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Abstract. WinBUGS is a program for Bayesian model fitting by Gibbs sampling.
WinBUGS has limited facilities for data handling, whereas Stata has no routines
for Bayesian analysis; therefore, much can be gained by running Stata and Win-
BUGS together. We present a set of ado-files that enable data to be processed in
Stata and then passed to WinBUGS for model fitting; finally, the results are read
back into Stata for further processing.

Keywords: st0115, wbarray, wbdata, wbscalar, wbstructure, wbvector, wbrun, wb-
script, wbcoda, wbac, wbbgr, wbgeweke, wbintervals, wbsection, wbtrace, wbstats,
wbdensity, wbdic, wbbull, wbdecode, Bayesian methods, MCMC, Gibbs sampling,
WinBUGS

1 WinBUGS

WinBUGS is a program for Bayesian model fitting that runs under Windows and is
available free for download from http://www.mrc-bsu.cam.ac.uk/bugs/. The program is
fully described on that web site and in the manual that comes with the program. Its help
facility also includes many examples consisting of datasets and associated WinBUGS
programs. As a standalone program, WinBUGS is usually run interactively through a
series of menus and toolbars. However, the current version, WinBUGS 1.4.1, includes a
scripting language so that model fitting can be automated and controlled by a script file.
With this scripting facility, one can run WinBUGS from within Stata. WinBUGS and
Stata complement each other because WinBUGS has limited facilities for data handling,
whereas Stata is excellent for this but has no routines for Bayesian model fitting. The
main problem in combining the two programs is the different ways in which they store
data. To help overcome this difficulty, we describe several ado-files for the transfer of
data between the two programs, as well as some other ado-files for summarizing the
results of the WinBUGS analysis.

1.1 Bayesian model fitting using Gibbs sampling

The scale of the literature on Bayesian analysis is such that giving a comprehensive
review is impossible, but we will give a brief account and some references to more
sources of information, which should let anyone follow the way that WinBUGS is run
from within Stata. If you are new to WinBUGS, running a few interactive WinBUGS
sessions to familiarize yourself with the WinBUGS language would be sensible before
trying to combine WinBUGS and Stata.

c© 2006 StataCorp LP st0115
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In traditional statistics we often start by calculating the likelihood of a model, that is,
the probability of the observed data given that model, Pr(Data |Model). Two competing
models are compared by the relative sizes of their likelihoods, with the model that
was more likely to have produced the observed data being preferred. Bayesian model
fitting takes this process one stage further by calculating Pr(Model |Data); in this way
candidate models can be judged by directly comparing their probabilities. To calculate
Pr(Model |Data) from the likelihood requires Bayes’ theorem,

Pr(Model |Data) =
Pr(Data |Model) Pr(Model)

Pr(Data)

The left-hand side of this expression represents the probability of the model given the
data, and because it can be calculated only after we have seen the data, it is usu-
ally referred to as the posterior probability of the model. On the right-hand side,
Pr(Data |Model) is the likelihood and Pr(Model) is the probability of the model with-
out the current data. The easiest way to think of Pr(Model) is as the probability of the
model before we had access to the data; hence, it is called the prior probability of the
model. Finally, Pr(Data) is a term that ensures that the posterior probability is scaled
between 0 and 1.

Priors

Although widely used, Bayesian methods are still not universally accepted, largely be-
cause of the philosophical and practical difficulties associated with the prior. Real data
are not actually generated from models; rather, the models are inventions of the re-
searcher that are designed to approximate the real world. Consequently, there is no
such thing as the “correct” model. Given this view, models are not equivalent to events
and so whether they can have probabilities is questionable. The usual way around this
problem is to treat Pr(Model) as a statement of personal belief, although many would
argue that even this paradigm is not really satisfactory.

