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Abstract. Methods for fixed-effects estimation of the three-way error-components
model are not yet standard. Where possible, we make the fixed-effects methods
originally developed by Abowd, Kramarz, and Margolis (Econometrica 67: 251–
333) for linked worker–firm data more accessible. We also show how these methods
can be implemented in Stata. There is a caveat, however. If the researcher wants
to recover estimates of the error components themselves, and the number of units
at the higher level of aggregation is large, memory or matrix constraints may make
using Stata to estimate the components themselves infeasible.

Keywords: st0112, grouping, linked employer–employee panel data, fixed effects

1 Introduction

Panel data with three or more dimensions of variation are increasingly available to
researchers in various fields. One might have data on workers observed over time and
on the firms in which they work. Or one might have children in schools or patients in
hospitals. These data are also commonly described as being multilevel or hierarchical.
In the examples given here, the lower-level units (workers, children, patients) are not
merely nested in the higher level; they may also move between the higher-level units.
Workers can change their employer, for example.

Researchers often use the linear error-components model for panel data. If the fixed
(over time) error components are assumed to be uncorrelated with observed explanatory
variables, then a random-effects estimator may be used. These models may be fitted in
Stata in several ways, including the standard xtreg command for the two-way model and
the new xtmixed command for models with a more complicated hierarchical structure.
However, one may not wish to impose the assumption that the error components are
uncorrelated with the observed explanatory variables, in which case one needs fixed-
effects methods to estimate the parameters of interest.

c© 2006 StataCorp LP st0112



462 Practical fixed-effects methods

In the linear model, one can model fixed-error components by using dummies—for
example, individuals, firms, and time. In a two-way model with individual and time
dummies, algebraic solutions are available for estimating all parameters of interest, in-
cluding those associated with both sets of dummies (see Baltagi 2005, sec. 3.2). However,
for data structures such as those considered here, there is no algebraic transformation
that both sweeps away all the fixed error components in one go and allows them to be
recovered later.

Although there is a growing literature in economics—much of it based on the work of
Abowd, Kramarz, and Margolis (AKM)—analyzing data with three dimensions of vari-
ation (such as linked employer–employee panel data) is not yet routine. Because of
various econometric obstacles, routine techniques and packages cannot be used. AKM’s
papers suggest that these issues are highly technical. Therefore, this paper’s goal is to
make these fixed-effects methods more accessible where possible and then to show how
they can be implemented in Stata.

To illustrate these methods, we focus on a dataset of workers who are observed
annually, together with the firms they work for. In section 2, we set out the generic
model that best represents the econometrics of fixed-effects models using such data. In
section 3, we describe the various methods that can be used to fit this generic model.
In section 4, we present some illustrative results using an example dataset from the
Institut für Arbeitsmarkt- und Berufsforschung (IAB) in Germany.

2 A generic model

Consider the following linear three-way error-components model:

yit = xitβ + wj(i,t)tγ + uiη + qj(i,t)ρ + αi + φj(i,t) + µt + εit (1)

Workers are indexed i = 1, . . . , N . They are observed once per period t = 1, . . . , Ti in
firm j = 1, . . . , J . Workers can change firms over time, and the function j(i, t) maps
worker i to firm j at time t. yit is the dependent variable, xit and ui are vectors of
observable i-level covariates, and wj(i,t)t and qj(i,t) are vectors of observable j-level
covariates. Both workers and firms are assumed to enter and exit the panel; i.e., we
have an unbalanced panel with Ti observations per worker. There are N∗ =

∑N
i=1 Ti

observations (worker periods) in total.

Both αi and ui are variables that are time invariant for workers, and similarly φj(i,t)

and qj(i,t) are fixed over time for firms. xit, on the other hand, varies across i and t, and
wj(i,t)t varies across j and t. Because the data are recorded at the (i, t) level, firm-level
covariates also vary at that level, and referring to such variables as wjt may therefore
be less cumbersome.

Equation (1) therefore contains all four possible types of covariate that a researcher
might have about workers and firms. There are K observed covariates in total.

The error components (or unobserved heterogeneities) comprise αi for the worker
and φj(i,t) for the firm. The third component, µt, represents the unobserved time effect.
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The error components may be correlated with each other and with any of the observable
covariates.

Throughout, we assume strict exogeneity; namely,

E[εit|xi1, . . . ,xiT ,wj(i,t)1, . . . ,wj(i,t)T ,ui,qj(i,t), αi, φj(i,t), µt] = 0

This equation implies, among other things, that workers’ mobility decisions are inde-
pendent of εit. Although possibly implausible in the current context, this assumption
is standard in the literature.

Assuming that the heterogeneity terms αi and φj(i,t) are correlated with the ob-
servables is customary. Random-effects methods are therefore inconsistent, and so one
needs fixed-effects methods to estimate the parameters of interest. Thus [η,ρ], the pa-
rameter vector associated with the time-invariant variables, is not identified. Rather
than dropping [ui,qj(i,t)], it is customary to define

θi ≡ αi + uiη (2)

and
ψj ≡ φj + qjρ (3)

giving
yit = xitβ + wj(i,t)tγ + θi + ψj(i,t) + εit (4)

In the next section, we describe how to estimate the parameters of (4) by using vari-
ous fixed-effects methods. We assume throughout that the unobserved time component
µt is to be treated as fixed and estimated directly by using time dummies.1 We have
therefore dropped µt from (4); we have subsumed these time dummies into one of the
vectors of observable covariates. Thus we are essentially analyzing a two-way model
henceforth.

