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Abstract. Confounding is a major issue in observational epidemiological stud-
ies. This paper describes two postestimation commands for assessing confounding
effects. One command (confall) displays and plots all possible effect estimates
against one of p-value, Akaike information criterion, or Bayesian information crite-
rion. This computing-intensive procedure allows researchers to inspect the variabil-
ity of the effect estimates from various possible models. Another command (chest)
uses a stepwise approach to identify variables that have substantially changed the
effect estimate. Both commands can be used after most common estimation com-
mands in epidemiological studies, such as logistic regression, conditional logistic
regression, Poisson regression, linear regression, and Cox proportional hazards
models.

Keywords: st0124, confall, confgr, chest, epidemiological methods, confounding,
all possible effects, change in estimate

1 Introduction

Confounding is a bias introduced by the imbalanced distribution of extraneous risk
factors among comparison groups. The issue of assessing confounding effects has been
discussed in several papers, and various methods of controlling for confounding effects
have been proposed (Miettinen 1974, Schlesselman 1978, Greenland and Robins 1985,
Debanne and Sokol 1986, Greenland and Robins 1986, Grayson 1987, Weinberg 1993,
Schwartz and Coull 2003, Steenland and Greenland 2004, Sturmer et al. 2005).

A common practice for assessing confounding is to use either stratification or multiple
regression methods to compare the crude with adjusted effect estimates. However, such
comparisons, if possible, can be labor intensive because of many possible combinations
of potential confounders. It has been suggested that one should adjust for all variables
believed a priori to be potential confounders, regardless of their properties in the current
data. However, this approach sometimes can be subjective and lacks transparency.
Particularly, when the number of potential confounders is large and the sample size is
small, this approach can result in an estimate with poor precision. Like most model
searching methods, a stepwise regression procedure focuses on identifying the predictors
of the dependent variable. Some true confounders might not be identified, especially
when sample size is small. This paper presents two practical tools, Stata postestimation

c© 2007 StataCorp LP st0124



184 Confounding effects in epidemiological studies

commands, to help researchers better understand the presence and direction of possible
confounding effects in their data.

One is the all-possible-estimates method (confall) and the other is the change-in-
estimates method (chest). The all-possible-estimates method allows the user to inspect
possible estimates with many different adjustments. It is useful in understanding the
nature of confounding, but this method should not be used to select the final model
in a particular dataset. The change-in-estimates method selects variables in a stepwise
fashion according to the magnitude of the differences between adjusted and unadjusted
effect estimates. Inspecting changes in estimates, as more variables are adjusted, is
useful in understanding the nature of confounding and the joint confounding by multiple
variables.

2 The confall command displays and plots all possible

effect estimates

confall is a postestimation command that calculates and displays all possible effect
estimates (2n − 1 adjusted estimates plus one crude estimate, where n is the number of
total potential confounders). It plots all effect estimates against one set of the following
values: p-value, Akaike information criterion (AIC; Akaike 1974), Bayesian information
criterion (BIC; Schwarz 1978), confidence interval range, and the number of confounders
R2 or pseudo-R2 values from the corresponding models. The confgr command produces
the same plots as confall does, directly using the saved results.

This confall command can be used after most commonly used estimation com-
mands in epidemiological studies, such as logistic regression, conditional logistic regres-
sion, Poisson regression, linear regression, and the Cox proportional hazards model.

2.1 Syntax

confall varname
[
, eform

[
(string)

]
xis(string) table showvar(string)

lockterms(varlist) addaic addbic savefile(string) level(#) format(% fmt)

xformat(% fmt) mostn(#) nograph graph options
]

The varname is the exposure of interest, and all other independent variables in the
original model are potential confounders.

confgr using filename
[
, eform(string) xis(string) format(% fmt) addaic

addbic graph options
]

The filename is the result file saved using the savefile() option in the previous confall
command.
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2.2 Options

eform
[
(string)

]
reports exponentiated coefficients. string can be used to label these

exponentiated coefficients as odds ratios, hazard ratios, or relative-risk ratios, de-
pending on the estimation command. Confidence intervals are similarly transformed.

