

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College

Rino Bellocco
Karolinska Institutet, Sweden and
Univ. degli Studi di Milano-Bicocca, Italy

A. Colin Cameron
University of California–Davis

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin–Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zürich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington–Seattle

Roger Newson
Imperial College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editor

Lisa Gilmore

Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are

registered trademarks of StataCorp LP.

The Stata Journal (2007)
7, Number 1, pp. 106–116

Mata Matters: Subscripting

William Gould
StataCorp

College Station, TX

wgould@stata.com

Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. Subscripting is the subject of this column.
Stata has three subscripting modes, and two of them are about more than accessing
an element of a vector or matrix. The advanced forms of subscripting can, by
themselves, be the solution to some problems.

Keywords: pr0028, Mata, subscripts, list subscripts, range subscripts, sampling
with replacement, permutation matrices and vectors

1 Introduction

In many Mata programs, dealing with matrices and vectors as a whole is enough, and
one never needs to reach inside them to access the individual elements. For instance,

. sysuse auto
(1978 Automobile Data)

. tomata

. mata
mata (type end to exit)

: mata describe

bytes type name and extent

8 real colvector displacement[74]
8 real colvector foreign[74]
8 real colvector gear_ratio[74]
8 real colvector headroom[74]
8 real colvector length[74]
8 string colvector make[74]
8 real colvector mpg[74]
8 real colvector price[74]
8 real colvector rep78[74]
8 real colvector trunk[74]
8 real colvector turn[74]
8 real colvector weight[74]

: one = J(74, 1, 1)

: X = (weight, foreign, one)

: y = mpg

: b = invsym(X’X)*X’y

c© 2007 StataCorp LP pr0028

W. Gould 107

: b
1

1 -.0065878864
2 -1.650029106
3 41.67970233

In the above, I use tomata to create Mata vectors from each variable in auto.dta. We
discussed that approach in a previous “Mata Matters” column (Gould 2006). tomata
is available from the SSC archives; type ssc install tomata. After that, you can type
help tomata to learn more about it.

Sometimes, however, you must access elements individually. Most people know that
you can type mpg[5] to access the fifth value of vector mpg or type X[3,4] to access
the (3, 4) element of X. But did you know that you could type mpg[(1\2\3\4\5)] or
mpg[(1,2,3,4,5)] to obtain a vector of the first five elements of mpg? Or mpg[1::5]
or mpg[1..5]? Or mpg[|1\5|]? Do you know the difference? Do you know when to
use each?

Did you know that you could type X[(1\2\3),(1,2,3)] to obtain the top 3 × 3
submatrix of X? Or X[1::3, 1..3]? Or X[|1,1 \ 3,3|]?

Did you know that you can use subscripting to implement sampling with replace-
ment? In one line?

Did you know that you can use subscripting as an alternative to permutation ma-
trices?

Subscripting is the subject of this column, and not just its simple forms.

2 Simple subscripting

There is not much to say about simple subscripting such as mpg[5] or X[3,4]. How
it works is pretty obvious. We do, however, need to discuss Mata’s use of the comma
because it plays a role in more advanced use and because I will confuse you if I try to
explain subscripts and commas all at once.

The comma has two or three meanings in Mata, depending on how you count. First,
the comma is the row-join operator. Typing 1,2,3 is like typing 1+2+3 except that the
operator is different. The comma operator joins rows. The plus operator adds.

Both are binary operators, meaning that they work on two and only two values.
When you type 1+2+3, that is interpreted to mean (1+2)+3: 1+2 is 3, and then 3+3 is
6. It is the same with the comma operator. When you type 1,2,3, that is interpreted
to mean (1,2),3: 1,2 is (1, 2), and (1,2),3 is (1, 2, 3).

108 Mata Matters: Subscripting

You can code x+2 to add 2 to x, assuming that x and 2 are conformable. Similarly,
you can code x,2 to join 2 to x, assuming that x and 2 are conformable. To add x
and y, you code x+y, and x and y might be scalars, vectors, or matrices. To join x
and y, you code x,y, and x and y might be scalars, vectors, or matrices. Regardless
of operator, the only requirement is that x and y be conformable. The conformability
rules are different for comma and plus, but so are the conformability rules different for
x+y and x*y. For the comma, the conformability rule is merely that x and y have the
same number of rows.

Parentheses are not required with the comma operator. Most of us type (1,2,3),
but we do that only because we are used to seeing the parentheses in mathematical
texts—1,2,3 means the same thing. Typing (1,2,3) instead of 1,2,3 is like typing
(1+2+3) instead of 1+2+3.

