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Confidence intervals for rank statistics:
Percentile slopes, differences, and ratios
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Abstract. I present a program, censlope, for calculating confidence intervals for
generalized Theil–Sen median (and other percentile) slopes (and per-unit ratios) of
Y with respect to X. The confidence intervals are robust to the possibility that the
conditional population distributions of Y , given different values of X, differ in ways
other than location, such as having unequal variances. censlope uses the program
somersd and is part of the somersd package. censlope can therefore estimate
confounder-adjusted percentile slopes, limited to comparisons within strata defined
by values of confounders, or by values of a propensity score representing multiple
confounders. Iterative numerical methods have been implemented in the Mata
language, enabling efficient calculation of percentile slopes and their confidence
limits in large samples. I give example analyses from the auto dataset and from
the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC).

Keywords: snp15 7, somersd, censlope, ALSPAC, robust, confidence interval,
rank, nonparametric, median, percentile, slope, difference, ratio, Kendall’s τ ,
Somers’ D, Theil–Sen, Hodges–Lehmann, confounder adjusted, propensity score

1 Introduction

The Theil–Sen median slope is a rank-based parameter, defined in terms of Kendall’s τ ,
but expressed in y-axis units per x-axis unit and interpreted as a “typical” difference in Y
associated with a unit difference in X. Knowing this slope is therefore useful if we want
to use rank methods to make monetary or other practical decisions. It was introduced
by Theil (1950) and developed by Sen (1968), who derived a confidence interval formula.
If the X variable is binary, then the Theil–Sen median slope is known as the Hodges–
Lehmann median difference and is expressed in y-axis units. This median difference
was introduced by Hodges and Lehmann (1963) and developed by Lehmann (1963),
who derived a confidence interval formula that is a special case of the one in Sen (1968).
The median difference was made popular by Conover (1980), Campbell and Gardner
(1988), and Altman et al. (2000) and implemented in Stata by Wang (1999) and in
Patrick Royston’s SSC package cid. Sprent and Smeeton (2001) gives a good general
introduction to confidence interval formulas for median slopes and differences.

Most existing confidence interval formulas for median slopes and differences assume
that, if β is the median slope, Y − βX is statistically independent of X. This inde-
pendence in turn implies that the conditional distributions of Y , given different values
of X, differ only in location and not in other ways such as unequal variance. These

c© 2006 StataCorp LP snp15 7



498 Confidence intervals for rank statistics

problems are discussed in Wilcox (1998), which describes a possible solution using the
percentile bootstrap. Also the median differences and slopes are usually defined as crude
differences and slopes, assumed to apply to the whole population, and not as adjusted
differences and slopes, assumed to apply within subpopulations with similar values of
stratification or confounding variables. These assumptions may limit the usefulness of
these confidence interval formulas.

In a previous paper (Newson 2002), I argued that median differences and slopes
belong to a unified family of rank parameters, with a unified system of confidence interval
formulas. In this family of parameters, median differences and slopes are naturally
defined in terms of Somers’ D, which in turn is naturally defined in terms of Kendall’s
τa. This paper introduced the somersd package, downloadable from SSC, as a way of
calculating some of these confidence intervals. The somersd package then contained
two modules, namely, somersd, described in Newson (2000a), for calculating confidence
intervals for Somers’ D and Kendall’s τa, and cendif, described in Newson (2000b),
for calculating confidence intervals for Hodges–Lehmann median differences. In 2005,
Stata 9 introduced the Mata programming language, which made it possible to update
somersd to estimate many extended versions of Somers’ D and Kendall’s τa and to do so
more quickly. This update was reported in Newson (2006b), which contains the syntax,
formulas, and methods, and in Newson (2006a), which describes the Mata algorithm
used.

This article describes a third module, censlope, which has been added to the
somersd package in a recent update and which estimates generalized Theil–Sen me-
dian (and other percentile) slopes, differences, and ratios. In particular, these slopes,
differences, and ratios may be adjusted for confounding variables, allowing the user to
use rank methods to answer many questions that could previously be answered only by
using regression methods. In section 2, I describe the current version of the program
censlope. In section 3, I present, for reference, the methods and formulas used by
censlope. In section 4, I demonstrate a range of examples.

2 The program censlope

2.1 Syntax

censlope yvarname xvarname
[
if
] [

in
] [

weight
] [

, centile(numlist) eform

ystargenerate(newvarlist) estaddr somersd options iteration options
]

where yvarname and xvarname are variable names.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. They are interpreted
as for somersd.

bootstrap, by, jackknife, and statsby are allowed; see [U] 11.1.10 Prefix commands.
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2.2 Description

censlope calculates confidence intervals for generalized Theil–Sen median slopes and
other percentile slopes of a Y variable specified by yvarname with respect to an X vari-
able specified by xvarname. These confidence intervals are robust to the possibility that
the population distributions of Y , conditional on different values of X, are different in
ways other than location. This difference might happen if, for example, the conditional
distributions had different variances. For positive-valued Y variables, censlope can be
used to calculate confidence intervals for median per-unit ratios or other percentile per-
unit ratios associated with a unit increment in X. If X is binary with values 0 and 1,
then the generalized Theil–Sen percentile slopes are the generalized Hodges–Lehmann
percentile differences between the group of observations whose X value is 1 and the
group of observations whose X value is 0. censlope is part of the somersd package and
requires the somersd program to work. It executes the somersd command,

somersd xvarname yvarname
[
if
] [

in
] [

weight
] [

, somersd options
]

and then estimates the percentile slopes. The estimates and confidence limits for the
percentile slopes are evaluated using an iterative numerical method, which the user may
change from the default, using iteration options.