Even if we accept the existence of prior probabilities, there is still the tricky prob-
lem of specifying them. We have to give probabilities to every model that we think
could possibly have generated the data. For complex problems, this is virtually impos-
sible to do properly, and even when we can do it, we have to accept that two people
might legitimately assign different priors and hence produce different analyses. Because
there is no way of judging one prior to be better than another, researchers often try
to remain neutral by assigning vague or noninformative priors that give similar prior
probabilities to a wide range of models; the hope is that noninformative priors will have
little influence on the final answer. With large datasets this approach works well, and
a Bayesian analysis with noninformative priors is similar to an investigation of the like-
lihood. However, with sparse data, one must proceed with great caution because even
seemingly noninformative priors can influence the final result.
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Markov chain Monte Carlo

The scaling term, Pr(Data), in Bayes’ theorem presents an entirely different problem.
Calculating the term involves summing over all candidate models, which typically re-
quires either a very large summation or a multidimensional integral. For many years
the difficulty of evaluating Pr(Data) effectively restricted Bayesian analysis to simple
problems in which the integration was tractable. Then, in the late 1980s, Bayesian
statisticians started to investigate the use of Monte Carlo integration, that is, integra-
tion by simulation, and they imported some established methods from physics. Suppose
that the possible models are labeled M1, M2, . . . . Then the problem of evaluating the
posterior is solved if we can generate a random sequence or chain, such as M4, M9, M3,
M3, M4, M1, . . . , such that, in the long run, each model occurs with a frequency pro-
portional to Pr(Model |Data). When we generate values of the chain so that the next
model in the sequence depends only on its immediate predecessor, we have a Markov
chain, so the method is referred to as Markov chain Monte Carlo (MCMC). Typically
the models depend on an unknown vector of parameters, θ, so different models can be
indexed by the value of that parameter and our chain can be written as, θ4, θ9, θ3, θ3,
θ4, θ1, . . . .

Metropolis–Hastings

There are many methods for generating the next model or set of parameter values in an
MCMC chain, but the most popular by far is the Metropolis–Hastings algorithm. The
key to the algorithm is finding a good proposal distribution, q(θ∗ | θt), for suggesting a
new value, θ∗, given the latest value in the chain θt. The choice of proposal distribution
is essentially arbitrary, but some choices will be much more efficient than others in the
sense of giving a chain that settles more quickly to the correct long-run probabilities.
After generating a random value, θ∗, from our chosen proposal distribution, we calculate
the ratio,

α =
Pr(θ∗ |Data) q(θt | θ∗)
Pr(θt |Data) q(θ∗ | θt)

A uniform value, u, between 0 and 1, is then generated, and if u < α we accept the
proposed θ∗ as the next value in the chain; otherwise, the next value is a copy of θt. A
poor choice of proposal distribution can get stuck on one set of parameter values, which
will slow down the convergence of the chain.
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Gibbs sampling

A special case of the Metropolis–Hastings algorithm is Gibbs sampling, which involves
cycling through the parameters of the model one at a time rather than treating them as a
vector and using the current estimate of the univariate conditional posterior probability
distribution as the proposal distribution. Gibbs sampling can be inefficient, but by
taking parameters one at a time, it reduces multidimensional problems to a series of
univariate calculations and consequently is much easier to program. WinBUGS is a
program for applying Gibbs sampling to a flexible class of user-specified models.

MCMC methods are not without their own problems, in particular:

• Successive values in a chain may be strongly dependent, so the values in the chain
cannot be treated as a random sample from the posterior.

• The chain requires starting values, and this choice will influence the early part of
the chain.

• Deciding how long the chain needs to be run before it adequately represents the
posterior probabilities of the candidate models is difficult. The chains of some
models converge quickly, whereas others can require hundreds of thousands of
simulations.

Gilks, Richardson, and Spiegelhalter (1996) give a good account of the theory and
practice of MCMC. Gelman et al. (1995) give a more general overview of practical
Bayesian methods that includes a brief account of MCMC. Lindley (2000) discusses the
philosophy underlying the Bayesian approach; several of the contributions to the discus-
sion of that article, particularly those of John Nelder and George Barnard, demonstrate
why some people still have doubts about the approach.

