AN ECONOMIC ANALYSIS OF THE MAISSADE, HAITI, INTEGRATED WATERSHED MANAGEMENT PROJECT Ву Thomas A. White Robert M. Quinn Working Paper No. 2, 34 pages, July 1992 For more information, contact: Thomas A. White Robert M. Quinn Forestry for Sustainable Development Program Department of Forest Resources University of Minnesota 1530 N. Cleveland Avenue St. Paul, MN 55108 Tel: (612) 624-1224 For copies of this publication, contact: Ellen A. Maurer Communications Director EPAT/MUCIA-Research & Training University of Wisconsin-Madison 1003 WARF Office Building 610 Walnut Street Madison, WI 53705 Tel: (608) 263-4781 Fax: (608) 265-2993 Fax: (612) 625-5212 email: eamaurer@facstaff.wisc.edu * Some figures and/or tables included in the printed version of this publication could not be included in this electronic version. If you need copies of these figures or tables, please contact the author. PROJECT INFORMATION A USAID-funded global program, the Environmental and Natural Resources Policy and Training Project (EPAT), is implemented, in part, by 15 universities and development organizations through the Midwest Universities Consortium for International Activities, Inc. (MUCIA). EPAT/MUCIA has research, training, and communication components that offer the latest information about: - * Energy, Industry & the Urban Environment - * Forestry & Watershed Management - * Macroeconomic Policy - * Population & the Environment - * Institutions & Policy Implementation - * Environmental Policy Training - * Environmental Policy Communications ### EPAT/MUCIA publications include: - * Policy Briefs short overviews of environmental policy concerns - * Case Studies outlining specific in-country policy challenges - * Manuals how-to-do-it environmental policy handbooks for easy reference - * Working Papers of environmental policy research in progress - * Monographs detailing the state of knowledge in particular subject matter areas. EPAT/MUCIA environmental policy partners apply their research to real problems, and they are eager to collaborate with researchers throughout the world. USAID Missions, national and international agencies, and host country governments can collaborate with the EPAT/MUCIA project by contacting: Chief of Party Tel: (703) 841-0026 Fax: (703) 841-0699 EPAT/MUCIA-Research and Training partners include University of Arizona; Cornell University; University of Illinois; Indiana University; University of Iowa; University of Michigan; Michigan State University; University of Minnesota; The Ohio State University; Purdue University; University of Wisconsin; Abt Associates; Development Alternatives, Inc.; Development Associates, Inc.; and World Resources Institute. ISSN # 1072-9496 ABSTRACT An economic analysis was conducted of the Maissade Integrated Watershed Management Project in Haiti. This project, implemented by the Save the Children Federation, differs from conventional watershed management projects by investing heavily in the development of peasant organizations in order to gain voluntary and sustained adoption of soil conservation, forestry and community development innovations. Conventional projects have relied on monetary and commodity incentives in order to encourage technique adoption, and are widely viewed to have failed to achieve sustained watershed management. The goal of the economic analysis was to determine if a project representative of the new, participatory approach was economically efficient from donor and peasant perspectives. The aggregate project has a NPV of \$336,600 at a 12% discount rate, a benefit-cost ratio of 1.5 and an economic rate of return of 19%. Analyzed separately, the hillside soil conservation component is economically efficient at the project level while the other components (forestry, ravine treatment and group investment) are not. Project value is most sensitive to changes in project outlay inputs and hillside treatment benefits. Both the aggregate project and all separate project components are economically efficient from the perspective of project participants, and all but the group investment component have internal rates of return exceeding 200%. Benefit-cost ratios vary from 2.5 to 30 for participation in the different project components. Investment in hillside soil conservation treatment yielded what was by far the greatest return. This analysis demonstrates that watershed management projects in Haiti which utilize peasant organization approaches can be economically efficient. ### CONTENTS INTRODUCTION: PURPOSE AND METHOD OF THE ANALYSIS Purpose of the Analysis Basic Assumptions and the Method of Analysis CONTEXT AND HISTORY OF THE MAISSADE PROJECT Approaches to Watershed Management in Haiti The Maissade Integrated Watershed Management Project Project History Key Project Themes Project Components ### PROJECT COSTS AND BENEFITS Costs Benefits: Direct and Indirect Benefits of the Project Resulting from Technical Treatments