2.3 Options

centile(numlist) specifies a list of percentile slopes to be reported and defaults to
centile(50) (median only) if not specified. Specifying centile(25 50 75) will
produce the 25th, 50th, and 75th percentile differences.

eform specifies that exponentiated percentile slopes be given. This option is used if
yvarname specifies the log of a positive-valued variable. Then confidence intervals
are calculated for percentile ratios or per-unit ratios between values of the original
positive variable instead of for percentile differences or per-unit differences.

ystargenerate(newvarlist) specifies a list of variables to be generated, corresponding
to the percentile slopes, containing the differences Y ∗(β) = Y − βX, where β is
the percentile slope. The variable names in the newvarlist are matched to the list of
percentiles specified by the centiles() option, sorted in ascending order of percent-
age. If the two lists have different lengths, then censlope generates a number nmin
of new variables equal to the minimum length of the two lists, matching the first
nmin percentiles with the first nmin new variable names. Usually, there is only one
percentile slope (the median slope) and one new ystargenerate() variable, whose
median can be used as the intercept when drawing a line through the data points
on a scatterplot.

estaddr specifies that the results saved in r() also be saved in e() (see section 2.5).
This option makes it easier to use censlope with parmby, to create an output dataset
(or resultsset) with 1 observation per by-group and data on confidence intervals for
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Somers’ D and median slopes. parmby is part of the package parmest, downloadable
from SSC. The online help for censlope gives an example using the estaddr option
with parmby.

somersd options are any of the options used by somersd.

2.4 Iteration options

Table 1: Iteration options used by censlope

iteration options Description

fromabs(#) initial estimate for absolute magnitude of slopes
brackets(#) maximum number of rows for the bracket matrix
technique(algorithm spec) iterative numerical solution technique
iterate(#) perform maximum of # iterations; default is

iterate(16000)
tolerance(#) tolerance for the percentile slopes
log display an iteration log of the brackets during bracket

convergence

where algorithm spec is

algorithm
[

#
[

algorithm
[

#
] ]

. . .
]

and algorithm is { bisect | regula | ridders }

The censlope command calculates estimates and confidence limits for a median or
other percentile slope β by solving numerically a scalar equation in β with an iterative
method. The options controlling the exact iterative method will probably not be used
often, because censlope is intended to have sensible defaults. Nontechnical readers
may therefore skip this section. However, users who wish to change the default method
may do so using a set of options similar to the maximization options used by Stata’s
maximum likelihood estimation commands (see [R] maximize). These options are listed
in table 1 and are described as follows:

fromabs(#) specifies an initial estimate of the typical absolute magnitude of a per-
centile slope. If fromabs() is not specified, it defaults to the aspect ratio (ymax −
ymin)/(xmax− xmin) (where xmax and xmin are the maximum and minimum X
values and ymax and ymin are the maximum and minimum Y values) if that ratio
is defined and nonzero and to 1 otherwise. This magnitude is used in construct-
ing the bracket matrix. Candidate bracket β values will have values of zero or of
±fromabs× 2K , where K is a nonnegative integer. The bracket matrix is a matrix
with two columns and three or more rows, each row containing a candidate β value
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in column 1 and the corresponding ζ∗ value in column 2. The bracket matrix is
used to find an initial pair of β values for input into the iterative numerical solution
method, which attempts to find a solution in β between the two initial β values.
The bracket matrix is initialized to have β values −fromabs, 0, and +fromabs, as
well as ζ∗ values corresponding to these β values. If a target ζ value is outside the
range of the ζ∗ values of the bracket matrix, then the bracket matrix is extended by
adding new rows before the first row by successively doubling the β value in the first
row or by adding new rows after the last row by successively doubling the β value
in the last row, until there is a ζ∗ value in the second column on either side of the
target ζ value. For an explanation of this terminology, see section 3.

brackets(#) specifies a maximum number of rows for the bracket matrix. The mini-
mum is brackets(3). The default is brackets(1000).

technique(algorithm spec) specifies an iterative solution method for finding a solution
in β to the equation to be solved. The following algorithms are currently imple-
mented in censlope:

technique(bisect) specifies an adapted version of the bisection method for step
functions.

technique(regula) specifies an adapted version of the regula falsi (or false posi-
tion) method for step functions.

technique(ridders) specifies an adapted version of the method of Ridders (1979)
for step functions.

The default is technique(ridders 5 bisect iterate), where iterate is the value of
the iterate() option. The bisection method is guaranteed to converge in a number
of iterations similar to the binary logarithm of the tolerance() option. The regula
falsi and Ridders methods are usually faster if the ζ∗ function is nearly continuous
but may sometimes be slower if the ζ∗ function is a discrete-step function. All
methods are modified versions for step functions of the methods of the same names
described in Press et al. (1992).

You can switch between algorithms by specifying more than one in the technique()
option. By default, censlope will use an algorithm for five iterations before switch-
ing to the next algorithm. To specify a different number of iterations, include
the number after the technique in the option. For example, specifying the option
technique(ridders 10 bisect 1000) requests that censlope perform 10 itera-
tions with the Ridders algorithm, perform 1,000 iterations with the bisection algo-
rithm, and then switch back to Ridders for 10 iterations, and so on. The process
continues until convergence or until the maximum number of iterations is reached.

iterate(#) specifies the maximum number of iterations. When the number of iter-
ations equals iterate(), the iterative solution program stops and records failure
to converge. If convergence is declared before this threshold is reached, it will stop
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when convergence is declared. The default value of iterate(#) is the current value
of set maxiter, which is iterate(16000) by default.

tolerance(#) specifies the tolerance for the percentile differences. When the relative
difference between the current β brackets is less than or equal to tolerance(), the
tolerance() convergence criterion is satisfied. tolerance(1e-6) is the default.

log specifies that an iteration log showing the progress of the numerical solution method
be displayed. If an iteration log is displayed, there will be four separate iteration
sequences per percentile, estimating the left estimate, the right estimate, the lower
confidence limit, and the upper confidence limit. For this reason, the default is not
to produce an iteration log. However, if censlope is expected to be slow (as for
large datasets), an iteration log can be specified to reassure the user that progress
is being made.

