent variable models. We will not describe the full
framework here. For IRT models, we require only the response model, two levels of
nesting, and a latent variable. Here the vector of linear predictors for person n can be
written as

νn = Xnβ + θnZnλ (2)

where Xn and Zn are design matrices, β and λ are corresponding vectors of parameters,
and θn is a latent variable.

In the 1PL and 2PL models, νn represents the vector of log odds for items i = 1, . . . , I
and person n. In the PCM and RSM, νn represents the vector of the logarithms of the
numerators of the models for items i = 1, . . . , I and response categories j = 1, . . . ,mi.

In the next section we show how specific IRT models are parameterized by giving the
required form of the design matrices Xn and Zn. The columns of these design matrices
correspond directly to the variables needed to fit the models with gllamm.

3.2 1PL and 2PL

In the 1PL and 2PL models, the vector of linear predictors νn represents the log odds of a
correct response. Under the framework in (2), the 1PL model for, say, four dichotomous
items is written as

2
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In the 2PL model, slope or discrimination parameters λi (i = 1, 2, 3, 4) are introduced
with λ1 set to 1 for identification:
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3.3 Partial-credit model

In the PCM, the linear predictors νijn represent the logarithms of the numerators of the
response probabilities:

Pr(xin = j|θn) =
exp(νijn)∑mi

k=0 exp(νikn)
j = 0, 1, . . . ,mi
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Consider first the numerator νijn:
when j = 0, νi0n = 0
when j = 1, νi1n = 0 + (θn − δi1)
when j = 2, νi2n = 0 + (θn − δi1) + (θn − δi2) = −δi1 − δi2 + 2θn

when j = 3, νi3n = 0 + (θn − δi1) + (θn − δi2) + (θn − δi3) = −δi1 − δi2 − δi3 + 3θn

Since each response probability is a function of all νijn (j = 0, . . . ,mi) in the de-
nominator, the data must be expanded so that each original response is represented
by mi + 1 rows in the expanded dataset. For two polytomous items, each with four
response categories (m1 = m2 = 3), the PCM is parameterized as
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A 2PL PCM has a different Zn matrix followed by a loading vector:
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3.4 Rating scale model

For two polytomous items each with four response categories, the RSM has the following
matrix form:
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In the 2PL RSM, the Zn matrix and the loading vector are the same as for the 2PL

PCM.

4 gllamm

The gllamm command runs in Stata and performs maximum likelihood estimation for
GLLAMMs by using adaptive quadrature (Rabe-Hesketh, Skrondal, and Pickles 2002;
2005). Here we introduce gllamm commands and options relevant to the estimation of
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item response models. Users can refer to the gllamm manual (Rabe-Hesketh, Skrondal,
and Pickles 2004a) for a full description of its commands and options.

4.1 Syntax

Below is the gllamm syntax with all options needed for fitting IRT models.

gllamm depname explnames, i(varname)
[
family(famname) link(linkname)

noconstant eqs(eqname) geqs(eqnames)

expanded(varname1 varname2 o) weightf(wtname) nip(#) adapt trace
]

depname gives the name of the response variable. Item responses must be stacked into
one response variable before estimation.

explnames gives the names of explanatory variables that form the columns of Xn.

4.2 Options

i(varname) specifies the variable that defines the clusters (i.e., persons in the IRT

models).

family(famname) specifies the conditional distribution of the response given the lin-
ear predictor as one of the exponential family of distributions, such as binomial,
poisson, and gamma. The default is family(gaussian).

link(linkname) specifies the link function linking the linear predictor to the conditional
expectation of the response. Available link functions include logit, probit, ologit,
oprobit, and mlogit.

noconstant omits the constant in the fixed part so that Xn has as many columns as
there are explanatory variables.

eqs(eqname) specifies an equation that defines the columns of Zn. The equation
must be defined before running gllamm with an eq command (See appendix A of
Rabe-Hesketh and Skrondal (2005) for more information about the eq command).

geqs(eqname) specifies an equation for a regression of the latent variable on explanatory
variables.