xis(string) specifies the x axis. The default is xis(pr), representing p-values from
likelihood-ratio tests. For xis(pr), the default x axis is rescaled according to X =
p{ln(0.5)/ln(0.05)}, although the original p-values are labeled on the axis. If the user
wants to plot the original scale, use option xis(pr). Alternatives include aic (AIC),
bic (BIC), r2 (R2 or pseudo-R2), n (number of confounders), and civ (confidence
interval range).

table shows a table of all effect estimates.

showvar(string) specifies a variable so that the effect estimates from models including
this particular variable are shown in a different symbol color (or pattern) from others.
This option is not available in confgr.

lockterms(varlist) specifies variables to be included in all models.

addaic and addbic mark the effect estimates from models with the minimum AIC and
BIC, respectively.

savefile(filename
[
, replace

]
) saves a dataset of all effect estimates as filename;

use replace to overwrite an existing filename.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.6 Specifying the width

of confidence intervals.

format(% fmt) specifies the display format for presenting effect estimates in the graph
and table. The default is format(%9.0g).

xformat(% fmt) specifies the display format for presenting values on the x axis. The
default is xformat(%9.0g).

mostn(#) specifies the maximum number of potential confounders allowed in a model.
This option can be useful in situations with many potential confounders.

nograph suppresses the graph.

graph options refers to any of the options documented in [G] graph twoway scatter.

2.3 Example 1: A positive association with some confounding

To examine the association between body mass index (BMI) and type 2 diabetes with
an example dataset, we performed logistic regressions with diabetes as the dependent
variable (1 for yes and 0 for no) and BMI as the exposure of interest. Variables con-
sidered potential confounders were age, sex, impaired glucose tolerance (IGT), serum
total cholesterol, diastolic blood pressure, C-reactive protein, gamma glutamyltrans-
ferase (GGT), albuminuria, smoking, and drinking.
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First, we run an estimation command (logistic).

. use diabdata

. logistic diabetes BMI Age Sex IGT ACR CRP Cholesterol DiastolicBP GGT
> Smoking Drinking

(output omitted )

Then we run the confall command, which specified BMI as the exposure of interest.
The lockterms specified include Age and Sex in all models. The x axis is p-value, which
is rescaled using the xis(pr) option. Because we have little interest in large p-values,
especially those values larger than 0.5, a relatively smaller space is allocated to the
same distance in larger p-values on the x axis. The original p-values are labeled on the
axis, but the actual axis is rescaled according to x = p.23137821 (or pln(0.5)/ln(0.05)). We
use options addaic and addbic to distinguish the effect estimates from “best” models
according to AIC and BIC, respectively.

. confall BMI, eform(Odds ratio between diabetes and BMI) addaic addbic xis(pr)
> lockterms(Age Sex) ylabel(0.8 1(.5)3) yline(1, lp(dash)) savefile(bmiresults)
fitting models........
drawing graph ...

Age Sex in all models
256 sets of confounders
Outcome variable: diabetes Exposure: BMI
file bmiresults.dta.saved

.8
1

1.
5

2
2.

5
3

O
dd

s 
ra

tio
 b

et
w

ee
n 

di
ab

et
es

 a
nd

 B
M

I

0 .0001 .001 .01 .05 .1 .2 .5 1
P value

Odds ratio between diabetes and BMI Min. AIC
Min. BIC Crude
Adjusted for all

Figure 1: All possible odds ratios and corresponding p-values from likelihood-ratio tests

After running the logistic regression with BMI and other potential confounding fac-
tors in the model, confall calculated all possible effect estimates and plotted those
estimates against p-values of the BMI variable in the corresponding models, as shown
in figure 1. All odds ratios between BMI and diabetes were significantly higher than
the null effect, above the horizontal null effect line (odds ratio = 1) and on the left
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side of the vertical α value line (α = 0.05). The odds ratios range from 1.8 to 2.28
with the adjustments for different subsets of potential confounding factors. Although
the differences among estimates indicated the presence of some degree of confounding,
such confounding would not alter the conclusion that higher BMI level is associated with
higher risk of diabetes. Even if the same data were analyzed by different researchers
using different model selection methods, their findings would probably be consistent.

