

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher F. Baum
Boston College

Rino Bellocco
Karolinska Institutet, Sweden and
Univ. degli Studi di Milano-Bicocca, Italy

A. Colin Cameron
University of California–Davis

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin–Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zürich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington–Seattle

Roger Newson
Imperial College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California–Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
University of Virginia

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editor

Lisa Gilmore

Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are

registered trademarks of StataCorp LP.

The Stata Journal (2007)
7, Number 1, pp. 98–105

File filtering in Stata: Handling complex data
formats and navigating log files efficiently

John Eng
Department of Radiology and Radiological Science

Johns Hopkins University School of Medicine
Baltimore, MD

jeng@jhmi.edu

Abstract. A text file filter is a program that converts one text file into another on
the basis of a set of rules. For statistical applications, a text file filter can convert
data embedded in a complicated text file so that Stata can read and analyze it.
A text file filter can also automate the production of more user-friendly output
from long Stata log files. The file command lets you use text file filters in Stata.
This article reviews some key programming points for successful implementation
of such filters.

Keywords: dm0027, nullfilter, matchfilter, hyperlog, file, log, navigation, text,
filtering, data import, data export, HTML, hyperlink index

1 Introduction

File filters are a class of programs that finds use in many computing environments. The
typical file filter reads a text file line by line, performs an operation on each line, and
writes the resulting text to an output text file.

This article considers three examples of file filters that may interest Stata users.
The first filter, nullfilter, does nothing but copy the input file, but it provides a
complete template on which you can build useful filters. It also provides an opportunity
to review a few disparate and possibly underappreciated programming points that are
nevertheless key to successful implementation of filters in Stata.

The second filter, matchfilter, demonstrates how even a simple filter can allow
Stata to import data that are embedded in a file whose format is too complex to be
expressed in a dictionary file. Finally, the third filter, hyperlog, starts with a Stata
log file and generates a web browser–compatible hyperlinked index that improves the
efficiency of navigating the log file. Improving the navigation of potentially long log files
will probably interest many Stata users, so feel free to skip directly to the description
of hyperlog if the underlying principles of file filtering do not interest you.

2 Example 1: nullfilter

File filters are probably easiest to implement in scripting languages (e.g., Perl) that have
been optimized for text processing. But using such a program would be cumbersome

c© 2007 StataCorp LP dm0027

J. Eng 99

because it would not be integrated into Stata. There are also computer platform de-
pendencies (e.g., differences in new-line characters) to worry about in other languages.
If you remember a few key programming points, implementing a filtering program in
Stata actually is only slightly harder than in some other languages, although a Stata
implementation is much easier to use for those working in Stata. Also, cross-platform
differences in new-line characters are handled within Stata and are not a programming
concern.

The most basic file filter is one that performs no operation and simply copies the
input file:

program nullfilter
version 8.0
args inputFileName outputFileName dummy

** Check for correct number of arguments
if (("‘inputFileName’" == "") | ("‘outputFileName’" == "") /*

*/ | ("‘dummy’" != "")) error 198

** Open input and output files
tempname inputFileHandle
tempname outputFileHandle
file open ‘inputFileHandle’ using "‘inputFileName’", read text
file open ‘outputFileHandle’ using "‘outputFileName’", write text

** Null file filter
local lineCount = 0
file read ‘inputFileHandle’ textLine
while (r(eof) == 0) {

* File filter code goes here
file write ‘outputFileHandle’ ‘"‘macval(textLine)’"’ _n
local lineCount = ‘lineCount’ + 1
file read ‘inputFileHandle’ textLine

}

** Clean up
file close ‘inputFileHandle’
file close ‘outputFileHandle’
display as text "Copied ‘lineCount’ lines."

end

In Stata, file filters rely on the file command, which was introduced in Stata 8. The
command is well described in the Stata documentation (see [P] file), and authors have
presented examples to illustrate its usefulness in generating files for other applications
(Slaymaker 2005).

The null file filter’s program structure forms the basis for matchfilter and hyperlog.
All three programs demonstrate several key points to remember when implementing file
filters in Stata.

100 File filtering in Stata

2.1 Temporary names for file handles

Files opened with file open may remain open if the program aborts abnormally, which
may happen during program development or unanticipated situations after deployment.
If the file handle is created using tempname, Stata will close the file automatically when
the ado-file ends (normally or abnormally). This feature would always be desired in a
normal application:

tempname inputFileHandle
file open ‘inputFileHandle’ using "‘inputFileName’", read text
tempname outputFileHandle
file open ‘outputFileHandle’ using "‘outputFileName’", write text

2.2 Proper program looping

Stata does not appear to set the r(eof) end-of-file flag until after an attempt is made
to read past the end of the file. Therefore, two file read commands are needed, one
outside the beginning of the while loop and one inside:

file read ...
while (r(eof) == 0) {

.