1.2 Specifying models in WinBUGS

WinBUGS has its own language for specifying models, described in detail in the Win-
BUGS manual, although many people find learning the language by following the ac-
companying WinBUGS examples to be easier. We will consider a straightforward model
that will show how WinBUGS is run from within Stata. Suppose that we have a simple
linear regression involving 5 observations of a response variable, y, and an explanatory
variable, x. If the error distribution is assumed to be normal then the candidate models
are

yi ∼ N(µi, σ) i = 1, . . . , 5
µi = α + βxi

where the individual models are indexed by the values of the three parameters α, β,
and σ.
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For a Bayesian analysis we must state our prior belief in each of the possible values
of the parameters. This step is complex, but for illustration we will assume that we are
happy to put independent, relatively flat, prior distributions on the parameters:

α ∼ N(0, 5)
β ∼ N(0, 5)
σ ∼ Uniform(0, 4)

Thus we expect α and β to lie within the range of about ±10 with all values around zero
having more or less equal prior probability. σ is equally likely to be any value between
0 and 4, but values more than 4 are completely ruled out by this prior, whatever the
data may say. We could describe this model in WinBUGS by using this more or less
self-explanatory code:

model {
for(i in 1:5) {

mu[i] <- alpha + beta*x[i]
y[i] ~ dnorm(mu[i], tau)

}
tau <- 1/(sigma*sigma)
alpha ~ dnorm(0, 0.04)
beta ~ dnorm(0, 0.04)
sigma ~ dunif(0, 4)
}

The WinBUGS language is closely modeled on S-plus and R, in which the combined
symbol <- is used to denote assignment, in preference to the more usual =. The symbol

~ denotes a distribution, which for the normal is parameterized by the mean and the
precision, that is, one over the variance.

WinBUGS requires two other pieces of information before it can fit the model: the
data and some starting values for the MCMC chain. Once again WinBUGS adopts the
R style for data structures and so data are usually given as lists. For our problem the
data might be supplied as

list(x=c(1,2,3,4,5), y=c(4,3.5,5,7.2,8.4))

and the initial values could be

list(alpha=0, beta=1, sigma=1)

The notation is again self-explanatory, with c() used to denote that values are combined
into a vector.

2 Running WinBUGS from within Stata

We have developed several commands that run, summarize, and assess WinBUGS mod-
els to be fitted from within Stata. The commands are listed in table 1. Full details of the
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commands can be obtained from a manual that can be downloaded as a PDF from our
web site, http://www.hs.le.ac.uk/research/HCG/winbugsfromstata/ (this URL is case
sensitive), and from the help files that accompany the commands. The following sec-
tions in this article describe the basic commands and should be sufficient for running a
simple analysis.

Table 1: WinBUGS commands

command description

Writing data to WinBUGS
wbarray write data as a WinBUGS array
wbdata write a mixed list of data
wbscalar write a list of scalars
wbstructure write a list containing a two-way structure
wbvector write a list of vectors

Running WinBUGS
wbrun run WinBUGS from within Stata
wbscript write a WinBUGS script file

Reading WinBUGS results
wbcoda read Coda-formatted results into Stata

Assessing convergence and mixing
wbac autocorrelation plots
wbbgr Brooks–Gelman–Rubin convergence plot
wbgeweke convergence test based on means
wbintervals interval estimates for sections of a chain
wbsection convergence check based on density estimates
wbtrace trace plot of MCMC simulations

Summarizing MCMC simulations
wbstats summary statistics from MCMC simulations
wbdensity posterior density estimates
wbdic read DIC statistics from a WinBUGS log file into Stata
wbhull bivariate posterior contour plots

Reading list data into Stata
wbdecode read list structures directly into Stata

WinBUGS uses compound files with the .odc extension; these can include descrip-
tive text, the model, data, graphs, and results together in one place. So, for example,
when reading the data, we merely highlight that part of the compound file. However,
we can also use separate text files for the model, data, and initial values—much more
convenient if we are to run WinBUGS from within Stata. Let us assume that the model,
data, and initial values as given in the previous section are stored in text files called
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model.txt, data.txt, and inits.txt, and that these files are stored in the folder
d:/example. To run the model, all we need is another text file containing the script.