3 Econometric methods

3.1 Spell fixed effects

If one is not interested in the estimates of θi and ψj(i,t) themselves, or in estimating the
parameters on the time-invariant variables ui and qj(i,t), one can easily obtain consistent
estimates of β and γ from (4) by taking differences or by time-demeaning within each
unique worker–firm combination (or spell). For each spell of a worker within a firm,
neither θi nor ψj(i,t) varies. When we define λs ≡ θi +ψj(i,t) as spell-level heterogeneity,
which is swept out by subtracting averages at the spell level, both θi and ψj(i,t) have
disappeared:

yit − ys = (xit − xs)β + (wj(i,t)t − ws)γ + (εit − εs) (5)

1. This assumption will always be practical so long as the time dimension of the panel is relatively
short, which it usually is with these kinds of data.



464 Practical fixed-effects methods

The effects of ui and qj(i,t) are not identified, because ui −us = 0 and qj(i,t) −qs = 0.
Any variable xit or wjt that is constant within a spell will also not be identified. One
observation per spell is used up in identifying each spell fixed effect.

This is essentially the first method that AKM discuss (Abowd, Kramarz, and Margolis
1999, sec. 3.3), except that they use differences rather than mean deviations. We call
this method spell fixed effects, or FE(s). Because one cannot separate the worker and
firm heterogeneities, AKM do not pursue this method further. Given estimates λ̂s, one
cannot recover θ̂i and ψ̂j .

Unless researchers are analyzing the heterogeneity after estimation, this spell fixed-
effects method is a practical and simple solution that presents no computational diffi-
culty. Stata’s xtreg, fe command readily implements this method.

3.2 Least-squares dummy variables

The spell fixed-effects method outlined above is not useful if one wants to recover es-
timates of θi and ψj(i,t), specifically if one wants to analyze these terms themselves or
if one wants to recover estimates of ρ and η by using (2) and (3), respectively. An
alternative is to use a least-squares dummy variable (LSDV) estimator when estimating
(4).

However, using dummy variables to directly estimate (4) when the dataset is large
will not usually be feasible, since this is a model with approximately K + N + J pa-
rameters. In the two-way model, this problem is circumvented by using the within
transformation that sweeps out the i-level heterogeneity. But because of the lack of
patterning between workers and firms,2 there is no algebraic transformation of the ob-
servables that both sweeps away all heterogeneity terms in one go and allows them to
be recovered later. To circumvent this problem, AKM note that explicitly including
dummy variables for the firm heterogeneity, but sweeping out the worker heterogeneity
algebraically, gives the same solution as the LSDV estimator.3

More precisely, the researcher must generate a dummy variable for each firm,

F j
it = 1{j(i, t) = j}, j = 1, . . . , j

where 1{ } is the dummy variable indicator function and the function j(i, t) = j maps
worker i at time t to firm j. Now substitute

ψj(i,t) =
J∑

j=1

ψjF
j
it

2. More precisely, sort the data by workers and the firm dummies are unpatterned; sort the data by
firms and the worker dummies are unpatterned.

3. In linear models, there is no distinction between removing the heterogeneity algebraically and
adding two full sets of dummy variables, for workers and firms, and so the terminology “LSDV” applies
to both.
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into (4). The θi are removed by time-demeaning (or differencing) over i:

yit − yi = (xit − xi)β + (wj(i,t)t − wi)γ +
J∑

j=1

ψj(F
j
it − F

j

i ) + εit

Therefore, J demeaned (or differenced) firm dummies actually need creating.4 To dis-
tinguish this estimator from LSDV above, we label this estimator FEiLSDVj. They are
identical estimators but differ in how they are computed.

Because of the strict exogeneity assumption, these estimators of β, γ, and ψj are
consistent and unbiased, conditional on the observed covariates. One is assuming that
there are many individuals and relatively fewer firms. However, the LSDV estimators
of θi are inconsistent, although unbiased. Adding one more individual does not mean
that there is more information, because one also has an extra parameter to estimate.5

In short, the firm effects, ψj(i,t), can be estimated precisely, provided that firms have
enough workers who join or leave. But worker effects, θi, cannot be estimated precisely
with relatively few periods per worker.

Firm dummies are no different from any multicategory dummy, so long as workers
can move from one category to another over time (e.g., region dummies but not ethnicity
dummies). F j

it−F
j

i will be zero for all J dummies for any worker i who does not change
firm. Furthermore, if we have a sample of firms (rather than the population) F j

it − F
j

i

will be nonzero only for workers who change from one firm within the sample to another
firm in the sample. Often only a tiny proportion of workers have any nonzero terms.
Identification of ψj(i,t) is driven by the total number of such movers in each firm j. Some
small firms may have no movers, in which case ψj(i,t) is not identified. Other small
firms may have only a few movers, in which case estimates of ψj(i,t) will be imprecise.
Estimating ψj(i,t) for small firms may not be sensible, and instead one should group
small firms together (as AKM and others do.)