.

.
file read ...

}

2.3 Compound double quotes

When creating or manipulating macros that contain arbitrarily complex text, such as
HTML, realize that such text can and often does contain double quotes, single quotes,
dollar signs, or other characters that Stata may consider special. Therefore, enclosing
such macros in compound double quotes is prudent; see [U] 18.3.5 Double quotes.
Using the macval() macro expansion function is important to prevent interpretation of
any embedded text that might look like a macro (see [U] 18.3.7 Macro increment
and decrement functions):

file write ‘outputFileHandle’ ‘"‘macval(textLine)’"’ _n

Here the macro textLine contains the text to be written to the file. Not taking these
precautions can cause nonspecific and potentially misleading error messages. Although
compound double quotes are probably a rare finding in most Stata programs, they
should be used copiously in file filters written for Stata. When accessing the value of a
macro that contains arbitrary text, the programmer should assume that both compound
double quotes and the macval() function are needed unless there is a specific reason to
do otherwise. This practice is important not only for instances of the file command
but also for any statement that manipulates the macro’s value.

J. Eng 101

2.4 String length limitation

If a file filter uses any Stata string functions, they are limited to 244 characters (80 in ear-
lier versions). A file filter using these functions would truncate filtered lines longer than
the maximum length. Fortunately, macro-extended functions (see [U] 18.3.4 Macros
and expressions) are available and do not have this limitation. For example, a file filter
producing an HTML output file might want to be fully compliant with HTML standards
by properly encoding all ampersands occurring in a macro:

local s = subinstr(‘"‘macval(s)’"’, "&", "&", .)

However, this filter would silently truncate the text at 244 characters. A better alter-
native would be to use the equivalent macro-extended function:

local s: subinstr local s "&" "&", all

The character limit also has a subtle effect on macro definition:

local s2 = ‘"‘s1’"’
local s2 ‘"‘s1’"’

The first statement evaluates ‘"‘s1’"’ as a string expression before assigning the
value to s2. Therefore, the string length limit applies, and the macro assignment may
result in truncation. The second statement specifies a macro copy operation that is not
subject to the string length limit.

2.5 Tab characters

Stata considers tabs and spaces to be different characters (as they are). This distinction
has consequences if the file filter uses certain string functions (trim, ltrim, rtrim, word,
wordcount) to process an input file containing tabs. The trim functions do not strip
leading or trailing tabs, and words separated by tabs are not considered separate words.
In this situation, these functions will work as expected if you first replace all tabs with
spaces:

local s = subinstr(‘"‘macval(s)’"’, char(9), " ", .)

This substitution is subject to the string length limitation.

2.6 Other general considerations for Stata file filters

In Stata, some file filters require no programming at all. Stata’s built-in filefilter
command (see [D] filefilter) searches and replaces simple string patterns in a file. This
command is adequate for many common tasks (e.g., replacing all tabs in a file with
spaces).

Stata 9 introduced Mata, a new compiled programming language within Stata that
has a syntax similar to the C programming language. Mata has file I/O and string

102 File filtering in Stata

functions that resemble those in the standard C library, so Mata would be well suited
for writing file filters. Because Mata is compiled, you can expect programs written in
it to run fast. However, the fundamental program logic of the file filter would be the
same.

3 Example 2: Simple match filter

Stata’s infile (see [D] infile (free format) and [D] infile (fixed format)) and
insheet (see [D] insheet) commands can handle many data input formats, but they
cannot extract data from sources with complex patterns. Suppose that we wish to ana-
lyze the time required to resolve computer support problems according to their priority
level. We have a log file from a problem tracking system:

**
Number: 8241
Title: Intermittent delays in new workstation version
Priority: Normal

10/6/2006 11:39 AM - Chris - Resolved
DNS settings were not populated on this machine causing several issues. After
we entered in all the new DNS settings, the machine worked normally.

10/6/2006 9:29 AM - Tom - Assign
Please describe which workstation was involved and any other software you were
using at the same time.

10/5/2006 7:42 PM - User - Create
Throughout the day in my office, the workstation had intermittent 5-10 second
delays.

