



***The World's Largest Open Access Agricultural & Applied Economics Digital Library***

**This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.**

**Help ensure our sustainability.**

Give to AgEcon Search

AgEcon Search  
<http://ageconsearch.umn.edu>  
[aesearch@umn.edu](mailto:aesearch@umn.edu)

*Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.*

*No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their employer(s) is intended or implied.*

# THE STATA JOURNAL

**Editor**

H. Joseph Newton  
Department of Statistics  
Texas A & M University  
College Station, Texas 77843  
979-845-3142; FAX 979-845-3144  
jnewton@stata-journal.com

**Editor**

Nicholas J. Cox  
Department of Geography  
Durham University  
South Road  
Durham City DH1 3LE UK  
n.j.cox@stata-journal.com

**Associate Editors**

Christopher F. Baum  
Boston College  
Rino Bellocchio  
Karolinska Institutet, Sweden and  
Univ. degli Studi di Milano-Bicocca, Italy  
A. Colin Cameron  
University of California–Davis  
David Clayton  
Cambridge Inst. for Medical Research  
Mario A. Cleves  
Univ. of Arkansas for Medical Sciences  
William D. Dupont  
Vanderbilt University  
Charles Franklin  
University of Wisconsin–Madison  
Joanne M. Garrett  
University of North Carolina  
Allan Gregory  
Queen's University  
James Hardin  
University of South Carolina  
Ben Jann  
ETH Zürich, Switzerland  
Stephen Jenkins  
University of Essex  
Ulrich Kohler  
WZB, Berlin

**Stata Press Production Manager**  
**Stata Press Copy Editor**

Jens Lauritsen  
Odense University Hospital  
Stanley Lemeshow  
Ohio State University  
J. Scott Long  
Indiana University  
Thomas Lumley  
University of Washington–Seattle  
Roger Newson  
Imperial College, London  
Marcello Pagano  
Harvard School of Public Health  
Sophia Rabe-Hesketh  
University of California–Berkeley  
J. Patrick Royston  
MRC Clinical Trials Unit, London  
Philip Ryan  
University of Adelaide  
Mark E. Schaffer  
Heriot-Watt University, Edinburgh  
Jeroen Weesie  
Utrecht University  
Nicholas J. G. Winter  
University of Virginia  
Jeffrey Wooldridge  
Michigan State University  
Lisa Gilmore  
Gabe Waggoner

**Copyright Statement:** The Stata Journal and the contents of the supporting files (programs, datasets, and help files) are copyright © by StataCorp LP. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions. This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting files understand that such use is made without warranty of any kind, by either the Stata Journal, the author, or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote free communication among Stata users.

The *Stata Journal*, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are registered trademarks of StataCorp LP.

## Stata tip 42: The overlay problem: Offset for clarity

James Cui

Department of Epidemiology and Preventive Medicine  
Monash University  
Melbourne, Australia  
james.cui@med.monash.edu.au

A common graphical problem often arises when one graph axis shows a discrete scale and the other shows a continuous scale. The discrete scale could, for example, represent distinct categories or a series of times at which data were observed. If we want to show several quantities on the continuous axis, matters may easily become confused—and confusing—when some of those quantities are close, especially if they are shown as confidence or other intervals. One answer to this overlap problem is to offset for clarity.

For example, in longitudinal studies, we often need to draw the mean response and 95% confidence intervals of a continuous variable for several categories over the follow-up period. However, the confidence intervals can overlap if the difference between the mean responses is small. Consider an example closely based on one in Rabe-Hesketh and Everitt (2004, 144–166). Mean and standard deviation of depression score, `dep` and `sddep`, have been calculated for each of five visits and two treatment groups, `visit` and `group`. The number of subjects in each combination of `visit` and `group` is also given as `n`, so that approximate 95% confidence limits `high` and `low` can be based on twice the standard error,  $sddep / \sqrt{n}$ . See table 1.

Table 1: Mean and standard deviation of depression score over visit

| visit | group    | dep   | sddep | n  | high  | low   |
|-------|----------|-------|-------|----|-------|-------|
| 1     | Placebo  | 16.48 | 5.28  | 27 | 18.51 | 14.45 |
| 1     | Estrogen | 13.37 | 5.56  | 34 | 15.28 | 11.46 |
| 2     | Placebo  | 15.89 | 6.12  | 22 | 18.50 | 13.28 |
| 2     | Estrogen | 11.74 | 6.58  | 31 | 14.10 | 9.38  |
| 3     | Placebo  | 14.13 | 4.97  | 17 | 16.54 | 11.72 |
| 3     | Estrogen | 9.13  | 5.48  | 29 | 11.17 | 7.09  |
| 4     | Placebo  | 12.27 | 5.85  | 17 | 15.11 | 9.43  |
| 4     | Estrogen | 8.83  | 4.67  | 28 | 10.60 | 7.06  |
| 5     | Placebo  | 11.40 | 4.44  | 17 | 13.55 | 9.25  |
| 5     | Estrogen | 7.31  | 5.74  | 28 | 9.48  | 5.14  |

To plot these results, we first use `clonevar` to make a copy of `visit` as `x`: that way, `x` inherits format and value labels as well as values from `visit`, not important here but useful in other problems. We copy so that the original `visit` remains unchanged. Adding and subtracting a small value depending on `group` offsets the two

groups. Clearly, the value here, 0.05, can be varied according to taste. If there had been three groups, we could have left one where it was and moved the other two. Because the number of groups is either even or odd, a symmetric placement around integer values on the discrete axis can thus be achieved either way.

```
. use depression
. clonevar x = visit
. replace x = cond(group == "Placebo", x - 0.05, x + 0.05)
x was byte now float
(10 real changes made)
. twoway (connected dep x if group == "Placebo", lpattern(solid) msymbol(D))
> (connected dep x if group == "Estrogen", lpattern(dash) msymbol(S))
> (rcap high low x if group == "Placebo")
> (rcap high low x if group == "Estrogen")
> , xlabel(1 2 3 4 5) ylab(5(5)20, format(%5.0f))
> xtitle("Visit") ytitle("Depression score")
> legend(pos(1) ring(0) col(1) order(1 "Placebo" 2 "Estrogen"))
```



Figure 1: Mean depression score and 95% confidence intervals over visit

## References

Rabe-Hesketh, S., and B. Everitt. 2004. *A Handbook of Statistical Analyses Using Stata*. 3rd ed. Boca Raton, FL: Chapman & Hall/CRC.