This estimator has two potential computational problems. The first is the number
of firms, J , because the software needs to invert a matrix of dimension (K + J) ×
(K + J). For many applications, the number of firms is small enough that FEiLSDVj is
computationally feasible. However, some datasets have tens of thousands of firms, or
even hundreds of thousands. The second problem is that one must create and store J
mean deviations for N∗ observations, meaning that the data matrix is N∗ × (K + J).
This matrix may be prohibitively large for software packages that store all data in
memory, such as Stata.

Some improvement in the storage efficiency of the J mean-deviated firm dummies
can be achieved in Stata by using the lowest common multiple of all values of Ti if the
panel is short enough. For example, if the data span a maximum of 5 years then Ti can

4. Differencing is ignored hereafter. Implementing the covariance transformation is easier for various
reasons. Normally, the decision whether to fit the model in first differences or use the covariance
transform depends on which method gives more efficient estimates. Both estimators are consistent. See
Wooldridge (2002, sec. 10.6.3).

5. See Wooldridge (2002, chap. 10) for assumptions and properties of panel-data models.
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be any value from 1 to 5. Multiplying F j
it − F

j

i by the lowest common multiple (here
60) yields a set of integers that can be stored in Stata as single bytes rather than 4-
or 8-byte fractions.6 To implement this method, the researcher would need to create
the mean deviations manually and use ordinary least squares (OLS) on the transformed
data, rather than relying on xtreg.

The memory requirements of the data matrix for the FEiLSDVj estimator are then ap-
proximately (N∗J)+4{N∗(K +1)} bytes. We require N∗J bytes for the mean-deviated
firm dummies and 4{N∗(K + 1)} bytes for the remaining K explanatory variables and
the dependent variable, assuming that each is stored as 4 bytes.

3.3 A classical minimum distance method

The FEiLSDVj method requires inverting a potentially very large (K+J)×(K+J) cross-
product matrix, as well as enough memory to store J mean-deviated firm dummies
across N∗ observations. To circumvent the second issue, we propose the following
method, since only movers between firms identify firm effects.

We separate the model into observations for movers and nonmovers, subscripted by
“1” and “2”, respectively. There are N∗

1 mover observations and N∗
2 nonmover obser-

vations. We then write (4) in matrix notation, where each model is fitted separately:7

ỹ1 = X̃1β1 + F̃1ψ1 + ε1 (6)

ỹ2 = X̃2β2 + ε2

ỹ1, ỹ2, X̃1, X̃2, and F̃1 have all been mean-deviated and defined; namely, ỹ1 = MDy1,
etc., where MD ≡ I−D(D′D)−1D′. Denote the variances of the two error terms as σ2

ε1

and σ2
ε2. We now drop all columns of F̃1 that are the zero vector, that is, the J2 firms

that have no turnover. By definition, F̃2 ≡ 0.

Because there are often few movers, eliminating F̃2 ≡ 0 from the model means that
we sidestep the memory constraints by fitting the model for movers and nonmovers sep-
arately. The classical minimum distance (CMD) estimator forms a restricted estimator
for β and ψ from β1, β2, and ψ1.8

In general, denote π as the S × 1 unrestricted parameter vector and denote δ as
the P × 1 restricted parameter vector. The constraint is π = h(δ). In CMD estimation,
one estimates π and then finds a δ such that the distance between π̂ and h(δ) is
minimized. An efficient CMD estimator uses any consistent estimator of asymptotic
covariance matrix V to act as weighting matrix for the distance between π̂ and h(δ),
denoted V̂. In other words, efficient CMD solves

minδ {π̂ − h(δ)}′ V̂−1 {π̂ − h(δ)}
6. Storing the mean-deviated firm dummies as integers also appears to improve the accuracy of the

matrix inversion procedure.
7. We dispense with the distinction between xit variables and wj(i,t)t variables.
8. See Wooldridge (2002, sec. 14.6) for more details.
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whose solution is
δ̂ = (H′V̂−1H)−1H′V̂−1π̂

when the mapping from δ to π is linear: π = Hδ. Also the appropriate estimator of
̂Avar(δ̂) with which to conduct inference is

̂Avar(δ̂) =
{
H′

̂Avar(π̂)−1H
}−1

= (H′V̂−1H)−1

A test of the validity of the restrictions is given by Wooldridge (2002, eqn. 14.76):{
π̂ − h(δ̂)

}′
V̂−1

{
π̂ − h(δ̂)

}
∼ χ2(S − P )

For the model at hand, the constraint π = Hδ is written as⎛⎝ β1

ψ1

β2

⎞⎠ =

⎡⎣ IK 0
0 IJ

IK 0

⎤⎦( β
ψ

)
where π is (2K +J)×1, δ is (K +J)×1, and H is (2K +J)×(K +J). The appropriate
asymptotic covariance matrix is

V̂ =

[
V̂1 0
0 V̂2

]
=

⎧⎪⎨⎪⎩ σ̂−2
1

(
X̃′

1X̃1 X̃′
1F̃1

F̃′
1X̃1 F̃′

1F̃1

)
0

0 σ̂−2
2 (X̃′

2X̃2)

⎫⎪⎬⎪⎭
From the general expressions immediately above, it follows that the restricted esti-

mator δ̂ = (H′V̂−1H)−1H′V̂−1π̂ is given by

δ̂ =

(
β̂

ψ̂

)
=
{
V̂−1

1 +
(

V̂−1
2 0
0 0

)}−1
{

V̂−1
1

(
β̂1

ψ̂1

)
+ V̂−1

2

(
β̂2

0

)}
(7)

and that

̂Avar(δ̂) = (H′V̂−1H)−1 =
{
V̂−1

1 +
(

V̂−1
2 0
0 0

)}−1

(8)

a (K + J) × (K + J) matrix. These expressions use standard (unrobust) covariance
matrices. A robust version of this covariance matrix replaces V̂1 and V̂2 in (8) by
robust equivalents. Following this approach in (7) is wrong, however, because if the
true constraint could be imposed on the model, one would not end up with the LSDV

estimator.