A basic script for our problem might be stored as script.txt and consist of the
following:

display(’log’)
check(’d:/example/model.txt’)
data(’d:/example/data.txt’)
compile(1)
inits(1,’d:/example/inits.txt’)
update(500)
set(’alpha’)
set(’beta’)
update(1000)
coda(*,’d:/example/out’)
quit()

Line 1 opens a WinBUGS log window in which we can monitor the progress of our
script and possibly see any error messages. Line 2 asks WinBUGS to check that our
model description is syntactically correct; here we pick up the typing errors and missed
brackets. Next we read the data and then on line 4 the model and data are compiled
into a program for analyzing our problem. The “1” in the compile() statement tells
WinBUGS that we intend to run only one chain. Running several parallel chains is a
good way of discovering whether the chains have converged. Line 5 reads the initial
values for chain 1 and then on line 6 we create an MCMC chain of length 500. This
initial chain is called a burn-in and will be discarded by WinBUGS because we have
not told it to store any results. The burn-in is intended to allow the chain to stabilize
and thereby remove the effects of the initial values; deciding the appropriate length of
the burn-in is an art in itself. The two set commands tell WinBUGS to store alpha
and beta from any subsequent simulations. Then on line 9 we run another chain of
length 1,000. The stored values of alpha and beta are written to an output file in
Coda format. Coda is a program written in S-plus that is designed to examine MCMC

output; in particular, Coda can be used to help assess whether the chain has converged.
Finally, the quit() command closes WinBUGS. If quit() is omitted, WinBUGS stays
active after the script is executed. This feature can be helpful when you need to debug
a program, for instance, if there is an error in the model description.

To run script.txt when the WinBUGS executable is called winbugs14.exe, we
could open a Command window and type

> winbugs14 /par script.txt

Running this command from within Stata requires either Stata’s shell command
or the winexec command,

. shell winbugs14 /par script.txt

or

. winexec winbugs14 /par script.txt
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The difference is that shell causes Stata to wait for WinBUGS to finish before it
becomes active again, whereas with winexec the WinBUGS job is run in the background
while Stata stays active. WinBUGS programs can sometimes take a long time to run
and so it might be convenient to return control to Stata while we wait for WinBUGS.
However, if the command were part of an ado-file, then one would probably not want
to continue until WinBUGS had finished.

To automate the running of WinBUGS from within Stata, we have written a trivial
ado-file called wbrun.ado.

Syntax

wbrun, script(string) winbugs(string)
[
batch

]
option description

script(string) full path name of the script file
winbugs(string) full path name of the WinBUGS executable
batch run in background with control returned to Stata

Remarks

Since the location of WinBUGS is likely to change only when new versions of WinBUGS
are released, editing the ado-file to drop the winbugs option and instead typing the full
path of your executable as part of the program might be sensible. If required, there is
another Stata command, wbscript, that will create the script file.

3 Transferring data from Stata to WinBUGS

Once the data have been transferred to WinBUGS, there will be no further opportunity
to edit the data or select subsets. Indeed, WinBUGS will return an error even if you
supply data on variables that are not used in the model. We mentioned earlier that
WinBUGS uses R-style lists for structuring data. These are extremely flexible, but
before giving other examples of their use we will consider the common situation of data
in a rectangular array, as one might see in a spreadsheet or Stata’s Data Editor.
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3.1 Writing data arrays: wbarray

The data for the simple regression problem from section 2 could have been represented
as a 5×2 data array, called a data frame in R. In WinBUGS, such a structure can be
entered by creating a data file containing the following:

x[] y[]
1 4
2 3.5
3 5
4 7.2
5 8.4
END

wbarray writes data held in Stata as a WinBUGS array. The array is written to the
Results window, where it can be checked or copied to the clipboard, and if required the
array will also be written directly to a text file.

