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Abstract. The generalized estimating equation (GEE) approach is a widely used
statistical method in the analysis of longitudinal data in clinical and epidemiolog-
ical studies. It is an extension of the generalized linear model (GLM) method to
correlated data such that valid standard errors of the parameter estimates can be
drawn. Unlike the GLM method, which is based on the maximum likelihood the-
ory for independent observations, the GEE method is based on the quasilikelihood
theory and no assumption is made about the distribution of response observations.
Therefore, Akaike’s information criterion, a widely used method for model selec-
tion in GLM, is not applicable to GEE directly. However, Pan (Biometrics 2001;
57: 120–125) proposed a model-selection method for GEE and termed it quasilike-
lihood under the independence model criterion. This criterion can also be used to
select the best-working correlation structure. From Pan’s methods, I developed
a general Stata program, qic, that accommodates all the distribution and link
functions and correlation structures available in Stata version 9. In this paper, I
introduce this program and demonstrate how to use it to select the best working
correlation structure and the best subset of covariates through two examples in
longitudinal studies.

Keywords: st0126, qic, Akaike’s information criterion, GEE, likelihood, model,
quasilikelihood under the independence model criterion

1 Introduction

The generalized estimating equation (GEE) approach (Liang and Zeger 1986) is a widely
used statistical method in the analysis of longitudinal data in clinical and epidemio-
logical studies (Diggle et al. 2002; Fitzmaurice et al. 2004). It specifies how the av-
erage of a response variable of a subject changes with covariates while allowing for
the correlation between repeated measurements on the same subject over time. The
focus of this method is the estimation of regression parameters that have a population-
average interpretation and the correlation structure is treated as a nuisance parame-
ter (Hardin and Hilbe 2003; Singer and Willett 2003; Weiss 2005). An attractive fea-
ture of this method is that, when the mean response is correctly specified, consistent
parameter estimates will be derived even if the correlation structure is misspecified.
The mean and variance of the response variable are usually specified by one of the
distribution functions in the exponential family (McCullagh and Nelder 1989).

c© 2007 StataCorp LP st0126



210 QIC program in GEE analyses

Essentially, GEE is an extension of the generalized linear model (GLM) (Nelder and
Wedderburn 1972) to correlated data such that valid standard errors of the parameter
estimates can be drawn. Correlated data are often encountered in clinical and epi-
demiological studies. For example, common cancers are known to be clustered within a
family because of possible underlying genetic risks (Cui et al. 2001a,b). Also, repeated
measures of the same subject in follow-up studies are likely to be correlated because
of the continuity of the measurement over time (Rabe-Hesketh and Skrondal 2005). To
take account of the correlation, a specification of a working correlation structure is re-
quired in GEE, which can be independence, exchangeable, autoregressive, stationary,
nonstationary, or unstructured specification in Stata version 9 (StataCorp 2005).

Unlike GLM, which is based on the maximum likelihood theory for independent
observations (McCullagh and Nelder 1989), the GEE method is based on the quasilike-
lihood theory (Wedderburn 1974), and no assumption is made about the distribution
of response observations. Therefore, some of the statistics derived under the likelihood
theory cannot be applied to GEE directly. For instance, Akaike’s information criterion
(AIC; Akaike 1974), a widely used method for model selection in GLM, is not applica-
ble to GEE. However, under appropriate modification of the AIC method, Pan (2001)
proposed a model-selection method for GEE and termed it quasilikelihood under the
independence model criterion (QIC). This criterion can also be used to select the best
working correlation structure in GEE analyses.

Although the QIC method was published in 2001 and included in Hardin and Hilbe
(2003), the application of this method in practice is relatively slow. One possible reason
is that as of this writing this method has not been included in any popular statistical
software. From Pan’s theory, I developed a general Stata program, qic, that accommo-
dates all the distribution and link functions and correlation structures available in Stata
version 9. The aim of this paper is to introduce this program and demonstrate how to
use it to select the best working correlation structure and the best subset of covariates
through two examples in longitudinal studies.