A standard criticism is that movers and nonmovers are different groups of individuals
and so one should model them separately. Before imposing H0 : β1 = β2, one should
test these restrictions, although doing so is rarely done in practice. Under H0,(

β̂1 − β̂

ψ̂1 − ψ̂

)′
V̂−1

1

(
β̂1 − β̂

ψ̂1 − ψ̂

)
+ (β̂2 − β̂)′V̂−1

2 (β̂2 − β̂) ∼ χ2(K) (9)
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The only price paid with this approach is that one cannot constrain σ2
ε1 = σ2

ε2. The
only difference between this and the LSDV estimator is because V̂−1

1 and V̂−1
2 come

from separate regressions.

3.4 Postestimation analysis of the error components

Once estimates of (β,ψ) have been made (using either the FEiLSDVj or CMD method),
the researcher can recover estimates of the error components themselves. First, compute

ψ̂j(i,t) =
J∑

j=1

ψ̂jF
j
it (10)

and then
θ̂i = yi − ψ̂i − xiβ̂ − wiγ̂ (11)

where ψ̂i averages ψ̂j(i,t) over t for each i.

It is not possible to identify one firm effect per group, where a group is defined by
the movement of workers between firms. A group contains all the workers who have
ever worked for any of the firms in that group, as well as all the firms at which any of
the workers were employed. A second (unconnected) group is defined only if no firm in
the first group has ever employed any workers in the second and no firm in the second
group has ever employed any workers in the first. It is not possible to identify one firm
per group because within each group the mean-deviated firm dummies sum to zero.
Some normalization is therefore required between groups. In section 4, we show how to
identify groups and how to perform this normalization.

Identifying the effects of time-invariant variables

AKM suggest that one can recover estimates of α̂i and φ̂j by estimating (2) and (3) as
follows. Thus one can analyze distributions of α̂i and φ̂j , specifically to see whether
they are correlated. First, run the auxiliary regressions,

θ̂i = constant + uiη + error (12)

ψ̂j = constant + qjρ + error (13)

which give consistent estimates of η, ρ (Abowd, Kramarz, and Margolis 1999, sec. 3.4.4).
Because αi is dropped from (2), the identifying assumption is that Cov(ui, αi) = 0 or
else there is omitted-variable bias. Similarly, Cov(qj(i,t), φj(i,t)) = 0 is assumed in (3).
One needs only N observations to estimate (2) and J observations to estimate (3). AKM

estimate these equations by generalized least squares, because of the aggregation to the
firm level. Because there are other potential causes of heteroskedasticity, one could
use OLS and adjust the covariance matrix for clustering at the firm level. Second, the
researcher computes
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α̂i = θ̂i − uiη̂

φ̂j = ψ̂j − qjρ̂

θ and ψ can be defined at three levels of aggregation:

i, t θi replicated Ti times ψj(i,t)

i θi ψi =
PTi

t=1 ψj(i,t)/Ti

j θj =
P

(it)∈j θi/N
∗
j ψj(i,t)

(N∗
j is the total number of worker-years observed in firm j.) AKM show that statistics

based on aggregating θ̂i and α̂i to the level of the firm are consistent as Ti goes to
infinity (see also Chamberlain 1984).

4 An illustrative example

To illustrate these methods, we use data from a linked worker–firm dataset made avail-
able by the IAB. The firm data comprise a panel of 4,376 establishments (or “plants”)
from the former West Germany observed over 1993–1997. The worker data comprise a
panel of 1,930,260 workers who are employed in these plants. A common establishment
identifier is available in both datasets, allowing them to be linked.9 After we eliminate
observations with missing or incomplete information, the resulting linked dataset has
5,145,098 worker-year observations (the i, t level). For each row in the data, the identity,
j, of the plant is recorded.

The first row of table 1 reports the total sample size in terms of the total number
of rows in the data (N∗), the number of workers (N), the number of plants (J), and
the number of unique worker–firm combinations, or “spells” (S). The total number of
spells is only slightly greater than the total number of workers. This is a consequence
of having a sample of plants: a worker will be observed with more than one spell only
if he moves from one plant in the sample to another, which is actually unlikely.

9. Kölling (2000) provides more information on the IAB establishment panel; Bender, Haas, and Klose
(2000) has details on the worker data; and Alda, Bender, and Gartner (2001) has details on the linked
data.
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Table 1: Sample sizes

Sample N∗ N J S

Whole sample 5,145,098 1,930,260 4,376 1,953,774

Workers who move to other IAB

plants
72,253 23,393 1,821 46,907

Workers who don’t move to other
IAB plants

5,072,845 1,906,867 4,376 1,906,867

Workers in plants with movement
to other IAB plants

4,883,331 1,816,368 1,821 1,839,882

Identifying unobserved plant effects is driven only by those workers who change
plants. Thus an important subsample comprises those workers who have two or more
spells (Si > 2) in IAB plants (“IAB movers”). There are only 23,393 of these movers, and
they work in 1,821 plants. However, these 1,821 plants employ more than 1.8 million
workers because they tend to be larger than plants who employ no IAB movers.