Syntax

wbarray varlist
[
if
] [

in
] [

, options
]

option description

saving(string, replace) text file for the output
format(string) formats for the output
noprint do not display in the Results window

Example

If our regression data were stored in Stata as variables x and y, they could be exported
using the command

. wbarray x y, saving(d:/example/data.txt, replace)

3.2 Writing lists of data: wbvector, wbscalar, wbstructure, and
wbdata

Lists can contain scalars, vectors, or multiway structures similar to data arrays or
matrices.

wbvector writes a list structure containing vectors.
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Syntax

wbvector varlist
[
if
] [

in
] [

, options
]

option description

saving(string, replace) text file for the output
format(string) formats for the output
linesize(#) maximum number of values per line
noprint do not display in the Results window

Example

With the data from our regression example stored in Stata as variables x and y,

. wbvector x y if x < 4 , format(%3.1f)

produces

list(x=c(1.0,2.0,3.0), y=c(4.0,3.5,5.0))

Other commands for writing lists are wbscalar, for lists of scalars; wbstructure,
for two-way data structures; and wbdata, for a mixed list of scalars, vectors, and/or
two-way structures. WinBUGS can read more than one data file for the same model,
so one can mix, say, arrays and scalars by placing them in different files.

4 Transferring data from WinBUGS to Stata

WinBUGS writes the saved MCMC simulations in the format required by the program
Coda. Doing so results in an index file listing the variable names and the numbering of
the simulations, and data files, one for each chain, that contain the actual values. Thus,
when our script generated one chain and then included the line

coda(*,’d:/example/out’)

this created an index file, d:/example/outIndex.txt, and a data file,
d:/example/out1.txt. The index file for our regression problem would contain

alpha 1 1000
beta 1001 2000

meaning that the chain for alpha is found in lines 1–1,000 of the data file and the values
for beta are in lines 1,001–2,000. The data file itself might start

501 0.2346
502 1.3259
... ...
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The first column refers to the order in the chain and here tells us that we discarded 500
values before starting to save alpha and beta. The second column contains the simu-
lated parameter values, alpha first and then beta. Had we run two parallel chains, there
would have been another data file, d:/example/out2.txt, with the same structure.

The command wbcoda will read Coda-formatted files directly into Stata, reshaping
them so that each variable is in a separate column. wbcoda can also read in multiple
chains, in which case the values of a parameter are placed in the same column with values
of the second chain stacked below those of the first chain. The chains are distinguished
by an indicator variable that takes the value of the chain number, 1, 2, 3, . . . .

Syntax

wbcoda, root(string) clear
[
options

]
option description

root(string) root (with full path) for the index and data file(s)
clear permission to clear current data from Stata
multichain read multiple chains
chains(#) number of chains (multichain mode) or number of the chain to be read
id(string) name for the chain identifier
thin(#) retain every nth value
keep(string) list of parameters to retain
noreshape leave the values stacked in one variable

Examples

To read one chain from d:/example/out1.txt,

. wbcoda, root(d:/example/out) clear

and to read three chains from d:/example/out1.txt, d:/example/out2.txt, and
d:/example/out3.txt,

. wbcoda, root(d:/example/out) clear chain(3) multichain

whereas to read just the second chain,

. wbcoda, root(d:/example/out) clear chain(2)
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5 Ado-files for examining MCMC simulations