expanded(varname1 varname2 o) indicates that the data have been expanded to have
one row for each response category. varname1 labels each item–person combination
identifying the groups of linear predictors that contribute to the same denominators.
varname2 is an indicator for the chosen category identifying the linear predictor that
should contribute to the numerator. o tells the program to estimate only one set
of regression coefficients for the explanatory variables (not a separate set for each
response category).
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weightf(wtname) specifies the stub for variables (wtname1, wtname2, etc.) that con-
tain frequency weights. The suffixes in the variable names determine at what level
each weight applies. If only some of the weight variables exist, the other weights are
assumed to be equal to 1. When many observations have the same response pattern,
collapsing the data and using weights can speed up the estimation.

nip(#) specifies the number of integration points to be used for evaluating the integral.
The default is nip(8).

adapt requests adaptive rather than ordinary quadrature.

trace displays the parameter estimates in each iteration.

4.3 Examples

The data we use for dichotomous models are from an article (Thissen, Steinberg, and
Wainer 1993, 71) that examined student spelling performance on four words: infidelity,
panoramic, succumb, and girder. The sample includes 285 male and 374 female un-
dergraduate students from the University of Kansas. Each item was scored as either
correct or incorrect.

The data we use for ordinal models are from the 38th round of the State Survey
conducted by Michigan State University’s Institute for Public Policy and Social Research
(2005). The survey was administered to 949 Michigan citizens from May 28 to July 18,
2005, by telephone. The focus of the survey included charitable giving and volunteer
activities of Michigan households. Five questions measured the public’s faith and trust
in charity organizations. Respondents were asked to indicate to what degree they agree
with the following five statements:

• “Charitable organizations are more effective now in providing services than they
were 5 years ago.”

• “I place a low degree of trust in charitable organizations.”

• “Most charitable organizations are honest and ethical in their use of donated
funds.”

• “Generally, charitable organizations play a major role in making our communities
better places to live.”

• “On the whole, charitable organizations do not do a very good job in helping those
who need help.”

The questions have four response categories corresponding to “strongly agree”,
“somewhat agree”, “somewhat disagree”, and “strongly disagree”. For this article,
we coded responses from 0 to 3, with larger scores indicating less favorable views of
charities.
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1PL and 2PL models

We use the spelling data to illustrate the gllamm command for the binary logistic item
response models. Below is a listing of the first six rows of data. i1 to i4 are the
outcomes (1, correct; 0, incorrect) for the four spelling words and male is a dummy
variable for being a male.

. use spelling

. list in 1/6, clean

male i1 i2 i3 i4 wt2
1. 0 0 0 0 0 29
2. 1 0 0 0 0 22
3. 0 0 0 0 1 7
4. 1 0 0 0 1 10
5. 0 0 0 1 0 6
6. 1 0 0 1 0 1

The data have been collapsed, with wt2 containing the frequency weights for each
response–gender combination. For example, 29 females and 22 males spelled all four
words incorrectly; seven females and 10 males could spell only the fourth word, girder,
correctly.

To use gllamm, you must stack item responses into one response vector. First, we
generate a new variable pattern as an identifier for each response–gender combination.
Then variables i1 to i4 are stacked into a response variable, score, with pattern and
item identifying the subject n and the item i, respectively. This layout corresponds to
the vector νn in section 3.2.

. gen pattern=_n

. reshape long i, i(pattern) j(item)
(output omitted )

. rename i score

. list in 1/8, clean

pattern item male score wt2
1. 1 1 0 0 29
2. 1 2 0 0 29
3. 1 3 0 0 29
4. 1 4 0 0 29
5. 2 1 1 0 22
6. 2 2 1 0 22
7. 2 3 1 0 22
8. 2 4 1 0 22

Next four dummy variables, d1 to d4, are created for the items. These dummies are
then changed to their negatives, negd1 to negd4, which constitute the columns of the
design matrix Xn in section 3.2.