To illustrate our methods, we estimate log-wage equations using a small set of co-
variates of each type (x, w, q, and u). The dependent variable yit is the log daily wage
in Pfennigen. Table 2 gives the sample means for the relevant variables.

Table 2: Sample means

Description Variable Variable Mean SD

type name

Log daily wage in Pfennigen yit lw 9.763 0.278
Female ui female 0.213 0.409
Married xit married 0.624 0.484
Age xit age 39.643 10.539
Age2/100 xit age 2 16.827 8.628
Single-plant enterprise qj single 0.269 0.443
Log plant employment wjt lN 7.702 1.454
(Log plant employment)2 wjt lN 2 61.429 22.283

A simple OLS estimate of (1) provides a useful benchmark. This estimate treats
αi and φj(i,t) as part of the error term, whereas µt is estimated using a dummy for
each year. Here we correct the standard errors for possible correlation within i, since
the errors in (4) are probably not independent for the same individual. However, we
might also consider clustering at the j level, since errors may also be correlated across
individuals within the same firm.
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. regress lw female married age age_2 single lN lN_2 year2-year5, cluster(i)

Linear regression Number of obs = 5145098
F(11,1930259) =71255.43
Prob > F = 0.0000
R-squared = 0.2441

Number of clusters (i) = 1930260 Root MSE = .2417

Robust
lw Coef. Std. Err. t P>|t| [95% Conf. Interval]

female -.1773087 .000522 -339.70 0.000 -.1783317 -.1762856
married .0126403 .000415 30.46 0.000 .011827 .0134536

age .0351288 .0001435 244.72 0.000 .0348474 .0354101
age_2 -.0356353 .0001781 -200.11 0.000 -.0359844 -.0352863

single -.0317087 .0004474 -70.87 0.000 -.0325856 -.0308317
lN .0793973 .0009911 80.11 0.000 .0774549 .0813397

lN_2 -.0028624 .0000618 -46.28 0.000 -.0029836 -.0027412
year2 .0295777 .0001956 151.21 0.000 .0291944 .0299611
year3 .0723557 .0002432 297.52 0.000 .0718791 .0728324
year4 .0983264 .0002655 370.33 0.000 .097806 .0988468
year5 .1078701 .0002919 369.55 0.000 .107298 .1084422
_cons 8.514487 .0046803 1819.21 0.000 8.505314 8.523661

The strict exogeneity assumption for the OLS estimator is different from that dis-
cussed above for the LSDV estimator. The implied error term is θi + ψj(i,t) + εit—see
(4)—and each component is assumed to be contemporaneously uncorrelated with the
observed covariates. We now want to investigate whether any of these parameter esti-
mates are likely to be biased because of potential correlation between the unobserved
error components and the variables of interest.

Fitting two-way fixed-effects models by using the xtreg command is simple. The
within-i transformation eliminates the unobserved worker-level component of the error
term, θi, and assumes that φj(i,t) is uncorrelated with the covariates. The standard
errors here are robust to cross-sectional heteroskedasticity and within-panel i correlation
(see StataCorp [2005, 293] and Wooldridge [2002, eqn. 10.59]). For reference, denote
this estimator as FE(i):

(Continued on next page)
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. xtreg lw female married age age_2 single lN lN_2 year2-year5, fe i(i)
> cluster(i)

Fixed-effects (within) regression Number of obs = 5145098
Group variable (i): i Number of groups = 1930260

R-sq: within = 0.3029 Obs per group: min = 1
between = 0.1088 avg = 2.7
overall = 0.0964 max = 5

F(9,5145089) = 97217.88
corr(u_i, Xb) = -0.6637 Prob > F = 0.0000

(Std. Err. adjusted for 1930260 clusters in i)

Robust
lw Coef. Std. Err. t P>|t| [95% Conf. Interval]

female (dropped)
married .0061755 .0002999 20.59 0.000 .0055877 .0067633

age .0582696 .000171 340.77 0.000 .0579345 .0586048
age_2 -.0353585 .0001952 -181.15 0.000 -.0357411 -.034976

single -.0049728 .0020442 -2.43 0.015 -.0089793 -.0009662
lN -.0016697 .0020872 -0.80 0.424 -.0057605 .0024211

lN_2 .0010928 .0001366 8.00 0.000 .0008251 .0013604

(output omitted )

sigma_u .35916844
sigma_e .06832495

rho .96507601 (fraction of variance due to u_i)

We cannot estimate a coefficient on female because it does not vary within i. There
are some significant changes in some of the parameter estimates. For example, the
effect of age has gone up from 0.035 to 0.058, whereas the effect of age2 remains the
same. Thus the estimated quadratic wage–age profile is steeper, with a much older
turning point. This outcome implies a negative correlation between θi and age—older
workers have lower (unobserved) earning power. This conclusion is reflected in the large
correlation (−0.6637) between θi and the estimated effect of all the covariates.

