

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<http://ageconsearch.umn.edu>
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.

THE STATA JOURNAL

Editor

H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor

Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College
Rino Bellocchio
Karolinska Institutet, Sweden and
Univ. degli Studi di Milano-Bicocca, Italy
A. Colin Cameron
University of California–Davis
David Clayton
Cambridge Inst. for Medical Research
Mario A. Cleves
Univ. of Arkansas for Medical Sciences
William D. Dupont
Vanderbilt University
Charles Franklin
University of Wisconsin–Madison
Joanne M. Garrett
University of North Carolina
Allan Gregory
Queen's University
James Hardin
University of South Carolina
Ben Jann
ETH Zürich, Switzerland
Stephen Jenkins
University of Essex
Ulrich Kohler
WZB, Berlin

Stata Press Production Manager
Stata Press Copy Editor

Jens Lauritsen
Odense University Hospital
Stanley Lemeshow
Ohio State University
J. Scott Long
Indiana University
Thomas Lumley
University of Washington–Seattle
Roger Newson
Imperial College, London
Marcello Pagano
Harvard School of Public Health
Sophia Rabe-Hesketh
University of California–Berkeley
J. Patrick Royston
MRC Clinical Trials Unit, London
Philip Ryan
University of Adelaide
Mark E. Schaffer
Heriot-Watt University, Edinburgh
Jeroen Weesie
Utrecht University
Nicholas J. G. Winter
University of Virginia
Jeffrey Wooldridge
Michigan State University
Lisa Gilmore
Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions. This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting files understand that such use is made without warranty of any kind, by either the Stata Journal, the author, or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote free communication among Stata users.

The *Stata Journal*, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are registered trademarks of StataCorp LP.

Stata tip 45: Getting those data into shape

Christopher F. Baum
Department of Economics
Boston College
Chestnut Hill, MA 02467
baum@bc.edu

Nicholas J. Cox
Department of Geography
Durham University
Durham City, UK
n.j.cox@durham.ac.uk

Are your data in shape? That is, are they in the structure that you need to conduct the analysis you have in mind? Data sources often provide the data in a structure that is suitable for presentation but clumsy for statistical analysis. One of the key data management tools that Stata provides is `reshape`; see [D] `reshape`. If you need to modify the structure of your data, you should be familiar with `reshape` and its two functions: `reshape wide` and `reshape long`. In this tip, we discuss how two applications of `reshape` may be the solution to some knotty data management problems.

As a first example, consider this question posted on Statalist by an individual who has a dataset in the wide form:

country	tradeflow	Yr1990	Yr1991
Armenia	imports	105	120
Armenia	exports	90	100
Bolivia	imports	200	230
Bolivia	exports	80	115
Colombia	imports	100	105
Colombia	exports	70	71

He would like to reshape the data into long form:

country	year	imports	exports
Armenia	1990	105	90
Armenia	1991	120	100
Bolivia	1990	200	80
Bolivia	1991	230	115
Colombia	1990	100	70
Colombia	1991	105	71

We must exchange the roles of years and tradeflows in the original data to arrive at the desired structure, suitable for analysis as `xt` data. This exchange can be handled by two successive applications of `reshape`:

```
. reshape long Yr, i(country tradeflow)
(note: j = 1990 1991)
Data          wide    ->    long

```

Number of obs.	6	->	12
Number of variables	4	->	4
j variable (2 values)		->	_j
xij variables:			
	Yr1990 Yr1991	->	Yr

This transformation swings the data into long form with each observation identified by `country`, `tradeflow`, and the new variable `_j`, taking on the values of year. We now perform `reshape wide` to make imports and exports into separate variables:

```
. rename _j year
. reshape wide Yr, i(country year) j(tradeflow) string
(note: j = exports imports)
Data          long    ->    wide

```

Number of obs.	12	->	6
Number of variables	4	->	4
j variable (2 values)	tradeflow	->	(dropped)
xij variables:			
	Yr	->	Yreexports Yrimports

If we transform the data to wide form once again, the `i()` option contains `country` and `year`, as those are the desired identifiers on each observation of the target dataset. We specify that `tradeflow` is the `j()` variable for `reshape`, indicating that it is a `string` variable. The data now have the desired structure. Although we have illustrated this double-reshape transformation with only a few countries, years, and variables, the technique generalizes to any number of each.