. tab item, gen(d)
(output omitted )

. forvalues i=1/4 {
2. generate negd‘i’=-d‘i’
3. }



X. Zheng and S. Rabe-Hesketh 321

The first four rows of negd1 to negd4 are below.

. list negd1-negd4 in 1/4, clean

negd1 negd2 negd3 negd4
1. -1 0 0 0
2. 0 -1 0 0
3. 0 0 -1 0
4. 0 0 0 -1

1PL model. We can now fit the one-parameter model with the command below. The
weight() option specifies the stub wt; gllamm interprets wt2 as level 2 weights, meaning
that they apply to the entire level 2 cluster—here, person.

. gllamm score negd1-negd4, i(pattern) link(logit) family(binom) weight(wt)
> nip(15) nocons adapt trace

(output omitted )

gllamm model

log likelihood = -1564.0028

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

negd1 -1.698033 .1250384 -13.58 0.000 -1.943103 -1.452962
negd2 -.6628738 .1053714 -6.29 0.000 -.869377 -.4563496
negd3 1.080796 .1111877 9.72 0.000 .8628717 1.298719
negd4 -.1596644 .1018936 -1.57 0.117 -.3593719 .0400434

Variances and covariances of random effects

***level 2 (pattern)

var(1): 1.5424502 (.23150165)

. estimates store onepl

After fitting the model, we store the estimates for later use in likelihood-ratio tests. The
coefficients of negd1 to negd4 in the output are the estimated item difficulties δ̂i. As
indicated by the four estimates, the spelling of infidelity is the easiest and the spelling
of succumb is the most difficult. The level 2 variance represents the variance of student
abilities and is estimated as 1.54 with a standard error of 0.23.

Figure 1 shows item characteristic curves (ICCs) describing the relationship between
ability levels and probabilities of passing each item. The values of θn where the curves
cross the 0.5 probability line are the estimated item difficulties. The figure is produced
using the following command:

. twoway (function Infidelity=invlogit(x-[score]negd1), range(-6 6))
> (function Panoramic =invlogit(x-[score]negd2), range(-6 6) lpatt("."))
> (function Succumb =invlogit(x-[score]negd3), range(-6 6) lpatt("-"))
> (function Girder =invlogit(x-[score]negd4), range(-6 6) lpatt("_"))

where [score]negdi (i = 1, 2, 3, and 4) accesses the estimate δ̂i.
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Figure 1: ICCs of the four spelling items
with the Rasch (1PL) model
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Figure 2: ICCs of the four spelling items
with the 2PL model

2PL model. The 2PL dichotomous model involves a vector, λ, of item loadings. eq

defines an equation for the columns of the corresponding design matrix Zn. The equation
is then included in the gllamm command by using the eqs() option:

. eq loading: d1-d4

. gllamm score negd1-negd4, i(pattern) eqs(loading) link(logit) family(binom)
> weight(wt) nip(15) nocons adapt trace

(output omitted )

gllamm model

log likelihood = -1563.2096

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

negd1 -1.580291 .1411275 -11.20 0.000 -1.856896 -1.303686
negd2 -.6844128 .1198053 -5.71 0.000 -.9192267 -.4495988
negd3 1.101213 .1368125 8.05 0.000 .833065 1.36936
negd4 -.1629568 .1049209 -1.55 0.120 -.3685981 .0426845

Variances and covariances of random effects

***level 2 (pattern)

var(1): .99850086 (.39317103)

loadings for random effect 1
d1: 1 (fixed)
d2: 1.3470427 (.38213122)
d3: 1.3026963 (.35903712)
d4: 1.316772 (.36213004)

. estimates store twopl

The coefficients of d1 to d4 under loadings for random effect 1 represent the
estimated loadings of the four items. The estimates agree with those of previous studies
that suggested that the four items have similar discrimination (Thissen, Steinberg, and
Wainer 1993). The following likelihood-ratio test confirms this finding:
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. lrtest onepl twopl

Likelihood-ratio test LR chi2(3) = 1.59
(Assumption: onepl nested in twopl) Prob > chi2 = 0.6625

