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Abstract. Building on the work by Hardin (Stata Journal 2: 253–266), this note
shows how the calculation of the Murphy–Topel variance estimator for two-step
models can be simplified in Stata by using the scores option of predict.
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1 Introduction

In a previous issue of the Stata Journal, Hardin (2002) describes the relationship be-
tween the sandwich variance estimator for two-step models and the variance estimator
suggested by Murphy and Topel (1985). He also illustrates how both variance esti-
mators can be calculated in Stata. This note shows that the calculation procedure
suggested by Hardin can be simplified by using Stata’s scores option of predict. An
added benefit is that this new approach simplifies changes to the model specification.

2 The Murphy–Topel estimator

Model systems in which one model is embedded in another appear often in the applied
literature. A common case is where the prediction from one model is used as a regressor
in a second model,

Model 1: E[y1 |X1, θ1]

Model 2: E[y2 |X2, θ2]

where X1(n×q) and X2(n×p) are data matrices and one of the columns in X2 contains
the predicted values from model 1. θ1 and θ2 are vectors of parameters that contain the
regression coefficients β1 and β2, as well as any auxiliary parameters in the models.1

Since the predicted values from model 1 are included in X2, the first parameter vector

1. We restrict our attention to two-step models in which each model has one index function/regression
equation.

c© 2006 StataCorp LP st0114
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θ1 appears in both models, whereas the second parameter vector θ2 appears only in the
second model. Although θ1 and θ2 could be estimated jointly, fitting the models by
using a two-step procedure is often easier (see Greene 2003, 508, for a discussion). With
this approach, model 1 is fitted first, since it does not involve the second parameter
vector. Then model 2 is fitted conditional on the results from the first step. Although
this approach leads to a consistent estimate of θ2, the estimated covariance matrix for
model 2 needs to be adjusted to take into account the variability in θ̂1 (since θ̂1 is an
estimate of θ1 rather than its true value).2

From Hardin (2002) and Greene (2003), the Murphy–Topel estimate of variance for
a two-step model is given by

V̂2 + V̂2(ĈV̂1Ĉ′ − R̂V̂1Ĉ′ − ĈV̂1R̂′)V̂2

where V̂1(q × q) and V̂2(p × p) are the estimated covariance matrices for model 1 and
model 2, respectively, where each is the model-based estimate not taking into account
that the estimate of the parameter vector in model 1 is embedded in model 2.

Further,

Ĉ = (p × q) matrix given by

{
n∑

i=1

(
∂ ln fi2

∂θ̂2

)(
∂ ln fi2

∂θ̂′1

)}

R̂ = (p × q) matrix given by

{
n∑

i=1

(
∂ ln fi2

∂θ̂2

)(
∂ ln fi1

∂θ̂′1

)}

where fi1 and fi2 are observation i’s contribution to the likelihood function of models 1
and 2, respectively. These expressions are conveniently generated using Stata’s scores
option of predict. I give examples in the next section.

3 Examples

We begin by replicating the example in Hardin (2002), in which the predicted probabil-
ities from a logit model are used as an explanatory variable in a Poisson model. In this
case, neither model has any auxiliary parameters, so θ1 = β1 and θ2 = β2. The first
step is to fit the models, saving the scores from both models, the predicted values from
the first-stage model, the näıve variance estimates, and the estimated coefficient in the
second model for the covariate that was predicted in the initial model:

/* First stage: logit, save score as s1 */
. logit z age income ownrent selfemp

. predict double s1, scores

2. Only the covariance matrix for model 2 needs to be adjusted; the estimated covariance matrix for
model 1 is correct.
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. matrix V1 = e(V) // First stage variance estimate

. predict double zhat // Generated variable for second stage

/* Second stage: poisson, save score as s2 */
. poisson y age income avgexp zhat

. predict double s2, scores

. matrix V2 = e(V)

. scalar zz = _b[zhat] // Coeff on generated variable

The next step is to calculate Ĉ and R̂, but first we’ll need some more notation to
identify the pieces on information that go into Ĉ and R̂. Let xi1 be the ith row of
matrix X1 and xi2 the ith row of matrix X2. zi and yi are the dependent variables
in the first- and second-stage models, respectively; ẑi and ŷi are the model predictions;
and γ̂ is the estimated coefficient for ẑi in model 2. Using the chain rule, we see that
the partial derivatives in Ĉ and R̂ are functions of xi1, xi2, γ̂, the equation-level scores
from each model, and a partial derivative of ẑi.