Similarly, all possible effect estimates can be plotted against one of the other values.
Figure 2, produced using the following command, is an example of using AIC as the x
axis.

. confall BMI, eform(Odds ratio) addaic addbic xis(aic) lockterms(Age Sex)
> ylabel(0.8 1(.5)3) yline(1, lp(dash))
fitting models........
drawing graph ...

Age Sex in all models
256 sets of confounders
Outcome variable: diabetes Exposure: BMI
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Figure 2: All possible odds ratios and their corresponding AIC

Other features: all possible effect estimates can be displayed as a table in the Stata
Results window by using the table option. Those estimates can also be saved into a
Stata file by using the savefile(filename) option. We can use the showvar(string)

option to distinguish the effect estimates from the models with the specified variable
in them. In the above example, if the variable weight had mistakenly been added
as a potential confounder, we could identify large p-values from those models with
variable weight, as shown in figure 3. Since body weight is a part of the BMI calculation
(weight/height2), and to a certain degree measures the same construct (obesity) as BMI,
it should not be taken as a confounder.
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. logistic diabetes BMI Age Sex IGT ACR CRP Cholesterol DiastolicBP GGT
> Smoking Drinking weight

(output omitted )

. confall BMI, eform(Odds ratio) ylabel(0.8 1(.5)3) yline(1, lp(dash)) xis(pr)
> lockterms(Age Sex) showvar(weight)
fitting models.........
drawing graph ...

Age Sex in all models
512 sets of confounders
Outcome variable: diabetes Exposure: BMI
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Figure 3: All possible odds ratios and corresponding p-values

2.4 Example 2: No association with little confounding

Using the same dataset, we generated a random variable—RandomVar, which was taken
as the exposure of interest. We can use the confall command to produce a graph,
figure 4, of the odds ratios that are close to the noneffect line, and the p-values are
large. With a plot like this, researchers can confidently report their findings that there
is no evidence of association between this variable and diabetes.
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. logistic diabetes RandomVar BMI Age Sex IGT ACR CRP Cholesterol DiastolicBP
> GGT Smoking Drinking

. confall RandomVar, eform(Odds ratio) ylabel(0.8(.2)1.6) yline(1, lp(dash))
> xis(pr) lockterms(Age Sex)
fitting models.........
drawing graph ...

Age Sex in all models
512 sets of confounders
Outcome variable: diabetes Exposure: RandomVar
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Figure 4: All possible odds ratios and corresponding p-values

2.5 Example 3: Crude estimate shows significant association with
possible confounding

In this example, we used the same data as in that for the previous examples; however,
the variable GGT was taken as the exposure of interest. confall calculated and plotted
all possible odds ratios for diabetes corresponding to a 1–standard deviation increase in
GGT. As shown in figure 5, the crude and some adjusted odds ratios were significantly
higher than the null effect 1, whereas other adjusted odds ratios are closer to 1 with
large p-values without significant associations. The observed pattern in figure 5 indicates
the imbalanced distribution of other risk factors among participants with different GGT

values, as well as the possible presence of confounding.

(Continued on next page)
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. logistic diabetes BMI Age Sex IGT ACR CRP Cholesterol DiastolicBP GGT
> Smoking Drinking

. confall GGT, eform(Odds ratio) ylab(0.8(.2)1.6) yline(1, lp(dash)) xis(pr)
> lockterms(Age Sex) addaic addbic
fitting models........
drawing graph ...