The ICCs of the four items with the 2PL model are given in figure 2 and are plotted
using the following command:

. twoway
> (function Infidelity=invlogit(x-[score]negd1), range(-6 6))
> (function Panoramic =invlogit([pat1_1l]d2*x-[score]negd2), range(-6 6) lpatt("."))
> (function Succumb =invlogit([pat1_1l]d3*x-[score]negd3), range(-6 6) lpatt("-"))
> (function Girder =invlogit([pat1_1l]d4*x-[score]negd4), range(-6 6) lpatt("_"))

Users can find out how to refer to parameters by displaying the matrix of the esti-
mates:

. matrix list e(b)

e(b)[1,8]
score: score: score: score: pat1_1l: pat1_1l:
negd1 negd2 negd3 negd4 d2 d3

y1 -1.5802912 -.68441276 1.1012126 -.16295682 1.3470427 1.3026963

pat1_1l: pat1_1:
d4 d1

y1 1.316772 .99925034

PCM

We use the charity data to illustrate the gllamm command for the PCM and RSM. The
data are first collapsed so that there is one row per unique response pattern, with a
weight variable, wt2, indicating the number of people for each response pattern.

. use charity, clear

. gen one=1

. collapse(sum) wt2=one, by(ta1-ta5)

. gen id=_n

. list in 1/2, clean

ta1 ta2 ta3 ta4 ta5 wt2 id
1. 0 0 0 0 0 27 1
2. 0 0 0 0 1 5 2

Then the five columns of item responses are stacked into one response variable, ta.
The id variable is the cluster identifier that labels each observation.

(Continued on next page)
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. reshape long ta, i(id) j(item)
(output omitted )

. list in 1/10, clean

id item ta wt2
1. 1 1 0 27
2. 1 2 0 27
3. 1 3 0 27
4. 1 4 0 27
5. 1 5 0 27
6. 2 1 0 5
7. 2 2 0 5
8. 2 3 0 5
9. 2 4 0 5
10. 2 5 1 5

After item responses are stacked into one response variable, we create a new variable,
obs, to identify each item–person combination for the PCM. The data are then expanded
to have one row for each response category, as shown in section 3.3.

. drop if ta==.
(122 observations deleted)

. gen obs=_n

. expand 4
(5394 observations created)

. sort id item obs

. list in 1/8, clean

id item ta wt2 obs
1. 1 1 0 27 1
2. 1 1 0 27 1
3. 1 1 0 27 1
4. 1 1 0 27 1
5. 1 2 0 27 2
6. 1 2 0 27 2
7. 1 2 0 27 2
8. 1 2 0 27 2

Next we generate the variable x to contain all possible scores (0, 1, 2, 3) for each
item–person combination. The variable chosen specifies the response category the
people actually selected. The variable iti is a dummy for the ith item.

. by obs, sort: gen x = _n-1

. gen chosen = ta == x

. tab item, gen(it)
(output omitted )
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The first eight rows of the resulting data are below.

. list id-it2 in 1/8, clean

id item ta wt2 obs x chosen it1 it2
1. 1 1 0 27 1 0 1 1 0
2. 1 1 0 27 1 1 0 1 0
3. 1 1 0 27 1 2 0 1 0
4. 1 1 0 27 1 3 0 1 0
5. 1 2 0 27 2 0 1 0 1
6. 1 2 0 27 2 1 0 0 1
7. 1 2 0 27 2 2 0 0 1
8. 1 2 0 27 2 3 0 0 1

The variables corresponding to the design matrix Xn for the PCM given in section 3.3
are generated as follows:

. forvalues i=1/5 {
2. forvalues g=1/3 {
3. gen d‘i’_‘g’ = -1*it‘i’*(x>=‘g’)
4. }
5. }

. list d1_1-d2_3 in 1/8, clean

d1_1 d1_2 d1_3 d2_1 d2_2 d2_3
1. 0 0 0 0 0 0
2. -1 0 0 0 0 0
3. -1 -1 0 0 0 0
4. -1 -1 -1 0 0 0
5. 0 0 0 0 0 0
6. 0 0 0 -1 0 0
7. 0 0 0 -1 -1 0
8. 0 0 0 -1 -1 -1

The PCM is then fitted to the data by using the following commands. eq defines
an equation corresponding to the columns of the design matrix Zn. This equation is
specified using the eqs() option. The expand() option tells the program that the data
have been expanded to one row for each possible response category. The variable obs

indicates which linear predictors need to be combined for the denominator of the PCM,
and the dichotomous variable chosen picks out the linear predictor that goes into the
numerator.