Comma differs from plus in one important way. In Mata, plus always means addition,
regardless of context. Comma, however, sometimes means the operator comma and
other times means the separator comma. If you code ttail(15,1.8), you are not
saying to join 15 and 1.8 to form (15, 1.8) and then pass that single vector to function
ttail(). You are saying to pass to ttail() two arguments, 15 and 1.8. Comma works
as a separator here.

Mata usually interprets comma to mean the operator. Whenever you are typing
function arguments, however, Mata switches its interpretation of comma to separator.
So once you have typed “ttail(”, commas after that separate one argument from
another until you close the parentheses. That is, commas separate unless you open
another parenthesis, and then Mata goes back to its usual comma-is-operator rule. Say
that we wanted the norm of 1,2,3. Were we to code norm(1,2,3), we would get an
error because norm() requires one or two arguments, and we just supplied three, namely,
1, 2, and 3. If we code norm((1,2,3)), however, we obtain the desired result, 3.7416.
The extra parentheses were required because we needed Mata to interpret comma as the
join operator, not as the argument separator. Were we to include yet another pair of
parentheses—were we to code norm(((1,2,3)))—that would also yield 3.7416. Mata
does not follow an alternating rule. Mata’s rule is that comma means join except in
argument lists, and inside such lists comma means separator unless it is inside one or
more parentheses.

There is one more part to the rule: comma is also interpreted as a separator inside
subscripting brackets [and]. When you type X[1,3], the comma separates the two
values, treating them like arguments of a function. Everything just said about functions,
commas, and parentheses also applies to subscripts, commas, and parentheses.

[] allows one or two arguments. One is enough for a vector; two are required for a
matrix. If y is a column vector, you can refer to x[3] or x[3,1]; it makes no difference.
If z is a row vector, you can refer to z[3] or z[1,3]; it makes no difference. You can
even apply this rule to scalars. If s is a scalar, you can refer to s, s[1], or s[1,1].

If X is a matrix, however, you must specify two arguments, such as X[3,2]. Referring
to X[3] by itself is not allowed. You can obtain the entire third row or the entire third

W. Gould 109

column of X by specifying the other subscript as missing value (.) as in X[3,.] or
X[.,3]. You can even omit the . (but not the comma) and type X[3,] or X[,3]. That
makes [] look pretty special, but it really is not. When you type [followed by , or
type , followed by], the Mata compiler fills in the . for you. What Mata in fact
compiles has the . in it.

Speaking of operators: [] is itself an operator. What distinguishes an operator from
mere notation is that operators can be applied to expressions. In Mata, invsym(X)[1,2]
returns the (1,2) element of the matrix returned by invsym(X). (invsym(X’X)*X’y)[1]
returns the first element of the vector calculated by invsym(X’X)*X’y.

3 List subscripting

[] allows vector arguments as well as scalar ones.

Let x be a row vector containing (7, 1, 6, 5). Then x[1] is 7. x[(2,4,3,1)] is
(1, 5, 6, 7). x[(2,4,3)] is (1, 5, 6). x[(2,4,4)] is (1, 5, 5). x[(2,4,4,3)] is (1, 5, 5, 6).

Let z be a column vector containing (7, 1, 6, 5)′. z[(2\4\3\1)] is (1, 5, 6, 7)′.
z[(2\4\3)] is (1, 5, 6)′. z[(2\4\4)] is (1, 5, 5)′. z[(2\4\4\3)] is (1, 5, 5, 6)′.

Whether the subscripts are row or column vectors does not matter; the shape of the
result is determined by what is being subscripted, not by the subscripts. x[(2,4,3,1)]
is (1, 5, 6, 7); so is x[(2\4\3\1)]. z[(2\4\3\1)] is (1, 5, 6, 7)′; so is z[(2,4,3,1)].
Code will be more readable, however, if you subscript row vectors with rows and column
vectors with columns.

Matrices may also be subscripted with vectors. Let X be (7,3,4 \ 5,9,1). Then
X[(1\2),(1,2)] is (7,3 \ 5,9). As in the other cases, whether the subscripting vec-
tors are rows or columns does not matter, so we could just as well code X[(1,2),(1,2)]
or X[(1\2),(1\2)] or even X[(1,2),(1\2)]. As with vectors, elements may be re-
peated with matrices. X[(1\1),(2,3)] is (3,4 \ 3,4). List subscripts can be used
to create matrices of lesser or greater dimension than the original. X[(1\1\2\2),
(1,2,3,3)] is (7,3,4,4 \ 7,3,4,4 \ 5,9,1,1 \ 5,9,1,1).