**
Number: 8228
.
.
.

We are interested in the priority, creation date–time, and resolution date–time for
each problem. Because each observation can span a different number of lines, we must
first filter the file before it can be imported into Stata with infile. The filter copies
only the lines of interest and can be derived from nullfilter by enclosing the file
write statement inside an appropriate conditional:

if ((index(‘"‘macval(textLine)’"’, " - User - Create") > 0) /*
/ | (index(‘"‘macval(textLine)’"’, " - Resolved") > 0) /
*/ | (index(‘"‘macval(textLine)’"’, "Priority: ") == 1)) {
file write ‘outputFileHandle’ ‘"‘macval(textLine)’"’ _n
local lineCount = ‘lineCount’ + 1

}

J. Eng 103

For the first observation, this method produces the following output:

Priority: Normal
10/6/2006 11:39 AM - Chris - Resolved
10/5/2006 7:42 PM - User - Create

This output is readable by infile with an appropriate dictionary:

dictionary {
_lines(3)
_line(1)

_column(12)
str20 priority %s

_line(3)
str20 cdate %s
str20 ctime %s
str20 campm %s

_line(2)
str20 rdate %s
str20 rtime %s
str20 rampm %s

}

After infile, a series of Stata commands would be required to convert the strings
into numerical date and time values.

Stata 9 introduced new functions that support regular expressions. Regular expres-
sions are a notation system for expressing complex text patterns that includes a system
of wildcard matching (Turner 2005). These functions allow the matching rule of a file
filter to be based on something more sophisticated than a simple identical match.

4 Example 3: Generating a hyperlinked index for brows-
ing log files

A Stata do-file can generate a lot of output, so capturing this output in a log file is
convenient. But wading back and forth through a long log file to review and collect
results can be time consuming, especially if the do-file contains many steps or sequences
that look similar. Even when a do-file is organized and documented well, the sheer size
of the corresponding log file can be disorienting.

A well-known principle for creating effective user interfaces is the visual information–
seeking mantra, “overview first, zoom and filter, then details-on-demand” (Shneiderman
1996). If we were to apply this mantra to improve log file navigation, we might envision
a document in which the do-file is displayed as the overview, and clicking a line in the
do-file would display details from the corresponding log file (see figure 1).

(Continued on next page)

104 File filtering in Stata

Figure 1: Hyperlinked index of a Stata log file

When a do-file is run with logging enabled, every line in the do-file appears some-
where in the log file, and Stata’s results appear underneath. In theory, a program should
be able to scan the two files for matching lines and, when found, add HTML hyperlink
tags (<A>) to link the matching lines. The program hyperlog implements this idea as
a file filter.

Actually, hyperlog consists of two file filters running in tandem (see figure 2). The
first filter builds an overview file by reading the do-file one line at a time, looking for
Stata commands (lines starting with a period). A second filter builds a details file
by processing the log file that the do-file generated. For each command line found
by the first filter, the second filter is activated and scans the log file for a matching
command line. When a match is found, HTML hyperlink tags are added to both the
overview and details files. For noncommand lines, both filters simply copy the text into
their respective output files. In addition to these two output files, hyperlog generates
a master HTML document that contains appropriate HTML <FRAME> tags to display the
overview and details files side by side in any web browser.

J. Eng 105

Figure 2: Processing of files to create a hyperlinked index

5 Conclusions

The file command lets Stata output results in other text formats, such as HTML

(Slaymaker 2005) and even XML. This ability obviously adds flexibility when Stata
results are intended for processing by other programs. The file read command also
lets Stata directly read data files in arbitrary formats. This article discussed file filters
that can perform complex operations on text files generated by Stata and other sources.
The reading of external binary data files is probably too complex to be worthwhile
for most Stata programmers, but the conversion of text files may often be worthwhile.
When processing arbitrary text files, you must take care to properly handle special
characters and potentially long lines of text.

6 References
Shneiderman, B. 1996. The eyes have it: A task by data type taxonomy for information

visualizations. In Proceedings of the IEEE Conference on Visual Languages, 336–343.
New York: IEEE.

Slaymaker, E. 2005. Using the file command to produce formatted output for other
applications. Stata Journal 5: 239–247.

Turner, K. S. 2005. FAQ: What are regular expressions and how can I use them in
Stata? http://www.stata.com/support/faqs/data/regex.html.

About the author

John Eng is a statistically inclined radiologist and associate professor in the Department of
Radiology and Radiological Science at the Johns Hopkins University School of Medicine. His
research interests are in clinical epidemiology, evidence-based radiology, and health sciences
informatics.