(Continued on next page)
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. eq slope: x

. gllamm x d1_1-d5_3, i(id) eqs(slope) link(mlogit) expand(obs chosen o)
> weight(wt) adapt trace nocons

(output omitted )

gllamm model

log likelihood = -5209.5824

x Coef. Std. Err. z P>|z| [95% Conf. Interval]

d1_1 -1.122041 .0965448 -11.62 0.000 -1.311265 -.9328167
d1_2 1.157892 .0985121 11.75 0.000 .964812 1.350972
d1_3 1.887521 .166362 11.35 0.000 1.561458 2.213584
d2_1 -.8315028 .1088378 -7.64 0.000 -1.044821 -.6181846
d2_2 -.2690148 .0899575 -2.99 0.003 -.4453284 -.0927013
d2_3 1.835945 .1250195 14.69 0.000 1.590911 2.080979
d3_1 -1.239309 .0944551 -13.12 0.000 -1.424437 -1.05418
d3_2 1.421748 .1005407 14.14 0.000 1.224692 1.618804
d3_3 1.853314 .172 10.78 0.000 1.516201 2.190428
d4_1 -.3146175 .0811645 -3.88 0.000 -.4736969 -.155538
d4_2 2.013949 .1264109 15.93 0.000 1.766189 2.26171
d4_3 1.844851 .2147872 8.59 0.000 1.423876 2.265826
d5_1 -.6076893 .0928491 -6.54 0.000 -.7896701 -.4257084
d5_2 .6538114 .0952031 6.87 0.000 .4672168 .8404061
d5_3 1.643881 .1413931 11.63 0.000 1.366756 1.921007

Variances and covariances of random effects

***level 2 (id)

var(1): .78617553 (.07393701)

. estimates store pcm

The coefficient of di j is the estimated step difficulty δ̂ij for item i and category j.
To create category probability curves (CPCs) for each item, we first generate a latent
scale variable, trait1, that increases in equal steps from −4 to 4. With the us() and
mu options, the gllapred command calculates conditional probabilities given the latent
variable trait1.

. quietly egen N=max(id)

. generate trait1 = (-4) + (id-1)*(4-(-4))/(N-1)

. gllapred prob1, mu us(trait)

The CPCs for item 4 under the PCM are plotted using the following command and
are given in figure 3:
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. twoway (line prob1 trait1 if x==0, sort)
> (line prob1 trait1 if x==1, sort lpatt("."))
> (line prob1 trait1 if x==2, sort lpatt("-"))
> (line prob1 trait1 if x==3, sort lpatt("_")) if item==4,
> legend(order(1 "strongly agree" 2 "somewhat agree"
> 3 "somewhat disagree" 4 "strongly disagree"))

Category 1, represented by the first curve from the left, is most likely to be observed
among low-trait respondents, and category 4, represented by the last curve, is most
likely to be observed among high-trait respondents. The value of the latent trait where
the probability curves for adjacent categories j− 1 and j intersect is the estimated step
parameter δ̂4j , the coefficient of d4 j in the PCM output.
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Figure 3: CPCs for item 4 under the PCM
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Figure 4: CPCs for item 4 under the RSM

The 2PL PCM uses a different Zn matrix, as shown in section 3.3, which can be
generated as follows:

. forvalues i=1/5 {
2. gen x_it‘i’=x*it‘i’
3. }

. sort id item x

. list x_it1 x_it2 in 1/8, clean

x_it1 x_it2
1. 0 0
2. 1 0
3. 2 0
4. 3 0
5. 0 0
6. 0 1
7. 0 2
8. 0 3

The gllamm command for the 2PL PCM is

. eq load: x_it1-x_it5

. gllamm x d1_1-d5_3, i(id) eqs(load) link(mlogit) expand(obs chosen o)
> weight(wt) adapt trace nocons

(output omitted )
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RSM

The design matrix Xn for the RSM has fewer columns than the one for the PCM. We first
generate the columns of the matrix that correspond to the common step parameters.