3.1 List subscripting for sampling with replacement

So what can you do with list subscripts? One use is sampling with replacement. Let
X be a data matrix, by which I mean that its rows are observations and its columns,
variables. Let’s say that we want to form a new data matrix Z containing observations
drawn randomly from X with replacement.

The solution is to manufacture an observation vector o, each element of which con-
tains an observation number from 1 to rows(X), each element drawn from the rectan-
gular distribution. Given o, we can then use subscripting to select those rows of X. That
some observation numbers (row numbers) may be repeated in o will mean just that
some rows will be repeated in the final result. If X has 10 rows, the code to produce o is

110 Mata Matters: Subscripting

o = ceil(10*uniform(10,1))

and code for a general number of rows is

o = ceil(rows(X)*uniform(rows(X),1))

Let us take a moment to focus on what is going on here. uniform() produces random
numbers between 0 and 1. Multiplying by rows(X) changes that range so that numbers
are between 0 and rows(X). We want integers from 1 to rows(X), so that requires
rounding up by using ceil().

Now that we have o, the statement to select the data is simply

Z = X[o,.]

We specify the second subscript as . (missing value) because we want all the columns.

We could even put the whole thing together into one statement,

Z = X[ceil(rows(X)*uniform(rows(X),1)), .]

If we wished, we could omit the period:

Z = X[ceil(rows(X)*uniform(rows(X),1)),]

In the above, we are drawing a sample of size N from data of size N . If we wanted to
draw a sample of size M—and whether M < N or M > N would not matter—the line
would become

Z = X[ceil(rows(X)*uniform(M,1)),]

This is a case of something difficult to program in Stata being trivial in Mata. The
following example is well worth understanding.

: X
1 2 3

1 4 7 9
2 2 12 3
3 8 8 7
4 3 4 1
5 1 7 9

: uniformseed(39483)

: o = ceil(5*uniform(5,1))

: o
1

1 2
2 1
3 5
4 5
5 2

: Z = X[o,]

W. Gould 111

: Z
1 2 3

1 2 12 3
2 4 7 9
3 1 7 9
4 1 7 9
5 2 12 3

Below I use these ideas to perform a bootstrap of the regression of mpg on weight
and foreign, using the automobile data:

. sysuse auto, clear
(1978 Automobile Data)

. mata:
mata (type end to exit)

: st_view(datay=., ., "mpg")

: st_view(dataX=., ., tokens("weight foreign"))

: n = rows(datay)

: dataX = dataX, J(n, 1, 1)

:
: N = 10000 // number of replications

: uniformseed(47686)

: b = J(N, 3, .)

: for (i=1; i<=N; i++) {
> o = ceil(n*uniform(n,1))
> y = datay[o,]
> X = dataX[o,]
> b[i,] = (invsym(X’X)*X’y)’
> }

: variance(b)
[symmetric]

1 2 3

1 3.10765e-07
2 .000172885 1.29395868
3 -.0010054771 -.645488234 3.355736044

These results are similar to those that would be produced in Stata by typing estat vce
after bootstrap, reps(10000): regress mpg weight foreign.

Beyond sampling with replacement, the example above (1) uses subscripts to index
view matrices (i.e., subscripting views is no different from subscripting ordinary matri-
ces) and (2) uses subscripts on the left of the equal sign (which puts results into b one
row at a time). Coding

: b = J(N, 3, .)
: for (...) {
: ...
: b[i,] = ...
: }

112 Mata Matters: Subscripting

executes much faster than

: for (...) {
: ...
: b = b \ ...
: }

The inferior concatenate solution requires that Mata continually reallocate more mem-
ory for b and then copy the previous contents into the new, larger matrix. The b[i,.]
= . . . solution simply fills in a row of a preallocated matrix.

3.2 List subscripting with permutation vectors

List subscripts are often used with permutation vectors. A permutation vector is much
like the observation vector o in the section above except that, rather than each element
being just an integer from 1 to n, it is a permutation of the integers from 1 to n, so
no rows (or columns) are duplicated or omitted. Permutation vectors arise in data
processing, where they are associated with sorting, and in matrix calculation, where
they are associated with pivoting.