The within-j transformation eliminates the unobserved plant-level component, ψj(i,t),
and assumes that αi is uncorrelated with the covariates. Here xtreg does not permit
us to cluster on i because the panels are not nested within clusters (individuals may
move between firms). The standard errors here are therefore robust to cross-sectional
heteroskedasticity and within-panel j correlation. For reference, denote this estimator
as FE(j):
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. xtreg lw female married age age_2 single lN lN_2 year2-year5, fe i(j)
> cluster(j)

Fixed-effects (within) regression Number of obs = 5145098
Group variable (i): j Number of groups = 4376

R-sq: within = 0.2151 Obs per group: min = 1
between = 0.0000 avg = 1175.8
overall = 0.1810 max = 102106

F(10,5145088) = 1068.04
corr(u_i, Xb) = 0.0100 Prob > F = 0.0000

(Std. Err. adjusted for 4376 clusters in j)

Robust
lw Coef. Std. Err. t P>|t| [95% Conf. Interval]

female -.1779654 .0042996 -41.39 0.000 -.1863947 -.169536
married .0247614 .0012382 20.00 0.000 .0223339 .0271889

age .0327271 .0007152 45.76 0.000 .031325 .0341292
age_2 -.0336805 .0008039 -41.90 0.000 -.0352565 -.0321046

single (dropped)
lN -.0694038 .0491958 -1.41 0.158 -.1658524 .0270449

lN_2 .0042823 .0038799 1.10 0.270 -.0033243 .0118889

(output omitted )

sigma_u .35985478
sigma_e .20663177

rho .75204046 (fraction of variance due to u_i)

The coefficient estimates on female and age are both similar to those from the OLS

regression, suggesting that the correlation between individual-level variables and φj(i,t)

is not important. However, the wage effect of plant size is now considerably different
from those estimated by either the OLS or FE(i) model, and there is a doubling of the
marriage premium.

We now want to eliminate both the unobserved worker- and plant-level error com-
ponents. The simplest way to do this is to estimate (5) by using FE(s):

(Continued on next page)
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. egen s=group(i j)

. xtreg lw female married age age_2 single lN lN_2 year2-year5, fe i(s) cluster(i)

Fixed-effects (within) regression Number of obs = 5145098
Group variable (i): s Number of groups = 1953774

R-sq: within = 0.3029 Obs per group: min = 1
between = 0.1119 avg = 2.6
overall = 0.0994 max = 5

F(8,5145090) = 109076.69
corr(u_i, Xb) = -0.6669 Prob > F = 0.0000

(Std. Err. adjusted for 1930260 clusters in i)

Robust
lw Coef. Std. Err. t P>|t| [95% Conf. Interval]

female (dropped)
married .0057338 .0002979 19.25 0.000 .0051499 .0063178

age .0582328 .0001709 340.75 0.000 .0578979 .0585678
age_2 -.0350417 .0001944 -180.26 0.000 -.0354227 -.0346607

single (dropped)
lN -.0102442 .0021745 -4.71 0.000 -.014506 -.0059823

lN_2 .0021531 .0001401 15.37 0.000 .0018785 .0024276

(output omitted )

sigma_u .36006301
sigma_e .067745

rho .96581076 (fraction of variance due to u_i)

By defining a spell, s, in this way, we treat as one spell all unique combinations
of i and j. Therefore, a worker who has two periods of employment with employer A,
separated by a period with employer B, is treated as having just two spells in total.

If the correct model is given by (4), if the strict exogeneity assumption holds, and if
the error components are correlated with the observed data, then these estimates should
be preferred to either of the standard fixed-effects or OLS estimates. Here estimates from
FE(s) are generally close to those from FE(i), implying that φj is uncorrelated with the
observed covariates. The correlation of 0.0100 reported in the FE(j) regression confirms
this implication. However, we are now unable to estimate either of the coefficients on
female or single.

We now want to estimate (4), but we also want to then recover estimates of αi

and φj(i,t). If we had enough memory, we could use the LSDV methods outlined in
section 3.2. In our example, we have N∗ = 5,145,098, J = 1,821, and K = 11, meaning
that we require about 10 GB of memory to proceed. At press time, this amount of
memory is not available to us (or to many researchers) and so we must use the CMD

method described in section 3.3.

The dummy variable mover identifies workers who change plant during the sample
period. The variable plantin counts the number of worker-years in each plant of workers
who move.
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. sort i j

. by i: gen byte mover = j[1]!=j[_N]

. egen plantin = total(mover), by(j)

. save cmd, replace

Only workers with mover=1 contribute to estimates of ψj(i,t), and one cannot esti-
mate ψj(i,t) for plants with plantin=0. To estimate (6), we use xtreg only for movers
and include a full set of firm dummies:

. keep if mover==1

. tab j, gen(F_)

. local J1 = r(r)

. xtreg lw married age age_2 single lN lN_2 year2-year4 F_*, fe i(i)

We then save the coefficient estimates β̂1 and ψ̂ and the variance–covariance matrix
V̂1, removing the constant from both:

. matrix B1 = e(b)’

. matrix B1 = B1["x".."F_‘J1’",1]

. matrix V1 = e(V)

. matrix V1 = V1["married".."F_‘J1’","married".."F_‘J1’"]

To calculate a robust version of ̂Avar(δ̂) (8) we also need a robust equivalent of V1.
For example,

xtreg lw married age age_2 single lN lN_2 year2-year4 F_*, fe i(i) cluster(i)
matrix V1r = e(V)
matrix V1r = V1r["married".."F_‘J1’","married".."F_‘J1’"]

The process is then repeated for the nonmovers. We do not issue a clear command
on its own. Instead use, clear loads the data without destroying any of the relevant
matrices in memory.