2.5 Saved results

censlope saves the following results in r():

Scalars
r(level) confidence level
r(fromabs) value of the fromabs() option
r(tolerance) value of the tolerance() option

Macros
r(yvar) name of the Y variable
r(xvar) name of the X variable
r(eform) eform if specified
r(centiles) list of percentages for the percentiles
r(technique) list of techniques from the technique() option
r(tech steps) list of step numbers for the techniques

Matrices
r(cimat) confidence intervals for percentile differences or ratios
r(rcmat) return codes for entries of r(cimat)
r(bracketmat) bracket matrix
r(techstepmat) column vector of step numbers for the techniques

The matrix r(cimat) has one row per percentile and columns containing the percent-
ages, percentile estimates, lower confidence limits, and upper confidence limits, labeled
Percent, Pctl Slope, Minimum, and Maximum if eform is not specified, or Percent,
Pctl Ratio, Minimum, and Maximum if eform is specified. The matrix r(rcmat) has
the same numbers of rows and columns as r(cimat), with the same labels, and the
first column contains the percentages, but the other entries contain return codes for the
estimation of the corresponding entries of r(cimat). These return codes are equal to 0
if the β value was estimated successfully, 1 if the corresponding ζ∗ value could not be
calculated, 2 if the corresponding ζ∗ value could not be bracketed, 3 if the β brackets
failed to converge, and 4 if the β value could not be calculated from the converged β
brackets. The matrix r(bracketmat) is the final version of the bracket matrix described
in the help for the fromabs() and brackets() options of censlope and has one row
per β bracket and two columns labeled Beta and Zetastar containing the β brackets
and the corresponding ζ∗ values. The matrix r(techstepmat) is a column vector, with
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one row for each of the techniques listed in the technique() option, with a row label
equal to the name of the technique and a value equal to the number of steps for that
technique. The fromabs(), brackets(), tolerance(), and technique() options are
described in section 2.4 above.

censlope also saves in e() a full set of estimation results for the somersd command
as described in section 2.2 above. If estaddr is specified, this set of estimation results
is expanded by adding a set of e() results with the same names and contents as the
r() results. This expansion allows the user to pass a censlope command to parmby,
producing an output dataset (or resultsset) with 1 observation per by-group and data
on confidence intervals for Somers’ D and for the median slope.

3 Methods and formulas

This section is intended mainly as a reference for the extensive family of methods and
formulas used by the censlope program. Less technically minded readers may skip or
skim through this section and progress to the Examples.

The Theil–Sen median slope was introduced by Theil (1950) and developed further
by Sen (1968). If X is binary with values 0 and 1, the Theil–Sen slope is the Hodges–
Lehmann median difference of Hodges and Lehmann (1963) and Lehmann (1963). The
methods used by censlope are a generalization of the methods of Theil and Sen. They
include, as a special case, the methods used by cendif (Newson 2000b), which calculates
confidence intervals for generalized Hodges–Lehmann median differences and is part of
the somersd package. However, cendif (like ttest) estimates the median difference
between Y values associated with the smaller X value and Y values associated with
the larger X value, whereas censlope (like regress), given a binary X variable with
values 0 and 1, estimates the median difference between Y values associated with the
larger X value and Y values associated with the smaller X value.

Percentile slopes are defined in terms of the parameters Somers’ D (Somers 1962)
and Kendall’s τa (Kendall and Gibbons 1990). A discussion of the connections between
these parameters appears in Newson (2002). For censlope, we will define Somers D
and Kendall’s τa in the general sense used in Newson (2006b). Given two random
variables U and V , we denote by τ(U, V ) the Kendall’s τa of U and V and denote by
D(U |V ) the Somers’ D of U with respect to V . In brief, if two (U, V ) pairs, (Ui, Vi)
and (Uj , Vj), are sampled from some population of such pairs by using some sampling
scheme, τ(U, V ) is the difference between the probability that the two (U, V ) pairs are
concordant (meaning that the larger U value is paired with the larger V value) and the
probability that the two (U, V ) pairs are discordant (meaning that the larger U value
is paired with the smaller V value). I define D(U |V ) as the difference between the
corresponding conditional probabilities, given that the two V values are strictly ordered
(meaning that one V value is known to be larger than the other V value). Both τ(U, V )
and D(U |V ) are differences between probabilities, and therefore both may have values
ranging from −1 (for a “perfect negative association”) to +1 (for a “perfect positive
association”), but τ(U, V ) is always symmetric in U and V , whereas D(U |V ) is not. I
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will use the notation θ(U, V ) to stand for the value of either τ(U, V ) or D(U |V ) in the
population and denote the corresponding sample value as θ̂(U, V ). The somersd package
allows us to choose between Somers’ D and Kendall’s τa by using the taua option and
provides other options to specify a version of either parameter corresponding to a specific
sampling scheme.

For an outcome variable Y , a predictor variable X, and a proportion q such that
0 ≤ q ≤ 1, a 100qth percentile slope of Y with respect to X is defined as a value β
satisfying

θ(Y − βX,X) = 1 − 2q (1)

If q = 0.5, then 1 − 2q = 0, and a solution in β to (1) is known as a Theil–Sen median
slope, as defined in Theil (1950) and Sen (1968). There is not always a unique solution to
(1) in β. If the joint population distribution of Y and X is discrete (as are all population
distributions sampled by applied statisticians in the real world), θ(Y − βX,X) will be
a monotonically nonincreasing step function of β, and there may be no exact solution
or an interval of exact solutions. However, the confidence intervals derived here will
contain any solution with the specified confidence level, if a solution exists.

If θ( · , · ) stands for Somers’ D rather than Kendall’s τa, the value of the parameter
θ(Y − βX,X) depends only on the conditional distribution of pairs of bivariate obser-
vations (X1, Y1) and (X2, Y2) satisfying X1 < X2. For such pairs of observations, the
pairwise slope (Y2 − Y1)/(X2 − X1) is always defined. If neither X nor Y is subject to
left or right censorship, the equality (1) becomes

1 − 2q = D(Y − βX |X )
= Pr(Y1 − βX1 < Y2 − βX2 ) − Pr(Y1 − βX1 > Y2 − βX2 )
= Pr{ (Y2 − Y1)/(X2 − X1) > β } − Pr{ (Y2 − Y1)/(X2 − X1) < β }

(2)

Therefore, a 0.5th percentile (or median) slope has the expected property that a pairwise
slope is equally likely to be above or below it. If in addition the distributions of X and
Y are limited to finite sets of discrete values, the distribution of pairwise slopes will
be bounded, and a 0th percentile slope will be any number below all possible pairwise
slopes, and a 100th percentile slope will be any number above all possible pairwise
slopes.