2 Methods

Denote y as the response variable and x a vector of covariates. Under GLM g(µ) = β ′x,
where g() is the link function and µ = E(y), the AIC is given by

AIC = −2LL + 2p

where LL is the log likelihood and p is the number of parameters in the model. Pan
(2001) modified the above formula and made an adjustment for the penalty term 2p for
GEE, deriving the QIC as

QIC = −2Q(µ̂; I) + 2trace(Ω̂−1
I V̂R) (1)

where I represents the independent covariance structure used to calculate the quasi-
likelihood. Here µ̂ = g−1(xβ̂) and g−1() is the inverse link function. The coefficient
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estimates β̂ and robust variance estimator V̂R are obtained from a general working co-
variance structure R. Another variance estimator Ω̂I is obtained under the assumption
of an independence correlation structure.

The QIC value in (1) can be used to select the best correlation structure and the best
fitting model in GEE analyses (Pan 2001). A correlation matrix with the smallest QIC

value is chosen as the preferred correlation structure. A subset of covariates with the
smallest QIC value is the preferred model. When trace(Ω̂−1

I V̂R) ≈ trace(I) = p, there is
a simplified version of QIC, called QICu (Pan 2001),

QICu = −2Q(µ̂; I) + 2p (2)

However, this simplified QICu cannot be applied to select the optimal working covariance
structure because of the assumption of asymptotic equivalence of Ω̂I and V̂R.

The quasilikelihood in model (1) and (2) is of the general form (Wedderburn 1974)

Q(µ) =

∫ µ

y

y − t

φV (t)
dt (3)

where φ is a dispersion parameter. The variance of the response observations is a
function of the mean µ and denoted as V (µ). The value of V (µ) is given in table 1
for some of the commonly used distributions in the exponential family. Substituting
V (µ) in (3) with the corresponding value in table 1, we can compute the value of the
quasilikelihood Q(µ), which is also listed in table 1.

Table 1: Variance and quasilikelihood functions for commonly used distributions in the
exponential family

Distribution V (µ) Q(µ)

Bernoulli µ(1 − µ) y ln( µ
1−µ ) + ln(1 − µ)

Normal 1 − 1
2

∑
(y − µ)2

Poisson µ y ln(µ) − µ

Gamma µ2 −(y/µ + ln(µ))

Negative binomial µ + µ2 y(ln(µ) − 2 ln(µ + 1))

Inverse Gaussian µ3 − y
2µ2 + 1

µ

From the above statistical theory, I developed a general Stata program, qic, to
calculate the QIC and QICu values in GEE analyses. This program was implemented in
Stata version 9.
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3 The qic program

3.1 Syntax

qic depvar
[
indepvars

] [
if

] [
in

] [
weight

] [
, i(varnamei) t(varnamet)

family(familyname) link(linkname) exposure(varname) offset(varname)

noconstant force corr(correlation) robust nmp rgf scale(x2 | dev | phi |#)

level(#) eform iterate(#) tolerance(#) nolog trace nodisplay
]

3.2 Description

The qic program calculates and displays the QIC and QICu values for a GEE model.
Here depvar is the name of the response variable and it must be specified after qic.
Other items are optional, including a list of independent variable names (denoted by
indepvars) and options related to GEE methods (such as i(varname i) and t(varnamet)
[see [XT] xtgee]). Specification of if and in statements is allowed.

Similar to the xtgee command, the panel ID variable can be specified using the
iis varnamei command before running qic or using the option i(varnamei) within
qic. Also, the time variable can be specified using command tis varnamet or option
t(varnamet). The qic command includes nearly all the options available in xtgee

except for the robust options because the variance ΩI has to be estimated without the
robust option and the variance VR estimated with the robust option. An underlined
part of an option may be used instead of the whole word.

In addition to calculating the QIC and QICu values, the qic program also calcu-
lates and displays the value of the trace of Ω̂−1

I V̂R to compare how close the value of
QICu approximates the value of QIC. When comparing two or more different correlation
structures for a specified distribution and link function, a correlation structure with
the smallest QIC is the preferred correlation structure. Usually the full model with all
available covariates is used in selecting the best correlation structure (Hardin and Hilbe
2003). Under the preferred correlation structure, a subset of covariates with the smallest
QIC will be the preferred model. Details of GEE-related options follow.