Consider the vector y = (7\1\6\5). The permutation vector that would put y in
ascending order is p = (2\4\3\1) because y[p] is (1\5\6\7). If we simply needed to
put y into ascending order, easiest would be to code

: newy = sort(y, 1)

Let us assume, however, that going along with y, we have a matrix X, and its rows are in
the same order as y’s. Imagine that we need not only to put y into ascending order but
also to put X into the corresponding order. In the documentation on [M-5] sort(), there
is another function, order(), that claims to be the equivalent of sort(). But rather
than returning the sorted result, order() returns a permutation vector. The solution
to our problem is

: p = order(y, 1)
: newy = y[p]
: newX = X[p,]

In fact, we might even code

: p = order(y, 1)
: y = y[p]
: X = X[p,]

because given p, putting y and X back in their original order, should that be required,
is easy:

: y[p] = y
: X[p,] = X

That is, list subscripts can be used on the left of the assignment as well as on the
right, and putting the subscript on the left inverts the reordering. To understand why,

W. Gould 113

let’s consider the statement newy=y[p] and convince ourselves that the statement y[p]
= newy would undo the mapping. Consider the first element of p, and imagine that its
value is k. Then newy = y[p] assigns the kth value of y to the first element of newy.
Now consider the corresponding actions of y[p] = newy. For the first element of p, it
says to replace the kth element of y with the first element of newy. That exactly undoes
the first operation performed by newy=y[p]. The same logic applies to each remaining
element of p, assuming that the elements are unique, and it is uniqueness of the elements
that distinguishes a permutation vector from an observation vector.

Proof aside, anytime you are thinking about using sort(), think about using order()
instead. Having access to the permutation vector will often simplify the coding. By the
way, the entire code for sort(x, idx) reads return(x[order(x,idx),.]).

Permutation vectors also arise in various mathematical matrix functions, although
they are usually presented as permutation matrices in such cases. Permutation matrices
are orthogonal matrices that reorder the rows or columns of another matrix via multi-
plication. If P were a permutation matrix, PX would be a row permutation of X and
XP would be a column permutation. If X were 3 × k, the permutation matrix that
would place the rows in the order 2, 3, and 1 is

P =

0 1 0
0 0 1
1 0 0

This matrix is equivalent to the permutation vector p = (2\3\1), so rather than coding
P*A, one can code A[p,]. You should do this because A[p,] is faster and uses less
memory than P*A. If we were coding with the column permutation A*P , we would
code A[,p].

Permutation matrices interest us because reordering the rows and/or columns of a
matrix in some lengthy calculation can often improve numerical accuracy. One reorders
early on, holding on to P (or p); solves the reordered problem; and then uses P (or p)
to reorder the solution. For instance, LU decomposition is a popular ingredient in many
matrix calculations. LU decomposition involves finding a lower triangular matrix L and
an upper triangular matrix U such that A = LU . LU decomposition is seldom used in
that form outside textbooks. Mata’s LU decomposition routine lud() does not return
L and U such that A = LU ; it returns P , L, and U , such that A = PLU , where P
is a permutation matrix. This amounts to finding the LU decomposition of P−1A or,
as it is commonly written, P ′A, because P−1 = P ′ for permutation matrices. In any
case, lud() solves a permuted problem and tells you the permutation it used. Do not
immediately undo the reordering; the idea is to hold on to the reordering and then apply
it at the end to transform results. For instance, if you were using LU decomposition to
write a matrix inverter, you would proceed like this:

114 Mata Matters: Subscripting

A−1 = (PLU)−1 = U−1L−1P−1 = U−1L−1P ′

That is an easy enough calculation. You calculate U−1L−1 and then postmultiply by
P ′. But Mata did not return P ; it returned p, the permutation vector equivalent.
Postmultiplying by P ′ amounts to unpermuting the columns, so if you have R equal to
U−1L−1, you code

Ainv = J(rows(R), cols(R), .) // allocate Ainv
Ainv[,p] = R // and then fill in it

One cannot simply code Ainv[,p] = R if Ainv does not already exist because, to
subscript on the left, the matrix must already exist. What the matrix contains does not
matter since the statement Ainv[,p] = R will replace every element of it; Ainv need only
initially be of the proper dimension. In the code above, I filled Ainv in with missing
values. In practice, most people code

Ainv = R // allocate Ainv
Ainv[,p] = R // and then fill in it

because that takes less typing.

I am not nearly as facile with translating permutation matrix expressions into per-
mutation vector code as I seem. I usually refer to the matrix expression/vector code
equivalencies laid out in a table in [M-1] permutation. When I write numerical code
using something like LU decomposition, I just hold on to the permutation vector p
that Mata hands me early on. I think in permutation matrices and I often need to do
derivations to determine where and how the permutation matrix fits in at the last step.
When I get to that last step, I look at the table in [M-1] permutation and translate
the mathematics to the permutation vector equivalent.

If you look up a Stata function and find it available in two forms, with and without
permutation vectors, use the form with permutation vectors unless you are doing a
classroom exercise.