5.1 Assessing convergence

When the MCMC chain or chains have been created, we must first satisfy ourselves that
they have converged; this means checking that the burn-in was long enough so that
the early part of the chain is not heavily dependent on the starting values and then
checking that the chain has been run long enough to have stabilized the probabilities
of the different models. Many methods have been suggested for checking convergence,
but none is totally satisfactory; a chain may appear to be stable for a long time and
then suddenly discover a new set of plausible parameter values that had not previously
been proposed. Most convergence checking is graphical and either compares the results
from different chains or divides one chain into sections and compares the sections. If
the simulation has not yet converged, then the chains or part-chains will look different
when plotted.

wbtrace

wbtrace produces a trace or time-series plot of the values in the chain or of values
derived from them. It will show if the chain is drifting, perhaps indicating that the
burn-in was not long enough, and it will illustrate the speed of mixing, which is how
quickly the chain moves across the distribution. Chains that mix slowly will produce
long, slow cycles, and they take longer to converge. Mixing can sometimes be improved
by reparameterizing the model.

Syntax

wbtrace varlist
[
if
] [

in
] [

, options
]

option description

thin(#) plot only every nth value
id(varname) chain indicator for multiple chains
order(varname) variable to be used for the x axis
bychain(varname) chain identifier for parallel chains
overlay(varname) overlay parallel chains on the same graph
goptions(string) options passed directly to the plotting commands
cgoptions(string) options passed directly to the graph combine command
saving(string, replace) graphics file for saving the plot
export(string, replace) file for exporting the plot as .eps, .png, etc.
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Remarks

If varlist contains more than one parameter, the traces are combined into one plot, as
in figure 1. With multiple chains the traces for each parameter can be superimposed.

wbsection

wbsection divides one chain into subsections of equal length and then uses kdensity to
produce a smooth density estimate for each section. The densities are superimposed in
the plot and shown together with the smooth density for the whole chain. If the chain
has converged, the smoothed densities will be similar to one another. A simple measure
of convergence, D, is returned by the program; it represents the maximum distance
between two densities as a percentage of the maximum height of the combined density.

Syntax

wbsection varlist
[
, options

]
option description

m(#) number of subsections into which the chain is divided
bychain(varname) chain identifier comparison of chains rather than sections
koptions(string) options passed directly to kdensity
goptions(string) options passed directly to the plotting command
cgoptions(string) options passed directly to the graph combine commands
saving(string, replace) graphics file for saving the plot
export(string, replace) file for exporting the plot as .eps, .png, etc.
dsaving(string, replace) file for saving the plotting points

wbac, wbbgr, wbintervals, and wbgeweke

Other commands for assessing convergence and mixing are wbac, which is a wrapper
for Stata’s ac and pac commands for plotting the autocorrelations; wbbgr, which pro-
duces the Brooks–Gelman–Rubin plot for assessing convergence from parallel chains;
wbintervals, which plots interval estimates based on sections of a chain; and wbgeweke,
which performs a test of the mean of the early part of a chain compared to the mean
of the late part of that chain.
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5.2 Summarizing MCMC results

wbstats

The standard summary, wbstats, for an MCMC chain contains the following for each
parameter:

• the mean, which is often taken as the point estimate of the parameter;

• the standard deviation, which describes the spread of the distribution;

• a standard error, which is calculated allowing for autocorrelation giving an indi-
cation of whether the chain was long enough for the accuracy we require;

• the median, which is an alternative point estimate for nonsymmetric distributions;
and

• a 95% credible interval, which is a central 95% interval calculated from the pos-
terior, similar in spirit to a 95% confidence interval.

Syntax

wbstats varlist
[
if
] [

in
] [

, options
]

option description

hpd highest posterior density intervals instead of credible intervals
level(#) percent level for the intervals; default is level(95)

wbdensity and wbhull

Other commands for summarizing a chain are wbdensity, which plots a density estimate
of the posterior distribution, and wbhull, which shows the contours of the bivariate
distribution of pairs of parameters on the basis of their convex hulls.

6 Example: Random-effects logistic regression

This example shows how the various wb commands can be combined to create a complete
analysis. We have chosen an example taken from the WinBUGS help files that is simple
enough to be analyzed in Stata by using gllamm. The WinBUGS help file stores this
example under the name seeds and includes the raw data and the code for the model.