3.3 Options

i(varnamei) specifies varnamei as the panel ID variable.

t(varnamet) specifies varnamet as the time variable.

family(familyname) specifies the distribution of depvar. family(gaussian) is the
default, which corresponds to the Gaussian distribution.

link(linkname) specifies the link function. The default is the canonical link function
for the specified family().
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exposure(varname) requests that ln(varname) be included in the model with its coef-
ficient being constrained to 1.

offset(varname) requests that varname be included in the model with its coefficient
being constrained to 1. The exposure() and offset() options can be used in
Poisson regression models to reflect the different amount of exposure for which the
depvar events were observed.

noconstant specifies that the linear predicator has no intercept term and thus forces it
to pass through the origin on the scale defined by the link function.

force requests that estimation be forced even though t() is not equally spaced. It is rel-
evant only for correlation structures that require knowledge of t() and observations
to be equally spaced.

corr(correlation) specifies the within-subject correlation structure. The default is the
exchangeable correlation structure corr(exchangeable).

robust specifies that the Huber/White/sandwich estimator of variance be used in place
of the default GLS variance estimator. This produces valid standard errors even if
the correlations within group are not as hypothesized by the specified correlation
structure. It does, however, require that the model correctly specify the mean.
The resulting standard errors are thus labeled “Semi-Robust” instead of “Robust”.
Although there is no cluster() option, results are as if there were a cluster()

option and you specified clustering on i().

nmp specifies that the divisor N − P be used instead of the default N , where N is the
total number of observations and P is the number of coefficients estimated.

rgf specifies that the robust variance estimate be multiplied by (N −1)/(N −P ), where
N = # of observations and P = # of coefficients estimated. This option can be
used only with family(gaussian) when robust is either specified or implied by the
use of pweights. Using this option implies that the robust variance estimate is not
invariant to the scale of any weights used.

scale(x2 | dev |# | phi) overrides the default scale parameter of scale(1); see [R] es-

timation options.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.6 Specifying the width

of confidence intervals.

eform displays the exponentiated coefficients and associated standard errors and confi-
dence intervals.

iterate(#) specifies the maximum number of iterations allowed in the optimization.
It must be a positive integer. iterate(100) is the default.

tolerance(#) specifies the convergence criterion for the coefficient vector. When the
relative change in the coefficient vector between two consecutive iterations is less
than or equal to #, the optimization process is stopped. tolerance(1e-6) is the
default.
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nolog suppresses display of the iteration log.

trace specifies that the current estimates are printed at each iteration.

nodisplay suppresses display of the GEE tables during the calculation of Ω̂I and V̂R.

3.4 Saved results

qic saves the following in r():

Scalars
r(p) number of parameters r(trace) value of trace
r(qicu) value of QICu r(qic) value of QIC

Macros
r(family) probability distribution r(corr) correlation structure
r(link) link function

A list of standard saved e() results associated with execution of the xtgee command
with the specified correlation structure and the robust option can also be obtained by
using ereturn list (see [XT] xtgee).

4 Example 1

I demonstrate how to use the qic program to select the best fitting model through two
examples. The first example has a normal distribution and the second has a binomial
distribution. For simplicity, we do not give examples for other distributions here. Similar
procedures of applying qic can easily be extended to other distributions.

The first example comes from the National Longitudinal Survey of Labor Market
Experience (Center for Human Resource Research 1989). A subsample of 3,913 women
aged between 14 and 26 years who have completed their education with wages in excess
of $1/hour but less than $700/hour is used in this analysis (see [XT] xtgee). The
response variable in this example is a continuous variable ln wage, representing the
logarithm of the wage of each woman. Each individual has an identification number
denoted as idcode. The year of survey is denoted by variable year. Explanatory
variables that are used in this paper include grade, representing the current grade that
has been completed (ranging from 0–18); age, representing the age at the survey; and
south, representing whether a person comes from the south (1 if a person comes from
the south and 0 otherwise).