. use cmd if mover==0, clear

. xtreg y married age age_2 lN lN_2 year2-year4, fe i(i)

. matrix BETA2 = e(b)’

. matrix BETA2 = BETA2["married".."year4",1]

. local K = rowsof(BETA2)

. matrix V2 = e(V)

. matrix V2 = V2["married".."year4","married".."year4"]

Again if we want to compute a robust version of ̂Avar(δ̂), we also need the following:

. xtreg y married age age_2 lN lN_2 year2-year4, fe i(i) cluster(i)

. matrix V2r = e(V)

. matrix V2r = V2r["married".."year4","married".."year4"]

Now we can compute the restricted estimator δ̂, given by (7). To do this computa-
tion, we need to construct the vector (

β̂2

0

)
and the matrix (

V̂−1
2 0
0 0

)
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which is achieved by adding blocks of zeros to β̂2 and V̂2:

. matrix B2 = BETA2\J(‘J1’,1,0)

. matrix V2inv = J(‘J1’+‘K’,‘J1’+‘K’,0)

. matrix V2inv[1,1] = invsym(V2)

Equation (7) is then computed

. matrix DELTA = invsym(invsym(V1)+V2inv)*((invsym(V1)*B1)+(V2inv*B2))

and the robust variance–covariance matrix of δ̂ is given by (8):

. matrix VARDELTAr = invsym(invsym(V1r)+V2inv)

We can label the resulting matrices by using the variable names of (β̂1, V̂1), and we
can then display the results in the usual format.

. local rownames: rownames B1

. matrix rownames DELTA = ‘rownames’

. matrix rownames VARDELTAr = ‘rownames’

. matrix colnames VARDELTAr = ‘rownames’

. matrix DELTA = DELTA’

. ereturn post DELTA VARDELTAr

. ereturn display

Coef. Std. Err. z P>|z| [95% Conf. Interval]

married .0057685 .0002993 19.28 0.000 .0051819 .006355
age .0582999 .0001714 340.11 0.000 .0579639 .0586358

age_2 -.0351287 .0001949 -180.23 0.000 -.0355107 -.0347467
lN -.0103505 .0022001 -4.70 0.000 -.0146627 -.0060383

lN_2 .0021577 .0001414 15.26 0.000 .0018806 .0024348
year2 -.0060567 .000087 -69.60 0.000 -.0062272 -.0058861
year3 .0145369 .0000935 155.55 0.000 .0143537 .01472
year4 .0073687 .0000883 83.50 0.000 .0071957 .0075417

F_1 .1060651 .0791987 1.34 0.180 -.0491615 .2612917
F_2 .1250478 .0923152 1.35 0.176 -.0558868 .3059823

(output omitted )
F_1821 .4486626 .0328059 13.68 0.000 .3843643 .512961

These results can be compared with those of the FE(s) model reported on page 474,
since these are the two models that allow for correlation between worker and firm fixed
effects and covariates. The sample size is the same in both models. Parameter estimates
from the CMD model appear close, well within the 95% confidence intervals from the
FE(s) model.

The χ2 statistic to test whether the restriction imposed by pooling movers and
nonmovers is given by (9).

. matrix DELTA = e(b)’

. matrix VARDELTA = e(V)

. matrix BETA = DELTA["married".."year4",1]

. matrix PSI = DELTA["F_1".."F_$J1",1]
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. matrix CHI2r = ((B1-DELTA)’*syminv(V1r)*(B1-DELTA) +
> (BETA2-BETA)’*V2inv[‘K’,‘K’]*(BETA2-BETA))

. display as text "Chi^2 statistic: " el(CHI2r,1,1)
Chi^2 statistic: 344.05358

. display as text "P-value: " chi2tail(‘K’,el(CHI2r,1,1))
P-value: 1.682e-69

Our test statistic strongly rejects the pooling hypothesis H0: β1 = β2, namely, that the
models for movers and nonmovers are the same. Therefore, fitting this model by LSDV,
even if one could, would be wrong.

Postestimation analysis of error components

The CMD method allows us to recover the estimates of θi and ψj(i,t) so that they can
be analyzed and possibly used in auxiliary regressions such as (12) and (13).

We have a vector, ψ̂, that contains the firm-level error component for each firm that
has a mover. Using (10), we can map this vector back to the data in the following way:

. use cmd, clear

. egen j1 = group(j) if plantin>0

. generate psi=.

. forvalues j=1(1)‘J1’ {
2. quietly replace psi = PSI[‘j’,1] if j1==‘j’
3. }

. assert psi==. if plantin==0

The variable psi now contains the appropriate value of ψ̂. We need a new variable,
j1, that contains the index only for those firms with movement. We then assert that
plants with no movers do not have an estimated value of ψj(i,t).

Another complication is that estimates of ψ̂j cannot be directly compared across
groups, as defined on page 468: which ψj(i,t) is set equal to zero for normalization in
each group is arbitrary. The same issue applies to the resulting θ̂i. Abowd, Creecy, and
Kramarz (2002) therefore suggest normalizing estimates of ψj(i,t) so that they have the
same mean (zero) across groups. To do this, we must first define the groups. We have
written an ado-file that creates a new variable to record which group each firm is in.
The syntax of grouping is simple:

grouping newvar, ivar(varname) jvar(varname)

(Continued on next page)
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In our data, we have 33 groups, as shown below.