Age Sex in all models
256 sets of confounders
Outcome variable: diabetes Exposure: GGT
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Figure 5: All possible odds ratios and corresponding p-values

confgr generates plots from a saved file. To save computing time, users can explore
different plots directly by using the saved file. For example, when generating figure 1, we
saved a file named bmiresults with the savefile(bmiresults) option. To reproduce
figure 1, we used the following command:

. confgr using bmiresults, eform(Odds ratio between diabetes and BMI) addaic
> addbic ylabel(0.8 1(.5)3) yline(1, lp(dash))

Using the same saved file, we can also reproduce figure 2:

. confgr using bmiresults, xis(aic) eform(Odds ratio between diabetes and BMI)
> addaic addbic ylabel(0.8 1(.5)3) yline(1, lp(dash))

3 The chest command displays and plots the change-in-
effect estimates

The change-in-estimates method has been suggested in several epidemiology textbooks
(Kleinbaum, Kupper, and Morgenstern 1982; Rothman and Greenland 1998). I previ-
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ously wrote a program to perform this task (Wang 2000), particularly for assessing
multiple confounders. chest is a similar postestimation command that is easier to
use than its previous version. It selects variables in a stepwise fashion. One potential
confounder at a time is included in the model by using either a forward or backward
strategy. At step 1, using the forward strategy, the variable is included in the model
because its adjustment causes the largest change in the effect measurement. At step 2,
the variable that causes the largest change among the remaining variables is included.
This process continues until all variables are added in the model. Therefore, the chest

command takes much less computing time than the confall command does. Instead
of fitting 2n models in confall, chest needs only to fit 1 + 2 + 3 + · · · + n models.

3.1 Syntax

chest varname
[
, eform

[
(string)

]
lockterms(varlist) format(% fmt) mostn(#)

backward vertic level(#) nograph graph options
]

3.2 Options

eform
[
(string)

]
reports exponentiated coefficients. string can be used to label these

exponentiated coefficients as odds ratios, hazard ratios, or relative-risk ratios, de-
pending on the estimation command. Confidence intervals are similarly transformed.

lockterms(varlist) specifies variables to be included in all models.

format(% fmt) specifies the display format for presenting effect estimates in the graph
and table. The default is format(%9.0g).

mostn(#) specifies the maximum number of potential confounders allowed in a model.
This option is not available with the backward option.

backward specifies a backward selection method. The default is a forward selection
method.

vertic specifies a vertical spike plot. A horizontal spike plot is the default.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 20.6 Specifying the width

of confidence intervals.

nograph suppresses the graph.

graph options refers to any of the options documented in [G] graph twoway scatter.

(Continued on next page)
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3.3 Example 4: A positive association with some confounding

We can use the variable name BMI after chest to specify the exposure of interest. The
forward approach starts in a model without any potential confounding variables. In the
following example, the initial model includes only the exposure of interest (BMI) and
the variables (Age and Sex) specified by lockterms(varlist).

. logistic diabetes BMI Age Sex IGT ACR CRP Cholesterol DiastolicBP GGT
> Smoking Drinking

(output omitted )

. chest BMI, eform("Odds ratio between diabetes and BMI") lockterms(Age Sex)
> format(%6.2f) xline(1, lp(dash)) xlabel(.8 1(.5)3)
Change-in-estimate
logistic regression. Outcome: diabetes
number of obs = 714 Exposure: BMI

Variables
added Odds ratio b~ [95% Conf. Interval] Change, %

Initial model 2.25 1.82 2.78
+ACR 2.02 1.62 2.52 -9.95
+CRP 1.93 1.55 2.40 -4.71

+Cholesterol 1.85 1.48 2.31 -4.16
+IGT 1.80 1.43 2.26 -2.65

+Smoking 1.82 1.44 2.30 1.15
+GGT 1.82 1.44 2.30 0.23

+DiastolicBP 1.82 1.44 2.30 -0.05
+Drinking 1.82 1.44 2.31 0.03

Age Sex in all models

+Drinking

+DiastolicBP

+GGT

+Smoking

+IGT

+Cholesterol

+CRP

+ACR

Initial model
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ed

0.80 1.00 1.50 2.00 2.50 3.00
Odds ratio between diabetes and BMI

Figure 6: Odds ratio for diabetes corresponding to a 1–standard deviation increase in
BMI
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One variable that causes the largest change in the effect estimate among candidate
variables was added into the model until all potential confounding variables were en-
tered. On the other hand, the backward approach would have started with a full model,
and the least important confounder for the change in estimate would have been removed
from the model at each step until all potential confounders had been removed. We used
the forward selection method in this example to examine the association between BMI