As a second example of successive applications of `reshape`, consider the World Bank's World Development Indicators (WDI) dataset.¹ Their extract program generates a comma-separated value (CSV) database extract, readable by Excel or Stata, but the structure of those data hinders analysis as panel data. For a recent year, the header line of the CSV file is

```
"Series code","Country Code","Country Name","1960","1961","1962","1963",
"1964","1965","1966","1967","1968","1969","1970","1971","1972","1973",
"1974","1975","1976","1977","1978","1979","1980","1981","1982","1983",
"1984","1985","1986","1987","1988","1989","1990","1991","1992","1993",
"1994","1995","1996","1997","1998","1999","2000","2001","2002","2003","2004"
```

1. See <http://econ.worldbank.org>.

That is, each row of the CSV file contains a *variable* and *country* combination, with the columns representing the elements of the time series.²

Our target dataset structure is that appropriate for panel-data modeling, with the variables as columns and rows labeled by country and year. Two applications of `reshape` will again be needed to reach the target format. We first `insheet` (see [D] `insheet`) the data and transform the trilateral country code into a numeric code with the country codes as labels:

```
. insheet using wdiex.raw, comma names
. encode countrycode, generate(cc)
. drop countrycode
```

We then must address that the time-series variables are named `var4-var48`, as the header line provided invalid Stata variable names (numeric values) for those columns. We use `rename` (see [D] `rename`) to change `v4` to `d1960`, `v5` to `d1961`, and so on:

```
forv i=4/48 {
    rename v`i' d`1956+`i''
}
```

We now are ready to carry out the first `reshape`. We want to identify the rows of the reshaped dataset by both country code (`cc`) and `seriescode`, the variable name. The `reshape long` will transform a fragment of the WDI dataset containing two series and four countries:

```
. reshape long d, i(cc seriescode) j(year)
(note: j = 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972
> 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
> 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002
> 2003 2004)
Data                                wide    ->    long
_____
Number of obs.                      7    ->    315
Number of variables                 48   ->    5
j variable (45 values)              ->    year
xij variables:                      d1960 d1961 ... d2004  ->    d
_____
```

2. A variation occasionally encountered will resemble this structure, but with periods in reverse chronological order. The solution here can be used to deal with that problem as well.

```
. list in 1/15
```

	cc	seriesc~e	year	countryname	d
1.	AFG	adjnetsav	1960	Afghanistan	.
2.	AFG	adjnetsav	1961	Afghanistan	.
3.	AFG	adjnetsav	1962	Afghanistan	.
4.	AFG	adjnetsav	1963	Afghanistan	.
5.	AFG	adjnetsav	1964	Afghanistan	.
6.	AFG	adjnetsav	1965	Afghanistan	.
7.	AFG	adjnetsav	1966	Afghanistan	.
8.	AFG	adjnetsav	1967	Afghanistan	.
9.	AFG	adjnetsav	1968	Afghanistan	.
10.	AFG	adjnetsav	1969	Afghanistan	.
11.	AFG	adjnetsav	1970	Afghanistan	-2.97129
12.	AFG	adjnetsav	1971	Afghanistan	-5.54518
13.	AFG	adjnetsav	1972	Afghanistan	-2.40726
14.	AFG	adjnetsav	1973	Afghanistan	-.188281
15.	AFG	adjnetsav	1974	Afghanistan	1.39753

The rows of the data are now labeled by year, but one problem remains: all variables for a given country are stacked vertically. To unstack the variables and put them in shape for **xtreg** (see [XT] **xtreg**), we must carry out a second **reshape** that spreads the variables across the columns, specifying **cc** and **year** as the *i* variables and **seriescode** as the *j* variable. Since that variable has string content, we use the **string** option.

```
. reshape wide d, i(cc year) j(seriescode) string
(note: j = adjnetsav adjssavC02)
Data                                long    ->    wide
Number of obs.                      315    ->    180
Number of variables                  5    ->    5
j variable (2 values)              seriescode    ->    (dropped)
xij variables:                      d    ->    dadjnetsav dadjsavC02
.
.order cc countryname
.tsset cc year
    panel variable: cc (strongly balanced)
    time variable: year, 1960 to 2004
```

After this transformation, the data are now in shape for **xt** modeling, tabulation, or graphics.

As illustrated here, the **reshape** command can transform even the most inconvenient data structure into the structure needed for your research. It may take more than one application of **reshape** to get there from here, but it can do the job.