The example is taken from Crowder (1978) and concerns the proportion of seeds
that germinated on each of 21 plates arranged according to an unbalanced 2×2 factorial
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design of seed variety and type of root extract. The analysis in the WinBUGS help
system uses a logistic model with a random effect to allow for overdispersion. For the
ith plate, x1i denotes the seed type; x2i denotes the root extract; ni is the total number of
seeds; ri is the number of seeds that germinated; and pi is the probability of germination.
The model, including a seed by root interaction, can be written algebraically as

ri ∼ Bin(ni, pi) (1)
logit(pi) = α0 + α1x1i + α2x2i + α12x1ix2i + bi

bi ∼ N(0, σ)

Generating a variable x1 x2 equal to the product of x1 and x2 and then fitting this
model with gllamm produces

. gllamm r x1 x2 x1_x2, i(plate) link(logit) family(binomial) denom(n) adapt

r Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .0969755 .2780556 0.35 0.727 -.4480035 .6419545
x2 1.337056 .2369515 5.64 0.000 .8726397 1.801473

x1_x2 -.8104534 .3851909 -2.10 0.035 -1.565414 -.0554932
_cons -.5484376 .1666035 -3.29 0.001 -.8749744 -.2219007

Variances and covariances of random effects
------------------------------------------------------------------------------
***level 2 (plate)

var(1): .05582647 (.05200718)
------------------------------------------------------------------------------

The estimate of σ is
√

0.055826 = 0.236, with a standard error calculated using the
delta method of 0.052007/(2

√
0.055826) = 0.110.

An alternative Stata analysis could be produced by expanding the data to one line
per seed and using the xtlogit command. This method is a little quicker than gllamm
and gives essentially the same answers.

For the Bayesian analysis, the coefficients α0, α1, α2, and α12 are given independent
noninformative normal priors, whereas the standard deviation of the random effect, σ,
has a vague uniform distribution. The complete model becomes
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model {
for(i in 1:N) {

r[i] ~ dbin(p[i], n[i])
b[i] ~ dnorm(0.0, prec)
logit(p[i]) <- alpha0 + alpha1*x1[i] + alpha2*x2[i] + ///

alpha12*x1[i]*x2[i] + b[i]
}
prec <- 1/(sigma*sigma)
alpha0 ~ dnorm(0.0, 1.0E-6)
alpha1 ~ dnorm(0.0, 1.0E-6)
alpha2 ~ dnorm(0.0, 1.0E-6)
alpha12 ~ dnorm(0.0, 1.0E-6)
sigma ~ dunif(0, 100)

}

The initial values given by the WinBUGS manual are

list(alpha0 = 0, alpha1 = 0, alpha2 = 0, alpha12 = 0, sigma = 1)

and our script file has the same structure as the example in section 2, except that the
burn-in has length 1,000 and the actual run is of length 10,000. All the parameters are
saved.

Running the analysis in Stata using wbrun took 14 seconds compared with 7 seconds
for the gllamm analysis. This timing is a little artificial since the Bayesian analysis
would have converged with a shorter chain, but we chose to use the length suggested in
the WinBUGS manual.

Figure 1 was produced by wbtrace and shows the traces for the parameters α1 and
α2. There is no evidence of drift and the mixing is good, with the full range of each
parameter covered in relatively few simulations. The plot also shows the median and
95% credible interval for each parameter.

(Continued on next page)
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Figure 1: Trace of the chains for α1 and α2

Figure 2 was produced by wbsection and shows the densities of sections of the
chains for the parameters α1, α2, α12, and σ. They are in good agreement, reinforcing
the idea that the chains have converged.

Figure 2: Density estimates for sections of the chains for α1, α2, α12, and σ. Dashed
lines, densities for first and second halves of each chain; solid line, density based on full
chain.
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wbstats summarizes the results. They are similar to those for gllamm, although the
estimate for σ is larger.