The first step is to choose the best working correlation structure. Because the
response outcome ln wage is a continuous variable, we use the normal distribution
and the identity link function, which are also the default choices of the qic program.
Therefore, we do not need to specify them explicitly in the qic command.

We first calculate the QIC and QICu values for the exchangeable correlation structure,
based on the full model with all covariates of interest age, grade, and south. The
output is displayed below, in which the first part corresponds to a GEE model with
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independence correlation matrix to calculate the Ω̂−1
I and the second part to a GEE

model with the specified correlation matrix to calculate the robust variance V̂R. The
last part gives the QIC and QICu values and displays the distribution and link function
and the correlation structure used in the program, plus the number of parameters in the
regression model. We can suppress display of the GEE tables by using the nodisplay

option (see Example 2).

. use nlswork2, clear
(National Longitudinal Survey. Young Women 14-26 years of age in 1968)

. qic ln_wage age grade south, i(idcode) t(year) corr(exchangeable)

Iteration 1: tolerance = 5.706e-14

GEE population-averaged model Number of obs = 16077
Group variable: idcode Number of groups = 3911
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: independent max = 9

Wald chi2(3) = 4957.31
Scale parameter: .1360754 Prob > chi2 = 0.0000

Pearson chi2(16077): 2187.68 Deviance = 2187.68
Dispersion (Pearson): .1360754 Dispersion = .1360754

ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0229159 .0007681 29.84 0.000 .0214105 .0244213
grade .068458 .0014044 48.75 0.000 .0657055 .0712105
south -.1563942 .0060314 -25.93 0.000 -.1682155 -.144573
_cons .2491559 .0234644 10.62 0.000 .2031664 .2951453

Iteration 1: tolerance = .09574304
Iteration 2: tolerance = .00291689
Iteration 3: tolerance = .00006597
Iteration 4: tolerance = 1.487e-06
Iteration 5: tolerance = 3.350e-08

GEE population-averaged model Number of obs = 16077
Group variable: idcode Number of groups = 3911
Link: identity Obs per group: min = 1
Family: Gaussian avg = 4.1
Correlation: exchangeable max = 9

Wald chi2(3) = 2098.45
Scale parameter: .1369477 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on idcode)

Semi-robust
ln_wage Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0257849 .0010161 25.38 0.000 .0237934 .0277763
grade .0700327 .0022904 30.58 0.000 .0655435 .0745218
south -.1316293 .009427 -13.96 0.000 -.1501058 -.1131527
_cons .1261871 .0347916 3.63 0.000 .0579968 .1943773
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QIC and QIC_u

Corr = exchangeable
Family = gau
Link = iden
p = 4
Trace = 9.687
QIC = 2221.083
QIC_u = 2209.709

Similarly, the QIC values for other correlation structures can be calculated; they
are summarized in table 2. The force option is used in the autoregressive, stationary,
and nonstationary correlation matrix because observations are not equally spaced. The
second-order stationary and third-order nonstationary correlation matrices are used be-
cause the first-order correlation model does not converge. The independence correlation
structure has the smallest QIC and thus is chosen as the preferred correlation matrix,
and the corresponding QICu value is also listed in table 2.

Under the independence correlation structure, we fit different models with different
subsets of covariates and find that the full model has the smallest QIC (marked in
boldface font) and thus is chosen as the best-fitting model to the data (see table 2). On
the basis of the approximate criterion QICu, the full model still has the smallest QICu

value and thus is chosen as the preferred model.