We aim to include a value β in a confidence interval for a 100qth percentile slope if
and only if the sample θ̂(Y −βX,X) is compatible with a population θ(Y −βX,X) equal
to 1 − 2q. The methods of Newson (2006b), used by the program somersd, typically
use a monotonically increasing transformation ζ( · ), which may be normalizing and/or
variance stabilizing when applied to θ̂(Y − βX,X). We define

ζ∗(β) = ζ{ θ̂(Y − βX,X) } (3)

ζ∗(β) is a randomly variable function of β, with a population standard error SE{ ζ∗(β) },
estimated consistently by a corresponding sample standard error ŜE{ ζ∗(β) }, whose
formula is one of those described in Newson (2006b). We will assume that, if θ(Y −
Xβ,X) = 1 − 2q, the pivotal quantity

{ζ∗(β) − ζ(1 − 2q) } / SE{ ζ∗(β) } (4)
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has a standard normal distribution. In general, the sample ζ∗(β) is a monotonically
nonincreasing step function of β, bounded above by ζ(−1) and below by ζ(1), either of
which may be infinite, depending on the choice of transformation ζ( · ).

Figure 1 illustrates an example of a function ζ∗(β) from the auto data. Here the
observations are car models, the Y variable is trunk (trunk space in cubic feet), the X
variable is foreign (a binary variable indicating non-U.S. origin), the transformation
is the hyperbolic arctangent or Fisher’s z (as recommended by Edwardes [1995]), and
a slope β is a difference (expressed in cubic feet) between cars made by non-U.S. and
U.S. companies. The function ζ∗(β) is plotted against the differences β over the range
of differences for which the absolute value of ζ∗(β) is finite. (As there are no differences
between non-U.S. and U.S. cars more than 9 ft3 or less than −18 ft3, the value of ζ∗(β)
is −∞ for β > 9 and +∞ for β < −18.) This plot was made using the program cendif,
which is restricted to binary X variables, and calculates the full set of differences in
the Y variable between observations in the two groups. The square data points give
values of ζ∗(β) for differences β actually observed in the auto data, and the solid
line gives values of ζ∗(β) for values of β between these observed values. The sample
ζ∗(β) is a monotonically nonincreasing step function of β, which is discontinuous at
the observed differences and constant within the open intervals between consecutive
observed differences. This outcome implies that a unique exact solution for (1) does not
usually exist, as there is usually either no exact solution or an interval of exact solutions
between two consecutive observed differences. In a finite sample, this will be true for
observed slopes in general, whether or not the X variable is binary.

(Continued on next page)
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Figure 1: ζ∗(β) plotted against the difference β in trunk space between non-U.S. and
U.S. cars

If we knew the value of SE{ζ̂∗(β)}, then a 100(1 − α)% confidence interval for a
100qth percentile difference might be the interval of values β for which

ζ(1 − 2q) − zα SE{ζ̂∗(β)} ≤ ζ∗(β) ≤ ζ(1 − 2q) + zα SE{ζ̂∗(β)} (5)

where zα is the 100{1 − (1/2)α}th percentile of the standard normal distribution. To
construct such a confidence interval, we proceed as follows. Given a value ζ in the range
of ζ( · ), we define

BL(ζ) = sup {β : ζ∗(β) > ζ}

BR(ζ) = inf {β : ζ∗(β) < ζ}

BC(ζ) =

⎧⎪⎪⎨⎪⎪⎩
Undefined, if BL(ζ) = −∞ and BR(ζ) = ∞,
BL(ζ), if BL(ζ) > −∞ and BR(ζ) = ∞,
BR(ζ), if BR(ζ) < +∞ and BL(ζ) = −∞,
{BL(ζ) + BR(ζ) } /2, otherwise.

(6)

By convention, the supremum (or infimum) of a set unbounded to the right (or left) are
defined as +∞ (or −∞), respectively, and the supremum and infimum for an empty
set are −∞ and +∞, respectively. Clearly, BL(ζ) ≤ BC(ζ) ≤ BR(ζ), and the values
of BL(ζ) and BR(ζ) (if finite), can be either the same observed slope or two successive
observed slopes. The confidence interval for a 100qth percentile slope is centered on the
sample 100qth percentile slope, defined as

ξ̂q = BC { ζ(1 − 2q) } (7)
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The lower and upper confidence limits for a qth percentile slope are, respectively,

ξ̂(min)
q = BL

[
ζ(1−2q)−zα ŜE{ζ∗(ξ̂q)}

]
, ξ̂(max)

q = BR

[
ζ(1−2q)+zα ŜE{ζ∗(ξ̂q)}

]
(8)

If tdist is specified, censlope uses the t distribution with ν = N−1 degrees of freedom
if there are N unclustered observations or with ν = Nclust−1 degrees of freedom if there
are Nclust clusters, instead of the normal distribution, and therefore tν,α replaces zα in
(8). The upper and lower confidence limits may occasionally be infinite for extreme
percentiles and/or very small sample numbers. censlope codes these infinite limits as
plus or minus the Stata creturn value c(maxdouble), which is the system maximum
double-precision value (see [P] creturn).