∂ ln fi1

∂β̂1

=
∂ ln fi1

∂(xi1β̂1)

∂(xi1β̂1)

∂β̂1

=
∂ ln fi1

∂(xi1β̂1)
xi1

∂ ln fi2

∂β̂2

=
∂ ln fi2

∂(xi2β̂2)
xi2

∂ ln fi2

∂β̂1

=
∂ ln fi2

∂(xi1β̂1)
xi1 =

∂ ln fi2

∂(xi2β̂2)

∂(xi2β̂2)

∂(xi1β̂1)
xi1

=
∂ ln fi2

∂(xi2β̂2)

∂ẑi

∂(xi1β̂1)
γ̂ xi1

For the logit model the derivative of ẑi with respect to model 1’s index function equals
ẑi(1− ẑi) since ẑi = exp(xi1β̂1)/{1+ exp(xi1β̂1)}. With these results, we can rewrite Ĉ
and R̂ as follows,

Ĉ =
n∑

i=1

x′
i2

{
s2

i2

∂ẑi

∂(xi1β̂1)
γ̂

}
xi1 = X′

2Diag

{
s2

i2

∂ẑi

∂(xi1β̂1)
γ̂

}
X1

R̂ =
n∑

i=1

x′
i2 {si2si1}xi1 = X′

2Diag {si2si1}X1

where

si1 =
∂ ln fi1

∂(xi1β̂1)
and si2 =

∂ ln fi2

∂(xi2β̂2)

This structure is common for all two-step models in which each model has one index
function and no auxiliary parameters (when the models have auxiliary parameters, the
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calculations are somewhat more complicated as we will see below). With this informa-
tion it is straightforward to compute the Ĉ and R̂ matrices by using Stata’s matrix
accum command as suggested by Hardin:

// Calculate C using scores
. matrix accum C = age income ownrent selfemp const age income avgexp zhat
> const [iw=s2*s2*zhat*(1-zhat)*zz], nocons

// Calculate R using scores
. matrix accum R = age income ownrent selfemp const age income avgexp zhat
> const [iw=s2*s1], nocons

// Get only the desired partition
. matrix C = C[6..10,1..5]

. matrix R = R[6..10,1..5]

. matrix M = V2 + (V2 * (C*V1*C’ - R*V1*C’ - C*V1*R’) * V2)

. capture program drop doit

. matrix b = e(b)

. program define doit, eclass
ereturn post b M
ereturn local vcetype "Mtopel"
ereturn display

end

. doit

Mtopel
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
age .0731059 .1096293 0.67 0.505 -.1417636 .2879755

income .0452336 .4375397 0.10 0.918 -.8123285 .9027957
avgexp -.0068969 .004265 -1.62 0.106 -.0152561 .0014623

zhat 4.632355 10.82669 0.43 0.669 -16.58757 25.85228
_cons -6.319947 9.661564 -0.65 0.513 -25.25626 12.61637

For comparison, the Poisson output with unadjusted standard errors is given below:

Poisson regression Number of obs = 100
LR chi2(4) = 27.21
Prob > chi2 = 0.0000

Log likelihood = -78.330992 Pseudo R2 = 0.1480

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .0731059 .0542458 1.35 0.178 -.0332139 .1794258
income .0452336 .1741114 0.26 0.795 -.2960184 .3864856
avgexp -.0068969 .00202 -3.41 0.001 -.0108561 -.0029378

zhat 4.632355 3.661774 1.27 0.206 -2.54459 11.8093
_cons -6.319947 3.930768 -1.61 0.108 -14.02411 1.384217

The manual calculation (that which must be derived and then specified by the user) for
calculation of the estimates involves the evaluation of ∂ẑi/∂(xi1β̂1); the scores option
of predict makes the remaining calculation in Hardin’s procedure redundant.
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The main advantage of deriving the Murphy–Topel variance estimate in this way
is that modifying the code to use a different model in one of the two steps is easy. If,
for example, one were interested in using a probit model in the second step instead of
a Poisson model, one need only replace poisson with probit in the code above. This
change produces the following results:

Mtopel
Coef. Std. Err. z P>|z| [95% Conf. Interval]

age .040167 .0375665 1.07 0.285 -.0334619 .1137959
income .1221488 .1441061 0.85 0.397 -.1602941 .4045916
avgexp -.0023466 .0010854 -2.16 0.031 -.0044739 -.0002192

zhat 2.152821 2.385346 0.90 0.367 -2.522371 6.828014
_cons -3.8865 2.604024 -1.49 0.136 -8.990293 1.217293

Changing the first-stage model to a probit instead of a logit takes a little more work
since we have to take into account that the derivative of ẑi with respect to model 1’s
index function now equals φ(xi1β̂1) since ẑi = Φ(xi1β̂1). In addition to changing logit
to probit in the code and saving the linear prediction from the probit model as variable
xb, we must change the line calculating Ĉ as follows,

// Calculate C using scores
. matrix accum C = age income ownrent selfemp const age income avgexp zhat
> const [iw=s2*s2*normalden(xb)*zz], nocons

which produces the following results:

Mtopel
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
age .0803012 .1509582 0.53 0.595 -.2155714 .3761738

income .0397158 .5221716 0.08 0.939 -.9837218 1.063153
avgexp -.0068861 .0047102 -1.46 0.144 -.0161178 .0023457

zhat 5.393431 14.91054 0.36 0.718 -23.83068 34.61755
_cons -7.094363 13.68211 -0.52 0.604 -33.9108 19.72207

To use a linear regression model in the first step takes a little more work since we
have to modify the results from the regress command to get the maximum likelihood
estimates of the covariance matrix and the mean squared error of the regression:

. reg z age income ownrent selfemp // First stage: regression

. predict double zhat // Generated variable for second stage

. predict double res, res // Get residuals + squared residuals

. gen double res2 = res^2

. quietly sum res2

. scalar mse = r(mean) // ML estimate of sigma^2

. matrix V1 = (e(df_r)/e(N))*e(V) // ML estimate of covariance matrix

. gen double s1 = res*(1/mse) // Generate score
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Further, we must amend the code to take into account that the derivative of ẑi with
respect to model 1’s index function now equals 1 since ẑi = xi1β̂1,

// Calculate C using scores
. matrix accum C = age income ownrent selfemp const age income avgexp zhat
> const [iw=s2*s2*zz], nocons

which produces the following results:

. doit

Mtopel
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
age .1097948 .4069624 0.27 0.787 -.6878369 .9074264

income -.0550747 1.280603 -0.04 0.966 -2.565009 2.45486
avgexp -.0068635 .0061429 -1.12 0.264 -.0189034 .0051765

zhat 7.46005 34.49451 0.22 0.829 -60.14795 75.06805
_cons -9.27511 33.76454 -0.27 0.784 -75.45239 56.90217

If we want to use a negative binomial model instead of a Poisson model in the second
stage, we have to take into account the auxiliary (dispersion) parameter in the negative
binomial model when deriving the Murphy–Topel variance estimate. Now θ2 has two
segments: the regression coefficients β2 and the auxiliary parameter α.3 Here we have
the following,

Ĉ =
n∑

i=1

x̃′
i2

{
s2

i2

∂ẑi

∂(xi1β̂1)
γ̂

}
xi1 = X̃′

2Diag

{
s2

i2

∂ẑi

∂(xi1β̂1)
γ̂

}
X1

R̂ =
n∑

i=1

x̃′
i2 {si2si1}xi1 = X̃′

2Diag {si2si1}X1

where

X̃2 =
(
X2,

ai

si2

)
and ai =

∂ ln fi2

∂α

The only correction necessary to allow for the presence of the auxiliary parameter is
to replace X2 with X̃2 in the previous equations. X̃2 is simply X2 with an additional
column appended that contains the derivative of the log-likelihood function with respect
to the auxiliary parameter divided by the derivative of the log-likelihood function with
respect to the index function.4 Both these derivatives/scores can be calculated in Stata
by specifying the scores option with predict after running nbreg. The code and
results are given below:

3. α Is used here generally to denote an auxiliary parameter; it should not be confused with the α in
the description of the nbreg command in the Stata manual (our α actually equals ln α in the manual).