and diabetes. After adding ACR and CRP, the odds ratio between BMI and diabetes be-
came smaller. Adding other variables made few changes in the effect estimate. Again,
the odds ratio between diabetes and BMI remains high at all steps (figure 6). Therefore,
the confounding effects from those variables would not alter the conclusion that higher
BMI is associated with a higher risk of diabetes.

3.4 Example 5: Crude estimate showing a significant association
with possible confounding

In this example, examining the association between GGT and diabetes, the odds ratio
changed substantially after adding two variables: Cholesterol and BMI (figure 7), sug-
gesting the crude association is more likely because of confounding from those variables.

. logistic diabetes BMI Age Sex IGT ACR CRP Cholesterol DiastolicBP GGT
> Smoking Drinking

(output omitted )

. chest GGT, forward eform("Odds ratio between diabetes and GGT")
> lockterms(Age Sex) format(%6.2f) xline(1, lp(dash)) xlabel(.8(.2)1.8)
Change-in-estimate
logistic regression. Outcome: diabetes
number of obs = 714 Exposure: GGT

Variables
added Odds ratio b~ [95% Conf. Interval] Change, %

Initial model 1.42 1.14 1.77
+Cholesterol 1.20 0.95 1.53 -15.44

+BMI 1.09 0.85 1.41 -9.03
+ACR 1.03 0.79 1.34 -5.59
+IGT 0.99 0.76 1.30 -4.05
+CRP 0.97 0.74 1.27 -2.14

+Drinking 0.96 0.73 1.28 -0.56
+Smoking 0.96 0.73 1.28 0.09

+DiastolicBP 0.96 0.73 1.28 -0.04

Age Sex in all models

(Continued on next page)
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+DiastolicBP

+Smoking

+Drinking
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Odds ratio between diabetes and GGT

Figure 7: Odds ratio for diabetes corresponding to a 1–standard deviation increase in
GGT

The chest command also displays a table, containing effect estimates, their 95%
confidence intervals, and the changes in percentage at all steps. Both the table and the
graph provide us information on the presence and direction of confounding as well as
the important confounding variables.

4 Comments

The two commands confall and chest are designed to help researchers understand the
uncertainty of effect estimates. When all possible effect estimates are similar, researchers
are confident with their conclusions regardless of the methods used for selecting a sat-
isfactory model. On the other hand, when effect estimates differ substantially, a careful
examination and identification of confounding factors are warranted.

Those programs are only tools to examine effect estimates from many possible mod-
els. Such examination can be time consuming if each model is fitted individually. How-
ever, those tools are not a substitute for carefully incorporating available knowledge to
select confounding factors at the design stage or for careful data analysis to identify an
appropriate nonlinear relationship.

Other important aspects such as chance and information (measurement) bias can
also influence the patterns of all-possible-estimates and change-in-estimates plots. The
commands can examine confounding effects only of variables that have been collected.
Confounding may exist from unmeasured variables even though both confall and chest

suggest no confounding from the variables included in the analysis.
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Adding a variable that measures the same construct as the exposure of interest or
is an intermediate between exposure and disease outcome can substantially distort the
true association. The confall or chest command will show a similar pattern as that
when confounding is present. However, this design issue should be addressed before
analysis.

Although this report used only logistic regression, the programs can be applied with
most commonly used estimation commands in epidemiological studies such as those
for the Cox proportional hazards model, Poisson, and conditional logistic regressions.
For both confall and chest, the exposure of interest can be either a continuous or
dichotomous variable, and potential confounding variables can be any type of variable.
Categorical potential confounding variables need to be identified using the Stata xi

command in the estimation command. When an interaction term is used, the interaction
term and main effect term are treated as separate terms. Programs for systematically
assessing interaction terms (effect modification) should be developed separately.
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