Figure 1 illustrates these formulas for the Y variable trunk and the X variable
foreign in the auto data. The median difference in trunk capacity ξ̂0.5 and its lower
and upper 95% confidence limits are shown as reference lines on the horizontal axis. The
estimated median difference in trunk space between non-U.S. and U.S. cars is −3 ft3,
with 95% confidence limits from −5 to −1 ft3. The reference lines on the vertical axis
are the optimum, minimum, and maximum values of ζ∗(β) required for β to be in the
confidence interval.

censlope inherits all the options of somersd, so θ(X,Y − βX) in (1) can stand
for any of the generalized versions of Somers’ D and Kendall’s τa described in Newson
(2006b). We can therefore estimate generalized percentile slopes or differences, de-
fined in terms of generalized Somers’ D or Kendall’s τa parameters. For instance, we
can use the wstrata() option to estimate median slopes and differences restricted to
comparisons within strata defined by a confounding variable, or we might use the op-
tion funtype(wcluster) to estimate within-cluster median differences and slopes. In
the terminology of Serfling (1980), the Theil–Sen percentile slope is an M estimate if
funtype(wcluster) is specified, a hybrid between an M estimate and a U statistic if
funtype(bcluster) is specified, and a hybrid between an M estimate and a V statistic
if funtype(vonmises) is specified.

3.1 Numerical evaluation of BL(ζ) and BR(ζ)

We can see by (6), (7), and (8) that the key to calculating confidence intervals for
percentile slopes is calculating BL(ζ) and BR(ζ) for a given ζ. Traditionally, this task
has been done by calculating every possible pairwise slope (Yi −Yj)/(Xi −Xj) for each
pair of observations in the sample to make a dataset of all pairwise slopes and by using
this dataset to find the median and other percentile slopes. This approach requires an
amount of computational time and data storage space proportional to N2, where N
is the number of observations. For this reason, confidence intervals for median slopes
have traditionally been calculated only for small samples, as have confidence intervals
for other rank statistics, such as Somers’ D and Kendall’s τa, which are also commonly
calculated by comparing all (X,Y ) pairs. See Sprent and Smeeton (2001) for some
examples using traditional methods.
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Comparing all (X,Y ) pairs is not necessary. somersd uses the algorithm of Newson
(2006a), which calculates Somers’ D, Kendall’s τa, and their jackknife variances in a
time asymptotically proportional to N log N , using a search tree to avoid having to
compare every (X,Y ) pair. We can therefore use somersd to calculate ζ∗(β) for any
β in a time proportional to N log N . censlope uses versions of some of the iterative
numerical methods of chapter 9 of Press et al. (1992), modified for step functions, to
evaluate BL(ζ) and BR(ζ), for a given ζ. This method is done by defining the object
function ω(β) = ζ∗(β) − ζ and attempting to find a solution in β to the equation

0 = ω(β) = ζ∗(β) − ζ (9)

using somersd to calculate ω(β). This calculation requires a computational time of
order NevalN log N , where Neval is the number of evaluations of the object function in
the iteration sequence. For very large datasets (N > 1,000), this approach will typically
take less time than a quadratic algorithm that compares all (X,Y ) pairs. However,
in small datasets, such as the auto data, cendif typically takes much less time to
calculate a Hodges–Lehmann median difference by using its quadratic algorithm than
censlope takes by using one of its iterative algorithms to do the same. This finding is
not surprising. The performance study of Newson (2006a) seems to imply that, if there
are fewer than 100 observations, then the execution time of somersd is dominated by
“constant” terms not dependent on sample size, whether somersd is using a quadratic
algorithm or a search tree algorithm. Therefore, we would expect the computational
time for an iteration sequence, involving Neval calls to somersd, to have a component
proportional to Neval, which will dominate execution time if the sample size is small
and the number of iterations is large.

The algorithms used by censlope are implemented in the Mata language and use
versions of standard bracket convergence methods for finding roots, modified for step
functions. To solve an equation of the form (9), we would normally start with two β
values, β0 and β1, whose corresponding respective ω values, ω0 and ω1, bracket zero,
meaning that ω0 ω1 < 0 (because the two ω values have opposite signs). If ω( · ) is con-
tinuous, then by the intermediate-value theorem, there will be a solution to (9) between
β0 and β1, and this solution will be unique if ω( · ) is strictly monotonic. However, here,
ω( · ) is not continuous but is a nonincreasing step function similar to figure 1. There-
fore, instead of expecting to find a unique solution to (9), we try to find a supremum (or
infimum) of the set of β values with positive (or negative) values of the object function.
In this case, the two ω values are said to bracket zero if and only if

sign(ω1) �= 0 and sign(ω1) �= sign(ω0) (10)

ω1 is a strict bracket, which must not be zero, whereas ω0 is a partial bracket, which
may either be zero or have the opposite sign of ω1. During each iteration, we compute
a new β value βnew, between β0 and β1, with a corresponding ω value ωnew = ω(βnew).
In the next iteration, the pair (βnew, ωnew) will replace (β1, ω1) if sign(ωnew) = sign(ω1)
and will replace (β0, ω0) otherwise. Iterations proceed until β0 and β1 have a relative
difference no more than the value of the tolerance() option. Once this threshold has
been reached, we can use either of the β values to estimate BL(ζ) or BR(ζ) (depending
on whether we initialized β1 < β0 or β0 < β1).
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The numerical methods specified by the technique() option differ in how they
calculate βnew. bisect does this using the simple bisection formula, βnew = (β0+β1)/2.
regula uses simple bisection if ω0 = 0 and uses the regula falsi (or false position) method
otherwise. ridders uses simple bisection if ω0 = 0 and uses the method of Ridders
(1979) otherwise. The simple bisection method is guaranteed to converge slowly, whereas
the modified regula falsi and Ridders methods will be faster if the object function ω( · )
is nearly continuous but may be much slower if ω( · ) is very discrete. The user may
specify a combination of methods, such as starting with the regula falsi or Ridders
method for earlier iterations (when the object function is nearly continuous over a long
interval) and moving to the bisection method later (when the object function is highly
discrete over a short interval).