4. We divide by si2 to undo the weighting by si2 in the square brackets.
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. logit z age income ownrent selfemp

. predict double s1, scores

. matrix V1 = e(V)

. predict double zhat

. nbreg y age income avgexp zhat

. predict double s2 a, scores

. matrix V2 = e(V)

. scalar zz = _b[zhat]

. gen a_s = a / s2 // Divide a by s2 to undo weighting below

// Calculate C using scores
. matrix accum C = age income ownrent selfemp const age income avgexp zhat
> const a_s [iw=s2*s2*zhat*(1-zhat)*zz], nocons

// Calculate R using scores
. matrix accum R = age income ownrent selfemp const age income avgexp zhat
> const a_s [iw=s2*s1], nocons

// Get only the desired partition
. matrix C = C[6..11,1..5]
. matrix R = R[6..11,1..5]

. matrix M = V2 + (V2 * (C*V1*C’ - R*V1*C’ - C*V1*R’) * V2)

. matrix b = e(b)

. doit

Mtopel
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
age .107657 .1097165 0.98 0.326 -.1073833 .3226973

income .0209116 .3621894 0.06 0.954 -.6889665 .7307897
avgexp -.005743 .0023503 -2.44 0.015 -.0103495 -.0011365

zhat 6.469631 7.848509 0.82 0.410 -8.913164 21.85243
_cons -8.807249 8.353285 -1.05 0.292 -25.17939 7.564889

lnalpha
_cons 1.15111 .5468807 2.10 0.035 .0792434 2.222976

What if there is more than one auxiliary parameter in the model? This situation
can easily be accommodated using the above setup. Say that we wanted instead to use
an ordered probit in the second stage and a probit in the first stage. Collapsing the
dependent variable to three categories—0, 1, and 2, where 2 is “2 or higher”—produces
a model with two auxiliary parameters or cutoff points. Here

X̃2 =
(
X2,

a1
i

si2
,

a2
i

si2

)
where a1

i =
∂ ln fi2

∂α1
and a2

i =
∂ ln fi2

∂α2

where α1 and α2 are the two auxiliary parameters in the model. The following code
estimates the models and produces the Murphy–Topel variance estimate:

. probit z age income ownrent selfemp

. predict double s1, scores

. matrix V1 = e(V)



528 Calculating Murphy–Topel variance estimates in Stata

. predict double zhat

. predict xb, xb // Generate linear prediction

. gen y_ordered = y // Generate depvar for ordered probit

. recode y_ordered (3=2) (4=2) (7=2)

. oprobit y_ordered age income avgexp zhat

. predict double s2 a1 a2, scores

. matrix V2 = e(V)

. scalar zz = _b[zhat]

. gen a1_s = a1 / s2 // Divide by s2 to undo weighting below

. gen a2_s = a2 / s2

// Calculate C using scores
. matrix accum C = age income ownrent selfemp const age income avgexp zhat
> a1_s a2_s [iw=s2*s2*normalden(xb)*zz], nocons

// Calculate R using scores
. matrix accum R = age income ownrent selfemp const age income avgexp zhat
> a1_s a2_s [iw=s2*s1], nocons

// Get only the desired partition
. matrix C = C[6..11,1..5]

. matrix R = R[6..11,1..5]

. matrix M = V2 + (V2 * (C*V1*C’ - R*V1*C’ - C*V1*R’) * V2)

. matrix b = e(b)

. doit

Mtopel
Coef. Std. Err. z P>|z| [95% Conf. Interval]

y_ordered
age .0415961 .0383581 1.08 0.278 -.0335844 .1167766

income .1451392 .1519067 0.96 0.339 -.1525924 .4428708
avgexp -.0028311 .0011394 -2.48 0.013 -.0050644 -.0005978

zhat 2.551639 2.640499 0.97 0.334 -2.623645 7.726922

cut1
_cons 4.237672 2.859636 1.48 0.138 -1.367112 9.842456

cut2
_cons 4.799178 2.871063 1.67 0.095 -.8280026 10.42636

4 Conclusion

This note demonstrates how the Murphy–Topel variance estimator for two-step models
can be calculated in Stata by using the scores option of predict. This approach
reduces the amount of calculation needed to obtain the variance estimate and makes
changing from one model specification to another straightforward.
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