Table 2: QIC for model selection under normal distribution for the National Longitudinal
Survey data

Correlation Variable p Trace QIC QICu

Independent age, grade, south 4 11.05 2,209.78 2,195.68

Exchangeable age, grade, south 4 9.69 2,221.08
Autoregressive age, grade, south 4 10.74 2,217.03
Stationary3 age, grade, south 4 18.45 2,232.26
Nonstationary4 age, grade, south 4 26.55 2,252.88
Unstructured age, grade, south 4 9.46 2,227.71

Independent age 2 5.64 2,686.42 2,679.14
Independent grade 2 6.22 2,399.30 2,390.86
Independent south 2 6.09 2,732.60 2,724.42
Independent age, grade 3 8.36 2,297.22 2,286.50
Independent age, south 3 8.47 2,527.97 2,517.03
Independent grade, south 3 8.89 2,327.86 2,316.08

NOTE: Values in boldface indicate smallest QIC value.
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5 Example 2

This example also comes from the National Longitudinal Survey of Labor Market Expe-
rience (Center for Human Resource Research 1989). A part of 4,434 women with union
membership information from 1970 to 1988 is used in this analysis (see [XT] xtlogit).
The response variable in this example is a binary indicator, union, which equals 1 if a
person is a union member and 0 otherwise. For illustrative purpose, the same explana-
tory variables age, grade, and south as outlined in example 1 are used here again.

Because the response outcome union is a binary variable, we use the binomial
(Bernoulli) distribution and the probit link function in this analysis. To shorten the
qic command, iis idcode and tis year are used to declare the panel ID variable and
time variable before using the qic command. The nolog and nodisplay options are
used to suppress display of the iteration log and the GEE-related tables. The output of
the calculation is shown below.

. use union, clear
(NLS Women 14-24 in 1968)

. iis idcode

. tis year

. qic union age grade south, family(bin) link(probit) corr(exc) nolog nodisplay

QIC and QIC_u

Corr = exc
Family = bin
Link = probit
p = 4
Trace = 12.626
QIC = 27193.900
QIC_u = 27176.648

Similar calculations are conducted using other correlation structures, and details of
the analysis results are shown in table 3. The force option is used in the autoregressive,
stationary, and nonstationary correlation matrices because observations are not equally
spaced. The fifth-order nonstationary correlation matrix is used because the first four
orders’ correlation structures do not converge. The independence correlation matrix
has the smallest QIC and thus is chosen as the preferred correlation structure, and the
corresponding QICu value is also listed in table 3.

(Continued on next page)
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Table 3: QIC for model selection under binomial (Bernoulli) distribution probit link
function for the National Longitudinal Survey data

Correlation Variable p Trace QIC QICu

Independent age, grade, south 4 14.49 27,166.63 27,145.65

Exchangeable age, grade, south 4 12.63 27,193.90

Autoregressive age, grade, south 4 12.91 27,171.92

Stationary4 age, grade, south 4 24.77 27,201.77

Nonstationary5 age, grade, south 4 29.20 27,279.97

Unstructured age, grade, south 4 11.65 27,223.97

Independent age 2 6.15 27,714.61 27,706.31

Independent grade 2 8.96 27,625.40 27,611.47

Independent south 2 7.81 27,249.15 27,237.51

Independent age, grade 3 10.93 27,614.53 27,598.67

Independent age, south 3 9.77 27,219.26 27,205.72

Independent grade, south 3 12.57 27,185.96 27,166.82

NOTE: Values in boldface indicate smallest QIC value.

Under the independence correlation structure, we find that the full model has the
smallest QIC and thus is chosen as the preferred model (see table 3). The QICu criterion
also indicates that the full model is the most parsimonious.

6 Conclusion

In this paper, I introduced a new program, qic, for calculating the QIC and QICu

values for selecting the best correlation structure and the most parsimonious models in
GEE analyses. All the distribution and link functions and all the correlation structures
available in Stata version 9 can be specified in this program.

Although both QIC and QICu select the same model in the two examples presented
here, sometimes they select different models because QICu is just an approximation to
QIC. Furthermore, QICu cannot be used to select the best correlation structure. There-
fore, I recommend using QIC in practice especially when they select different models.

Other statistics, such as the Wald χ2 and deviance, are also produced by Stata in
fitting a GEE model. However, these statistics cannot be used for comparing nonnested
GEE models because they do not take into account the number of parameters in the
model. Therefore, they may give misleading conclusions for model selection in GEE

analyses. With the availability of this new qic program, I hope that more applications
of the QIC method can be seen in practice in the future.
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