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Stata tip 39: In a list or out? In a range or out?

Nicholas J. Cox
Department of Geography
Durham University
Durham City, UK
n.j.cox@durham.ac.uk

Two simple but useful functions, inlist() and inrange (), were added in Stata 7,
but users somehow still often overlook them. The manual entry [D] functions gives
formal statements on definitions and limits. The aim here is to emphasize with examples
how natural and helpful these functions can be.

The question answered by inlist() is whether a specified argument belongs to a
specified list. That answered by inrange() is whether a specified argument falls in a
specified range. We can ask the converse question, of not belonging to or falling outside
a list or range, by simply negating the function. Thus !inlist() and !inrange() can
be read as “not in list” and “not in range”.

These functions can reduce your typing, reduce the risk of small errors, and make
your Stata code easier to read and maintain. Thus with the auto data in memory,
consider the choice for the integer-valued variable rep78 between older ways of getting
a simple listing,

. list make rep78 if rep78 == 3 | rep78 == 4 | rep78 ==
. list make rep78 if rep78 >= 3 & rep78 <=5
. list make rep78 if rep78 > 2 & rep78 < 6

and newer ways of getting the same listing,

. list make rep78 if inlist(rep78, 3, 4, 5)
. list make rep78 if inrange(rep78, 3, 5)

The examples here are typical of a good way to use inlist() or inrange(): move
directly from feeding arguments to each function to using the results of the calculation.
If you wanted to keep the results, you could put them into a variable (or a macro). The
result of inlist() or inrange() is either 1 when the value specified is in range or in
list and 0 otherwise (and thus never missing). So, if you use a variable to store results,
let it be a byte variable for efficiency in storage.

In more detail: so long as none of the arguments z, a, b is missing, inrange(z,a,b)
is true whenever z > a and z < b. Thus inrange(60, 50, 70) is true (numerically 1)
because 60 > 50 and 60 < 70. However, inrange (60, 70, 50) is false (0) because 60
is not >70 and 60 is not <50. Thus the order of a and b is crucial. There are situations
when you are not sure in advance about the ordering of arguments, but you can always
use devices such as inrange(z, min(a,b), max(a,b)) (which tests whether one value
is between two others).

The definition of inrange() is more complicated when any argument is numeric
missing. See [D] functions for the precise definitions. The most important example is
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that inrange(z, a, .) isinterpreted as z > a and z < . (z greater than or equal to a,
but not missing). This may look like a bug, but it is really a feature. Even experienced
users sometimes forget that in Stata numeric missing is regarded as arbitrarily large.
Hence, z >= 42 will be true for all the missing values of z, as well as for all values
that are greater than or equal to 42. The longstanding workaround when this is not
what you want with regard to missing values is to add the extra condition that z is not
missing, as in z >= 42 & z < ., but inrange(z, 42, .) is another way to do this.

The definitions that come into play when any argument is missing imply that
inrange () is not a good tool to use when you want to test for numeric missings (in-
cluding any comparisons with extended missing values). For that it is better to use
missing(), inlist (), or combined statements using simple inequalities.

inlist() and inrange() can often be used with the in-built quantities _n and _N
specifying, respectively, the current observation number and the current number of
observations. Sometimes users wish to specify that a command should apply to an
irregular set of observation numbers, and if inlist(.n,17,42,99,217) exemplifies
how that could be done with a small set (the limit is 255 numbers and is unlikely to bite
in sensible practice). A pitfall here is clearly that any sorting of the dataset will often
imply that the observations concerned end up in different positions. Thus saving the
results of this computation in a byte variable will often be a good idea. This approach
is not better general practice than using criteria such as those based on variable values,
but there may be occasions when you will want this feature.

Other examples of the same kind arise with longitudinal or panel data. Recently I
wanted to identify the first and last values of a response in each panel, and

. by panelvar (timevar): gen y_ends = y if inlist(_m, 1, _N)

offers a way to do that. Conversely, 'inlist(.n, 1, _N) identifies all the others.
Whether you prefer that if condition to the more traditional if =n == | n ==
N is admittedly a matter of taste. Using in is not an option here because in may not
be combined with by:.

The examples so far are all for numeric arguments. The arguments of either function
can be all numeric or all string. Thus given one character, ¢, inrange("c", "a", "z")
tests whether ¢ is one of the 26 lowercase letters of the English alphabet; correspond-
ingly, inrange("c¢", "A", "Z") tests whether ¢ is one of the 26 uppercase letters of
the same alphabet. More generally, inrange ("string", "a", "z") tests whether string
begins with a lowercase letter, and correspondingly for the arguments "A", "Z" and up-
percase letters. Because lowercase and uppercase letters are typically not adjacent in
your computer’s character sets, be careful when working with both. If you were in-
different about the distinction between uppercase and lowercase, you could work with
lower ("string)" or upper ("string").
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These examples lead directly to a way of filtering a string variable to select characters
that you want or ignore characters that you don’t. Suppose that we wanted to select
only the alphabetic characters in a string variable. Check the variable type to see its
maximum length (18, or whatever), generate a new empty-string variable, and then
loop over the characters, adding them to the end of the new variable only if they are as
desired.

generate newvar = ""
quietly forvalues i = 1/18 {
replace newvar = newvar + substr(oldvar,‘i’,1) ///
if inrange(lower (substr(oldvar,‘i’,1)),"a","z")

}

Commands like this tend to become rather long, but they are not in principle com-
plicated. The attraction of a low-level approach is that you can design exactly the filter
you wish according to the precise problem it is intended to solve.

A further simple but general moral evident from various examples here is that the
power of Stata functions often arises from how they can be combined.