For each percentage 100q, censlope attempts to evaluate BL{ζ(1−2q)} and BR{ζ(1−
2q)}, attempts to evaluate the percentile estimate ξ̂q, and then (if this evaluation is suc-
cessful) evaluates the two confidence limits. This pathway implies four sequences of
iterations to evaluate: the “left estimate”, the “right estimate”, and the two confi-
dence limits, respectively. Typically, using the default tolerance of 1e-6 and the “slow
but sure” bisection method implies four sets of around 20 iterations. Together with
the initialization of the brackets, this method implies many (80–100) calls to somersd.
However, that number is usually fewer than 100 evaluations per percentile, implying less
work than (say) bootstrapping Somers’ D, which would typically involve at least 1,000
evaluations. On the other hand, if the sample size is large, this method would probably
be unthinkable for practical statisticians without the algorithm of Newson (2006a).

3.2 Comparisons with existing methods

Sen (1968) developed a confidence interval formula for ξ̂q in the special case where
q = 0.5, θ(Y,X) = τ(Y,X), and ζ(θ) = θ, using methods similar to those in this
article. In this special case, (1) becomes simply τ(Y −βX,X) = 0. The main difference
from the present method was in how the distribution of ζ∗(β) was calculated. Sen
assumed that the variables X and Y − βX were not only “Kendall uncorrelated” but
also statistically independent. For small sample sizes (N ≤ 10), the confidence interval
was calculated using tables of the exact distribution of the sample Kendall’s τa, based
on that assumption. For larger sample sizes, the population standard error SE[ ζ∗(β) ]
was calculated from the marginal sample distribution of X, using the same assumption.
(See Kendall and Gibbons [1990] for tables of the exact distribution for small sample
sizes and for a demonstration that the Central Limit Theorem works well at sample sizes
as small as 8 for the sample Kendall’s τa under the null hypothesis of independence.)
The assumption of independence between the predictor variable X and the “residuals”
Y − βX implies that the conditional population distributions of Y , given each value
of X, are different only in location and may not differ in the conditional variance, or
indeed in any other conditional moment about the mean. The original Sen method
therefore does not use the assumption of normality but does use the assumption of
homoskedasticity, which typically causes more problems when it is wrong.
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Lehmann (1963) derived a confidence interval for the Hodges–Lehmann median dif-
ference, which is the Theil–Sen slope for binary X variables, based on the same assump-
tion of independence. This method was made popular by Conover (1980), Campbell
and Gardner (1988), and Altman et al. (2000) and is available in unofficial Stata, using
Duolao Wang’s npshift routine (Wang 1999) or Patrick Royston’s cid routine, down-
loadable from SSC. The method is essentially a special case of the Sen (1968) method
and is presumably subject to the same cautions.

The method used by censlope and cendif, by contrast, can estimate percentile dif-
ferences other than the median difference. Even for a median difference, the predictor
variable X and the “residuals” Y − βX are assumed to be only “Kendall uncorrelated”
and not necessarily independent. The population standard error SE[ ζ∗(β) ] is estimated
using the sample standard error ŜE[ ζ∗(β) ], which is calculated using an infinitesimal
jackknife method described in Newson (2006b). This method is robust to heteroskedas-
ticity, probably at the price of being less robust to extremely small sample sizes than
the traditional methods. Therefore, the method of censlope can be compared with
the original Sen method as Huber confidence intervals can be compared with maximum
likelihood or quasilikelihood confidence intervals, and the method of cendif can be
compared with the Lehmann method as the unequal-variance t test can be compared
with the equal-variance t test. Lehmann’s method, like the equal-variance t test, as-
sumes that you can use data from the larger of two samples to estimate the population
variability of the smaller sample. The censlope method, like the unequal-variance t
test, assumes that you can use data from the smaller of the two samples to estimate the
population variability of the smaller sample. At present, if the tdist option is specified
for censlope or cendif, the number of degrees of freedom is set to one less than the
sum of the two sample numbers. This method is in contrast to the unequal-variance
t test, which typically uses a more complicated formula (Satterthwaite 1946) and is
usually less generous with degrees of freedom if the smaller sample size is very small.

The issue of heteroskedasticity, as it affects the t test, is discussed in Moser, Stevens,
and Watts (1989) and in Moser and Stevens (1992), which explored the issue, using
exact analytical formulas to compare the equal-variance t test with the Satterthwaite
unequal-variance t test. Their conclusion (as I understand it) appears to be that we
should view the equal-variance t test as a special method for use only when we “know”
that the subpopulation variances are equal, rather than following the more traditional
practice of viewing the unequal-variance t test as a special method for use only when
we “know” that the subpopulation variances are unequal. I have carried out some
unpublished simulations, comparing cendif to the Lehmann method and to the two t
tests. These simulations, some of which are briefly described in Newson (2000b) and in
Newson (2002), seem to point to a similar recommendation regarding the two types of
rank-based methods for median differences. However, more work is probably required
on this issue.

Another method of defining heteroskedasticity-consistent confidence intervals for the
Theil–Sen median slope is the percentile bootstrap, recommended by Wilcox (1998).
Bootstrapping censlope or cendif may be an option, at least for small samples, where
the computational cost of evaluating one sample median slope or difference, using a
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quadratic or iterative method, is low enough to allow us to evaluate many subsample
median slopes or differences. censlope adds the options of estimating clustered and/or
stratified median slopes and differences, as well as the option of nonbootstrap confi-
dence intervals for large samples. The infinitesimal jackknife method, used by somersd,
is usually considered to be an inferior substitute for the bootstrap method applied to
the same parameter. However, in this case, the infinitesimal jackknife standard error
calculated by censlope is not for the median slope itself but for another parameter
(Somers’ D or Kendall’s τa), for which the central limit theorem works fast, especially
under the null hypothesis (Kendall and Gibbons 1990). This setup might limit the ad-
vantage of the bootstrap over the infinitesimal jackknife. On the other hand, a possible
future compromise might be to modify censlope to allow it to bootstrap Somers’ D or
Kendall’s τa and thereby to substitute bootstrap-based formulas for formulas (5) and
(8) when calculating confidence intervals for the percentile slope itself. Whether we use
the bootstrap or the infinitesimal jackknife, it is probably a good idea, if the sample size
is large, to calculate the Theil–Sen median slope by using a nonquadratic algorithm,
which does not require calculation of all the individual pairwise slopes.

