

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

The Stata Journal

Editor

H. Joseph Newton

Department of Statistics
Texas A \& M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Associate Editors

Christopher F. Baum Boston College

Rino Bellocco

Karolinska Institutet, Sweden and Univ. degli Studi di Milano-Bicocca, Italy
A. Colin Cameron University of California-Davis
David Clayton Cambridge Inst. for Medical Research
Mario A. Cleves Univ. of Arkansas for Medical Sciences
William D. Dupont Vanderbilt University
Charles Franklin University of Wisconsin-Madison
Joanne M. Garrett University of North Carolina

Allan Gregory

Queen's University
James Hardin University of South Carolina
Ben Jann ETH Zürich, Switzerland
Stephen Jenkins University of Essex
Ulrich Kohler WZB, Berlin

Stata Press Production Manager
 Stata Press Copy Editor

Editor

Nicholas J. Cox
Department of Geography
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Jens Lauritsen
Odense University Hospital
Stanley Lemeshow
Ohio State University
J. Scott Long

Indiana University
Thomas Lumley
University of Washington-Seattle
Roger Newson Imperial College, London
Marcello Pagano Harvard School of Public Health
Sophia Rabe-Hesketh
University of California-Berkeley
J. Patrick Royston MRC Clinical Trials Unit, London
Philip Ryan
University of Adelaide
Mark E. Schaffer Heriot-Watt University, Edinburgh
Jeroen Weesie
Utrecht University
Nicholas J. G. Winter
University of Virginia
Jeffrey Wooldridge Michigan State University

Lisa Gilmore
 Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and help files) are copyright (c) by StataCorp LP. The contents of the supporting files (programs, datasets, and help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.
The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part, as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.
Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions. This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.
Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting files understand that such use is made without warranty of any kind, by either the Stata Journal, the author, or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special, incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote free communication among Stata users.
The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press. Stata and Mata are registered trademarks of StataCorp LP.

The Stata Journal (2006)
6, Number 4, pp. 588-589

Stata tip 37: And the last shall be first

Christopher F. Baum
Department of Economics
Boston College
Chestnut Hill, MA 02467
baum@bc.edu

Mata's built-in function list contains many useful matrix operations, but I recently came upon one that was lacking: the ability to flip a matrix along its rows or columns. Either of those operations can readily be done as a Mata statement, but I'd rather not remember the syntax - or have to remember what it is meant to do when I reread the code. So I wrote these two simple functions: ${ }^{1}$

```
mata:
matrix function flipud(matrix X) {
    return(rows(X)>1 ? X[rows(X)..1,.] : X)
}
matrix function fliplr(matrix X) {
    return(cols(X)>1 ? X[.,cols(X)..1] : X)
}
end
```

These functions will flip a matrix ud-upside down (the first row becomes the last)— or $1 r$, left to right (the first column becomes the last). Because the functions take a matrix argument, they may be applied to any of Mata's matrix types, including string matrices.

Users have asked why one would want to flip a matrix "upside down". As it happens, doing so becomes a handy tool when creating a two-sided linear filter. Say that we have defined a vector x , containing a declining set of weights: a one-sided linear filter. We can turn x into a two-sided set of weights by using flipud():

[^0]```
: x = (flipud(x[2..rows(x)]) \ x); x
 1
 .0625
 . }12
 . }2
 . }
 .
 . }2
 . }12
 .0625
: end
```

To decipher that statement, note that 2. .rows (x) refers to the second through last rows of vector x . The statement thus flips those rows of x upside down and concatenates them to the original x by using the column-join operator (see [M-2] op_join).

As a second example, consider applying both functions to a string matrix:



[^0]:    1. I thank Mata's principal architect, William Gould, for improvements he suggested that make the code more general.