. wbstats alpha1 alpha2 alpha12 alpha0 sigma
Parameter n mean sd se median 95% CrI
alpha1 10000 0.075 0.345 0.0129 0.078 ( -0.627, 0.735 )
alpha2 10000 1.372 0.290 0.0114 1.368 ( 0.791, 1.953 )
alpha12 10000 -0.853 0.471 0.0178 -0.847 ( -1.801, 0.056 )
alpha0 10000 -0.558 0.210 0.0082 -0.561 ( -0.976, -0.142 )
sigma 10000 0.353 0.148 0.0050 0.343 ( 0.084, 0.677 )

Some editions of the WinBUGS manual contrast this analysis with another based on
the same model but with a noninformative gamma prior for the precision of the random
effect. This seemingly innocent change alters the estimate of σ to make it much closer
to that given by gllamm. With this model wbstats gives

. wbstats alpha1 alpha2 alpha12 alpha0 sigma
Parameter n mean sd se median 95% CrI
alpha1 10000 0.081 0.309 0.0102 0.091 ( -0.564, 0.650 )
alpha2 10000 1.361 0.277 0.0104 1.364 ( 0.792, 1.914 )
alpha12 10000 -0.829 0.424 0.0146 -0.829 ( -1.669, 0.038 )
alpha0 10000 -0.553 0.194 0.0070 -0.556 ( -0.936, -0.149 )
sigma 10000 0.287 0.140 0.0051 0.278 ( 0.046, 0.591 )

The density estimates of the posterior distributions for the two priors, as produced
by wbdensity, are shown in figure 3. Of course, being close to the maximum likelihood
solution is not a justification for a particular prior, and both are correct conditional on
properly capturing our prior beliefs about the random effect. Gelman (2005) has recently
criticized gamma precision priors of the form G(ε, ε) because of their sensitivity to the
choice of ε when the random effect is small; instead, he recommends a uniform prior on
σ as used in our first analysis. If nothing else, the difference illustrates the importance
of choosing priors with care, even when they are supposed to be noninformative.

(Continued on next page)
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Figure 3: Density estimates for the posterior of σ, calculated using a vague uniform
prior for σ (solid line) or vague gamma prior for the precision (dashed line).

7 Final comments

A glance at the examples in the WinBUGS manual will show the great variety of mod-
els that can be fitted using MCMC, some of which cannot be fitted by any existing
Stata command. The WinBUGS web site also gives details of GeoBUGS, a collection
of programs for spatial statistics, and PKBUGS, programs for pharmacokinetic models.
WinBUGS’s great flexibility for fitting your own models is what makes it such an at-
tractive package; complex random effects and nonlinear relationships present no special
problems. Model construction is so easy in WinBUGS that one of the main failings of
recent Bayesian analysis has been a tendency to make models so complex that prior
specification, model checking, and model selection become difficult.

If you want to experiment with the examples in the WinBUGS manual, you might
find the command wbdecode useful. The data for the examples are given as R-style
lists, and wbdecode is a program for reading such lists directly into Stata.

We have found the wb commands particularly useful when running simulations. Stata
can be used to simulate a random dataset that can be passed to WinBUGS for model
fitting, with the results summarized and stored by Stata. In this way, one can run
simulations that are simply impractical when WinBUGS is used interactively. The other
big advantages are the ease with which models can be fitted with different patterns of
covariates and Stata’s better-quality graphical output. Of course, acknowledging that
these same advantages are available when using WinBUGS with R is only fair.
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All the programs referred to in this article are available from our web site at
http://www.hs.le.ac.uk/research/HCG/winbugsfromstata/ (case-sensitive URL). At the
same site, you will find a manual that gives full details of each command listed in table 1
and two further analyses of data taken from the WinBUGS examples. In each case, the
analyses of the examples include the Stata code needed to complete the Bayesian model
fitting, to check for convergence, and to summarize the results.
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