. grouping g, ivar(i) jvar(j)

New variable g contains grouping indicator
Group 1: 4857672 person-years allocated to groups
Group 2: 4860228 person-years allocated to groups
Group 3: 4862179 person-years allocated to groups
Group 4: 4863445 person-years allocated to groups
Group 5: 4863770 person-years allocated to groups
Group 6: 4865494 person-years allocated to groups

(output omitted )
Group 30: 4881458 person-years allocated to groups
Group 31: 4882145 person-years allocated to groups
Group 32: 4882738 person-years allocated to groups
Group 33: 4883331 person-years allocated to groups

But almost all rows in the data belong to group 1. All those workers in plants with
movement to other plants are allocated to a group. To normalize the estimates of ψj(i,t)

across groups, type

. egen psigbar = mean(psi), by(g)

. replace psi = psi-psigbar

To recover estimates of θi, we can use (11). The easiest way to implement this task
in Stata is to use the matrix score command:

. matrix x = DELTA["married".."year4",1]’

. matrix score xb = x

. gen theta_it = lw - xb - psi

. egen theta = mean(theta_it), by(i)

Finally, we can estimate the auxiliary regressions and see whether the components
are themselves correlated. In the i-level regression, we allow for within-j clustering
because errors may be correlated across individuals within the same firm.

. regress theta female if t==1, cluster(j)

Regression with robust standard errors Number of obs = 1816368
F( 1, 1819) = 116.02
Prob > F = 0.0000
R-squared = 0.0071

Number of clusters (j) = 1820 Root MSE = .35695

Robust
theta Coef. Std. Err. t P>|t| [95% Conf. Interval]

female -.0724758 .0067285 -10.77 0.000 -.0856722 -.0592794
_cons 7.986986 .0057305 1393.77 0.000 7.975747 7.998225

. by j, sort: gen n=_n
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. regress psi single if n==1, robust

Regression with robust standard errors Number of obs = 1821
F( 1, 1819) = 8.06
Prob > F = 0.0046
R-squared = 0.0048
Root MSE = .17472

Robust
psi Coef. Std. Err. t P>|t| [95% Conf. Interval]

single -.024473 .0086226 -2.84 0.005 -.0413842 -.0075618
_cons .0105364 .0046327 2.27 0.023 .0014505 .0196223

The first regression sample comprises those 1,816,368 workers who work in the 1,821
plants for which we can estimate ψj(i,t) (see table 1). The second regression sample
comprises one observation for each of these 1,821 plants.

The coefficients on female and single are both smaller than those estimated from
the original OLS regression, suggesting that these original estimates were biased. How-
ever, these auxiliary regressions impose the usual identifying assumptions that the
unobserved component of the error is uncorrelated with the observed component, so
Cov(ui, αi) = 0 and Cov(qj(i,t), φj(i,t)) = 0.

5 Conclusion

We have shown how, using standard Stata code, one can fit fixed-effects three-way
error-components models.

Researchers who are interested in estimating unobserved i- and j-level heterogeneity,
and who have many j-level units, must use the direct least-squares algorithm of Abowd,
Creecy, and Kramarz. In this paper, we explained how the researcher can make the
feasible number of plants as large as possible without having to resort to the direct
least-squares algorithm. Our CMD method is virtually identical to the correct FEiLSDVj
method and differs only because the error variances are different in the mover and
nonmover regressions.10

The estimates of ψj(i,t) rely entirely on workers who change plants, as in any fixed-
effects model. If one has a sample of plants, as here, there are few movers (we have
1.9 million workers but only 23,000 movers). The estimates of ψj(i,t) therefore need
interpreting with caution.

If researchers are not interested in estimating the worker and firm heterogeneities
themselves but merely want to control for them, using spell-level fixed effects is straight-
forward.

10. In fact, these are estimated as 0.08512 and 0.0682, respectively.
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Kölling, A. 2000. The IAB establishment panel. Schmollers Jahrbuch: Zeitschrift für
Witschafts- und Sozialwissenschaften 120: 291–300.

StataCorp. 2005. Stata 9 Longitudinal/Panel Data Reference Manual. College Station,
TX: Stata Press.

Wooldridge, J. M. 2002. Econometric Analysis of Cross Section and Panel Data. Cam-
bridge, MA: MIT Press.



M. Andrews, T. Schank, and R. Upward 481

About the authors

Martyn Andrews is Senior Lecturer in Econometrics in the School of Economic Studies, Univer-
sity of Manchester, Manchester, UK. His research interests are in applied labor economics. His
recent work includes papers on linked employer–employee data, employer search and matching,
and the economics of education.

Thorsten Schank is a researcher at Friedrich-Alexander-Universität Erlangen–Nürnberg,
Nürnberg, Germany. His research interests are in applied labor economics.

Richard Upward is an associate professor at the School of Economics, University of Notting-
ham, Nottingham, UK. His research interests are primarily in applied labor economics and
applied microeconometrics. His recent work includes papers on linked employer–employee
data, employer search and matching, labor mobility, and unemployment.