. gen step1 = -1*(x>=1)

. gen step2 = -1*(x>=2)

. gen step3 = -1*(x>=3)

The columns for the item scale parameters are generated within a loop:

. foreach var of varlist it* {
2. gen n‘var’ = -1*‘var’*x
3. }

We now look at the design matrix Xn for items 1 and 2, as given in section 3.4.

. sort id item x

. list nit1 nit2 step2 step3 in 1/8, clean

nit1 nit2 step2 step3
1. 0 0 0 0
2. -1 0 0 0
3. -2 0 -1 0
4. -3 0 -1 -1
5. 0 0 0 0
6. 0 -1 0 0
7. 0 -2 -1 0
8. 0 -3 -1 -1

We then fit the RSM by using the following gllamm command:

. eq slope: x

. gllamm x nit1-nit5 step2 step3, i(id) eqs(slope) link(mlogit)
> expand(obs chosen o) weight(wt) adapt trace nocons

gllamm model

log likelihood = -5293.9307

x Coef. Std. Err. z P>|z| [95% Conf. Interval]

nit1 -.8765313 .0671063 -13.06 0.000 -1.008057 -.7450053
nit2 -1.447597 .0723549 -20.01 0.000 -1.58941 -1.305784
nit3 -.8178617 .0658133 -12.43 0.000 -.9468534 -.68887
nit4 -.2076768 .0632331 -3.28 0.001 -.3316115 -.0837422
nit5 -.9511855 .0669995 -14.20 0.000 -1.082502 -.8198689
step2 1.80703 .0720486 25.08 0.000 1.665818 1.948243
step3 2.801625 .1008877 27.77 0.000 2.603888 2.999361
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Variances and covariances of random effects

***level 2 (id)

var(1): .77909796 (.07350611)

. estimates store rsm

The 2PL RSM shares the same design matrix, Zn, as the 2PL PCM. The gllamm

command for fitting the 2PL RSM is

. eq load: x_it1-x_it5

. gllamm x nit1-nit5 step2 step3, i(id) eqs(load) link(mlogit)
> expand(obs chosen o) weight(wt) adapt trace nocons

(output omitted )

In the RSM output, the coefficient of niti is the estimated step parameter δ̂i for the
first step of item i. The coefficient of stepj is the estimated additional difficulty τ̂j for
the step from j − 1 to j (j = 2, 3), whereas τ1 is constrained to 0 for all items. Table 1
shows the step difficulty estimates for items 1 and 2 on the basis of the PCM and the
RSM.

Table 1: Step difficulty estimates for items 1 and 2, using the PCM and the RSM

PCM RSM

Item Step Step difficulty Estimate Step difficulty Estimate

1 1 δ11 −1.06 δ1 −0.90
2 δ12 1.09 δ1+τ2 −0.90+1.71
3 δ13 1.51 δ1+τ3 −0.90+2.61

2 1 δ21 −0.79 δ2 −1.37
2 δ22 −0.29 δ2+τ2 −1.37+1.71
3 δ23 1.76 δ2+τ3 −1.37+2.61

Variance 0.66 0.70

The CPCs for item 4 under the RSM are given in figure 4. This graph is produced
using the same commands as for the PCM.

Given that the RSM model is nested within the PCM, we use a likelihood-ratio chi-
squared test via the lrtest command to compare the models. The parameter con-
straints imposed by the RSM model are clearly rejected.