4 Examples

These examples introduce some of the capabilities of censlope. There are more exam-
ples in the online help for censlope and in censlope.pdf, which is distributed with
the somersd package.

4.1 Weight per inch in the auto data

In the auto data, we can use censlope to estimate the median slope of weight (in U.S.
pounds) with respect to length (in U.S. inches) as follows:

. use http://www.stata-press.com/data/r9/auto
(1978 Automobile Data)

. censlope weight length, tdist
Outcome variable: weight
Somers’ D with variable: length
Transformation: Untransformed
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight .8286359 .0275321 30.10 0.000 .7737644 .8835073

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 32.745114 30.508468 35.185195
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The untransformed Somers’ D of weight with respect to length is 0.83, with a confidence
interval from 0.77 to 0.88, indicating that, in the population from which these cars were
sampled, a longer car is 77%–88% more likely to be heavier than a shorter car than to
be lighter than a shorter car. Each additional inch of length typically adds 30.51–35.19
pounds of weight.

If we use the z transform for Somers’ D, the results are as follows:

. censlope weight length, tdist transf(z)
Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI for transformed Somers’ D

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.183767 .0878602 13.47 0.000 1.008662 1.358873

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

weight .82863585 .76520811 .87613131

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 32.745093 30.571414 35.121969

This time, Somers’ D is 0.77–0.88, implying (again) that longer cars are 77%–88%
more likely to be heavier than shorter cars than to be lighter than shorter cars. The
typical increase in weight per additional inch of length is 30.57–35.12 pounds per inch,
which is similar to the previous confidence interval.

Transformations such as Fisher’s z are more likely to be important in estimating
percentile slopes other than the median. We can ask for the 25th and 75th percentiles
as well, using the centile() option:

. censlope weight length, tdist transf(z) centile(25(25)75)
Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI for transformed Somers’ D

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.183767 .0878602 13.47 0.000 1.008662 1.358873
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Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

weight .82863585 .76520811 .87613131

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

25 24.102562 19.999992 27.06897
50 32.745093 30.571414 35.121969
75 41.818174 38.620683 46.200022

We see that the 25th percentile slope is 20.00–27.07 pounds per inch and that the 75th
percentile slope is 38.62–46.20 pounds per inch.

We can also produce plots of observed and fitted values, using the ystargenerate()
option of censlope. After executing censlope, we use egen to calculate the median
of the variable resid, generated by the ystargenerate() option, which stores the
“residuals” Y − βX, where Y is weight, X is length, and β is the median slope. This
median is stored in a new variable, named intercept. Then we generate the fitted
values of weight in a new variable wthat, calculated by subtracting Y − βX from Y
to obtain βX and then adding intercept. These fitted values are plotted as a line
against length, and the observed weight values are superimposed to create the graph
of figure 2.

. censlope weight length, tdist transf(z) ystargenerate(resid)
Outcome variable: weight
Somers’ D with variable: length
Transformation: Fisher’s z
Valid observations: 74
Degrees of freedom: 73

Symmetric 95% CI for transformed Somers’ D

Jackknife
length Coef. Std. Err. t P>|t| [95% Conf. Interval]

weight 1.183767 .0878602 13.47 0.000 1.008662 1.358873

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

weight .82863585 .76520811 .87613131

95% CI(s) for percentile slope(s)
Percent Pctl_Slope Minimum Maximum

50 32.745093 30.571414 35.121969

. egen intercept = median(resid)

. gene wthat = weight - resid + intercept

. label var wthat "Fitted weight"

. twoway scatter weight length || line wthat length, lpattern(solid)

(Continued on next page)
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Figure 2: Observed and fitted car weights plotted against car length

4.2 Prenatal paracetamol and immunoglobulin E

The Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) is a birth cohort
study based at the University of Bristol, Bristol, UK. For more information, see the
study web site at http://www.alspac.bris.ac.uk. As part of the study, the mothers
of 12,127 children were asked whether they ever used paracetamol (acetaminophen)
in weeks 20–32 of pregnancy. At 7 years of age, total immunoglobulin E (IgE) was
measured in the blood of 4,848 of these children. IgE level is viewed as a measure of
allergic tendency and is raised in individuals suffering from allergic diseases such as
asthma. Shaheen et al. (2005) reported that in ALSPAC the children of paracetamol
users typically had higher IgE levels than those of children of paracetamol nonusers,
based on estimates of geometric mean ratios.

The distribution of total IgE, expressed in kilounits per liter (kU/L), in the 4,848
children with data on IgE and on maternal paracetamol use in late pregnancy, is given
in figure 3. The distribution is nonnormal and has a long tail of extremely high values.
A total of 2,051 of these children had mothers who reported using paracetamol in late
pregnancy, and the remaining 2,797 had mothers who reported not using paracetamol.
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Figure 3: Distribution of blood IgE in 4,848 children in ALSPAC

We used censlope to compare the IgE levels in children exposed and unexposed to
maternal paracetamol use in late pregnancy, using Somers’ D and the Hodges–Lehmann
median IgE ratio. Given a randomly sampled paracetamol-exposed child and a randomly
sampled unexposed child, Somers’ D is the difference between the probability that the
exposed child has the higher IgE level and the probability that the unexposed child has
the higher IgE level. The Hodges–Lehmann median ratio is the median ratio between
IgE levels in two such randomly sampled children and is defined as the exponential
of the Hodges–Lehmann median difference between the logged IgE values in the two
groups and estimated using the eform option of censlope. The results are as follows:

. censlope lnigetot para32g, transf(z) eform
Outcome variable: lnigetot
Somers’ D with variable: para32g
Transformation: Fisher’s z
Valid observations: 4848

Symmetric 95% CI for transformed Somers’ D

Jackknife
para32g Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnigetot .0533954 .0168421 3.17 0.002 .0203856 .0864053

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

lnigetot .05334475 .02038276 .0861909

95% CI(s) for percentile ratio(s)
Percent Pctl_Ratio Minimum Maximum

50 1.172549 1.0616111 1.2944986
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Here lnigetot is the natural log of total IgE, and para32g is a binary variable,
indicating paracetamol exposure during weeks 20–32 of gestation. From the asymmetric
confidence interval for the untransformed Somers’ D, we see that, if we choose an
exposed child and an unexposed child at random, the exposed child is 2.0%–8.6% more
likely than the unexposed child to have the higher IgE level. From the confidence
interval for the 50th percentile (or median) ratio, we can see that the median ratio is
1.06–1.29, implying that the exposed child typically has 6%–29% more IgE than the
unexposed child.