4 Range subscripts

In addition to standard subscripts A[i,j] and list subscripts A[i,j]—which are really
the same thing except that i and j are allowed to be vectors—Mata has range subscripts
A[|i,j|]. That is, range subscripts are specified in [| and |] brackets rather than [
and]. Range subscripts cannot do anything that list subscripts cannot do, so many
programmers ignore them. For certain problems, however, range subscripts execute
faster than list subscripts.

Say that you have 9,000 × 1,000 matrix A and you need to obtain the submatrix
containing its first 8,999 rows and 999 columns. One way you could code that is

B = A[1::8999, 1..999]

W. Gould 115

Better, however, would be to code

B = A[|1,1 \ 8999,999|]

Range subscripts are for obtaining (and filling in) submatrices and subvectors quickly.

Were you to code B = A[1::8999, 1..999], you would put Mata to a lot of work.
Let’s go through it:

1. Mata must produce 1::8999. :: is not notation; it is an operator, and 1::8999
produces the 8,999-element vector (1\2\...\8999).

2. Similarly, Mata must produce 1..999, a 999-element vector (1,2,...,999).

3. Finally, one element at a time, Mata must copy indexed-by-vector elements from
A into B. Mata performs 999 × 8,999 = 8,990,001 separate 8-byte moves.

When you code B = A[|1,1 \ 8999,999|], on the other hand, Mata proceeds dif-
ferently. Mata knows that you want to copy a submatrix of A to B and goes about it
efficiently. Mata stores matrices rowwise, so it performs 8,999 separate 999× 8 = 7,992
moves, one for each row. If you had coded B = A[|1,1 \ 5000,1000|], Mata would
have performed one 40,000,000-byte move. Mata always works out the most efficient
way to achieve your desire.

Range subscripts are efficient.

Never code x[5::1000] or x[5..1000]. Code x[|5\1000|].

Never code X[3, 5..100]. Code X[|3,5 \ 3,100|].

Never code X[5::100, 3]. Code X[|5,3 \ 100,3|].

Never code X[5::100, 3..20]. Code X[|5,3 \ 100,20|].

The commas and backslash inside range subscripts are not notation; they are the
row-join and column-join operators. Inside [| and |] you may specify a scalar, a 1× 2
or a 2 × 1 vector, or a 2 × 2 matrix. Thus, you may code

B = A[|1,1 \ 8999,999|]

or you may code

r = (1,1 \ 8999,999)
B = A[|r|]

Here are the rules and guidelines:

1. x[2] and x[|2|] mean the same thing. Which you use does not matter.

2. X[1,2] and X[|1,2|] mean the same thing. X[1,2] is faster unless, in a tight
loop, you are going to refer to X[1,2] often, in which case setting idx=(1,2) and

116 Mata Matters: Subscripting

then referring to X[|idx|] is faster. (If you are going to refer to X[1,2] often and
only on the right-hand side of expressions, coding s=X[1,2] and then referring to
s is even faster.)

3. To obtain elements from a vector, whether a row or column, you specify a 2 × 1
argument containing the range. x[|4\500|] specifies elements 4–500. What is
typed inside the brackets is a standard, make-a-2 × 1 expression. Thus, you can
code things like x[|k+1\length(x)-1|].

4. To obtain a submatrix, specify a 2× 2 argument. The first row specifies the index
of the top-left element. The second row specifies the index of the bottom-right
element. X[|a,b\c,d|] specifies the submatrix (a, b) through (c, d).

5. Range subscripts may be used on the left of the assignment to fill in pieces of
matrices. In particular, you may code x[|a\c|] = z and X[|a,b\c,d|] = Z. a, b,
c, and d may of course be expressions.

5 Conclusion

Mata has two kinds of subscripts, called list and range. You will not use range subscripts
often, but using them when extracting or filling in subvectors or submatrices is important
because they are so much faster.

List subscripts include the simple x[i] and X[i,j] to obtain scalar elements. List
subscripts also allow i and j to be vectors, and then vectors and matrices are returned.
Good style is that i be a column vector and j, a row vector, but Mata does not require
this.

Comma has two meanings in Mata. Usually comma is interpreted as the row-join
operator, but inside function argument lists, and inside list subscripts (but not range
subscripts), comma is interpreted as a separator. Within parentheses inside function
argument lists and inside list subscripts, the usual row-join interpretation is restored.

The comma inside range subscripts is the row-join operator, whereas the comma
inside list subscripts is a separator.

6 References
Gould, W. 2006. Mata Matters: Interactive use. Stata Journal 6: 387–396.

About the author

William Gould is President of StataCorp, head of development, and principal architect of Mata.