. lrtest rsm pcm

Likelihood-ratio test LR chi2(8) = 168.70
(Assumption: rsm nested in pcm) Prob > chi2 = 0.0000
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4.4 Model extensions

The structural model of the GLLAMM framework (Rabe-Hesketh, Skrondal, and Pickles
2004a) allows latent variables to be regressed on each other and observed covariates.
For a latent variable, the structural model becomes

θn = γ
′

wn + ζn (3)

where wn represents the vector of observed covariates with corresponding regression
parameter vector γ. The vector ζn represents the disturbances.

Latent regression item response model

The latent regression Rasch model (Verhelst and Eggen 1989; Zwinderman 1991) is a
1PL model including person properties as predictors of the latent variable. Similar
models have been presented by Mislevy (1987) for the 2PL model. For instance, the
covariate male in the spelling data is dummy coded with a 1 for males and 0 for females.
Under the structural model in (3), the latent variable θn is modeled as

θn = γmalen + ζn

where γ is the regression coefficient of male, indicating the difference in spelling ability
between male and female students.

We continue with our spelling data, using the following commands to fit the 1PL

model combined with the structural model. The eq command defines the equation for
the regression of the latent variable on male. The equation is then included in the
geqs() option:

. eq f1: male

. gllamm score negd1-negd4, i(pattern) link(logit) family(binom) weight(wt)
> geqs(f1) nip(15) nocons adapt trace

(output omitted )
gllamm model

log likelihood = -1562.4715

score Coef. Std. Err. z P>|z| [95% Conf. Interval]

negd1 -1.594569 .1366747 -11.67 0.000 -1.862447 -1.326692
negd2 -.5596258 .1199634 -4.66 0.000 -.7947497 -.3245018
negd3 1.184559 .1270645 9.32 0.000 .935517 1.4336
negd4 -.0563849 .1174847 -0.48 0.631 -.2866506 .1738808
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Variances and covariances of random effects

***level 2 (pattern)

var(1): 1.5297939 (.23035343)

Regressions of latent variables on covariates

random effect 1 has 1 covariates:
male: .24071446 (.13768983)

The output of the latent regression model is similar to that of the Rasch model. The
coefficients of d1 to d4 are the four estimated item parameters. The level 2 variance is
the variance of the disturbance or residual ζn and is estimated as 1.53. The estimate of
γ, the coefficient of male, indicates that male students outperform female students by
0.24 logits, with a standard error of 0.14 logits. A latent regression can also be combined
analogously with any of the other models described in this article.

EAP scores

After estimating the parameters of the IRT models with gllamm, we can run gllapred

to obtain expected a posteriori (EAP) scores for each individual, also known as posterior
means or empirical Bayes predictions.

For the IRT models in section 4.3 where no covariates are included, the EAP scores
are given by

E(θn|Yn) =

∫ ∞

−∞

θn

{
I∏

i=1

Pr(yin|θn)

}
g(θn)dθn

The following command with a u option produces posterior means and standard
deviations of the latent variable, returned in the variables thetam1 and thetas1, re-
spectively.

. gllapred theta, u

For the extended models in section 4.4, the above command provides the posterior
means and standard deviations of the disturbances ζn. To obtain the EAP estimates of
the latent variable θn, we use the fac option.

. gllapred theta, fac

5 Conclusion

In this article, we expressed IRT models within the GLLAMM framework and fitted
them with gllamm. GLLAMM also offers the flexibility to include extensions of the
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standard IRT models that fit within a nonlinear mixed-model framework (Rijmen et al.
2003; De Boeck and Wilson 2004). Besides IRT models, the GLLAMM framework en-
compasses a large variety of latent variable models, including generalized linear mixed
models, structural equation models, latent class models, and multilevel versions of these
models (Rabe-Hesketh, Skrondal, and Pickles 2004b). Moreover, GLLAMM can handle
continuous responses, unordered categorical responses, counts, rankings (Skrondal and
Rabe-Hesketh 2003), survival data, and mixed responses (Skrondal and Rabe-Hesketh
2004, chap. 14).
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