However, these are only crude, unadjusted estimates, and the effects that they rep-
resent could be due to potential confounding variables. To produce confounder-adjusted
estimates, we used a propensity score, as defined in Rosenbaum and Rubin (1983) and
Rosenbaum (2003). We defined this score by fitting a logistic regression model with
para32g as the outcome to data from the 12,127 children with paracetamol data. The
predictors in this model were the following confounders: gender, maternal age, prenatal
tobacco exposure, mother’s education, housing tenure, parity, maternal anxiety, ma-
ternal ethnic origin, multiple pregnancy, birth weight, gestational age at birth, head
circumference, use of antibiotics in pregnancy, alcohol intake in pregnancy, maternal
disease and infection history, younger siblings, presence of pets, breast feeding, day
care, dampness problems, passive smoking exposure after birth, and obesity index at 7
years. (Not all these confounders could have had a causal effect on prenatal paracetamol
exposure, but they could all be indirect indicators of prenatal proneness to paracetamol
exposure.) The propensity score was defined as the predicted log odds of paracetamol
exposure from this regression model. Using the xtile command (see [D] pctile), we
defined 32 paracetamol propensity groups, with approximately equal numbers.

somersd, and therefore censlope, has a wstrata() option, allowing stratified ver-
sions of Somers’ D and median slopes, restricted to comparisons between pairs of obser-
vations in the same stratum. We measured the confounder-adjusted paracetamol effect
by using censlope with the option wstrata(pg para32g), where pg para32g is a dis-
crete variable indicating which of the 32 paracetamol-propensity groups a child belongs
to, based on that child’s confounder values. The results were as follows:

. censlope lnigetot para32g, transf(z) eform wstrata(pg_para32g)
Outcome variable: lnigetot
Somers’ D with variable: para32g
Transformation: Fisher’s z
Within strata defined by: pg_para32g
Valid observations: 4848

Symmetric 95% CI for transformed Somers’ D

Jackknife
para32g Coef. Std. Err. z P>|z| [95% Conf. Interval]

lnigetot .0416191 .018089 2.30 0.021 .0061653 .0770729
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Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

lnigetot .04159508 .00616518 .07692067

95% CI(s) for percentile ratio(s)
Percent Pctl_Ratio Minimum Maximum

50 1.1256541 1.0165742 1.2556066

This time, the adjusted Somers’ D is between 0.006 and 0.077, and the adjusted
Hodges–Lehmann median ratio is between 1.017 and 1.256. Therefore, if we sample a
random-exposed child and a random-unexposed child from the same propensity stratum,
it is 0.6%–7.7% more likely that the exposed child will have the higher IgE level than that
the unexposed child will have the higher IgE level, and the exposed child will typically
have 1.7%–25.6% more IgE than the unexposed child. Therefore, sampling similarly
paracetamol-prone children does not seem to alter the relative exposed–unexposed IgE
difference much. These conclusions are (reassuringly) similar to those of Shaheen et al.
(2005).

The sample size of 4,848 is much larger than those of most samples conventionally
analyzed using rank methods and is in the range at which the computational methods
used by censlope begin to have an advantage. The unadjusted analysis presented
above typically takes 2 minutes with censlope and 4 minutes with cendif on my
system, which is based on a 2.79-GHz Intel Pentium 4 CPU with 0.99 GB of RAM

running Windows XP. As sample size increases further, so will the ratio of time and
space requirements between cendif (which uses a quadratic-time and quadratic-space
algorithm) and censlope.

5 Summary

The censlope module is a major extension to the somersd package, enabling the es-
timation of generalized Theil–Sen percentile slopes and Hodges–Lehmann percentile
differences, corresponding to the generalized Somers’ D and Kendall’s τa parameters
introduced in Newson (2006b). All these generalized parameters are estimated with
confidence intervals and may be restricted to comparisons within or between clusters
and/or strata defined by a confounder or by a propensity score summarizing multiple
confounders. The somersd package therefore allows users to do more with rank meth-
ods than they were probably accustomed to do, although we may still need regression
methods to define a propensity score.

Rank parameters of the Somers’ D family have the advantage of being robust to dis-
tributional assumptions. Somers’ D and Kendall’s τa have “democratic” influence func-
tions, based on a principle of “one comparison, one vote”, causing the central limit the-
orem (usually) to work faster than it would for comparable regression parameters. (See
Hampel [1974] and Hampel, Ronchetti, Rousseeuw, and Stahel [1986] for more about
influence functions.) This robustness must, to an extent, be purchased at the price of
being less robust to small sample numbers. The argument of Fisher (1935) implies that,
if we know the distributional family a priori, an estimate for a median slope or dif-
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ference based on maximum likelihood estimators will have a lower asymptotic variance
than the corresponding Theil–Sen or Hodges–Lehmann statistics. The contrast in power
may be spectacular at tiny sample sizes, when using a t test may reduce the minimum
detectable difference from infinity to a finite difference (which is why censlope and
cendif can produce infinite confidence limits). At larger sample sizes, there is typically
a more modest contrast in power, such as a 5% reduction in the minimum detectable
difference, and even this may be conditional on guessing the distributional family right
in advance. However, more work is needed (and is in progress) to find out more about
the tradeoffs involved.
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