Benefits of the Project Resulting from Peasant Organization Other Project Benefits ``` PHYSICAL FLOWS OF INPUTS AND OUTPUTS Group Investments Hillside Treatment Inputs Outputs Ravine Treatment Inputs Outputs Forestry Inputs Outputs VALUE FLOWS OF INPUTS AND OUTPUTS Project Agency Outlays Costs and Benefits for Project Participants Group Investments Hillside Treatments ``` Forestry Results of the Economic Analysis Ravine Treatments Economic Efficiency From the Donor Perspective Analysis of the Aggregate Project Analysis of Separate Project Components Economic Efficiency From the Participant Perspective Analysis of the Aggregate Project Analysis of Each Separate Project Component ## CONCLUSIONS ### APPENDIX Annex 1: Physical Flow Calculations Participation in Technical Training Group Investments Inputs Hillside Treatment Inputs and Outputs Annex 2: Description of Treatments Hillside Treatments Ravine Treatments Forestry Group Investments NOTES REFERENCES INTRODUCTION: PURPOSE AND METHOD OF THE ANALYSIS Purpose of the Analysis An earlier version of this analysis was conducted in March 1989 and included in a watershed management plan prepared by Save the Children Federation (SCF) for the Maissade area. The purpose of that analysis was to determine the economic efficiency of the Maissade Integrated Watershed Management Project, and estimate its economic impact in the Maissade area. It was conducted from the international donor's perspective to permit comparison with the economic performance of other similar rural development projects. The purpose of this new version of the analysis is: i) to update the original with recent field data; ii) to analyze the economic efficiency of separate project components; iii) and to examine the project's economic attractiveness from the peasant participant perspective. Accordingly, the following assessment questions will be answered in the analysis: - * Is the project economically efficient at the aggregate level? - * Are each of the (quantified) project components economically efficient? - * Is the aggregate project economically attractive to participating peasants? - * Are each of the (quantified) project components economically attractive to participating peasants? Basic Assumptions and the Method of Analysis The analysis was conducted (and this paper is organized) as per the economic assessment process proposed by Gregersen and Contreras (FAO 1979): consideration of overall project inputs and outputs (Section 3); identification of the physical flows of measurable inputs and outputs (Section 4); determination of input and output values (Section 5); comparing costs with benefits and sensitivity analysis (Section 6); and formulation of conclusions (Section 7). A brief description of the context and history of the Maissade project has been included (Section 2). The Maissade project was originally funded for a three-year period, 1986 to 1989. Because of low expenditures, a no-cost extension was granted to July 1991. Though SCF-supported development activities have continued beyond July 1991, for the purposes of this analysis, we assumed that external financing would cease on that date. Despite the termination of external assistance, significant costs and benefits are projected to continue, and to diffuse to areas outside of those addressed by the project, beyond the period of direct project intervention. For this reason the project is treated as a "time-slice" of the local development which it facilitated. These two project phases ("during" and "after" project intervention) are combined and appraised as one project in this analysis. Economic rate of return (ERR) and project net present value (NPV) measures serve as indicators of economic efficiency. Sensitivity and risk analysis are calculated [note 1] for the separate project components and the aggregate project. The basic farm conditions for each participating farmer are assumed to be identical, and the technical treatments are therefore expressed on a per hectare, rather than an individual farm, basis. In order to remain consistent with the analysis standards of the organization funding the project, the United States Agency for International Development (USAID), a 12% real discount rate was used. All costs and benefits are in real terms and it was assumed that there would be no relative price variations, for either costs or benefits, during the period of analysis. Due to the small scale of the project, it was also assumed that the project itself would result in no secondary benefits or costs, and have no effect on price levels. Similarly, it was assumed that there would be no economic cost to the domestic economy. Except in the case of the unskilled labor volunteered by participating farmers, market prices are assumed to provide an appropriate measure of economic value. Voluntary labor was shadow priced at the average value (across all seasons) of foregone earnings. The results of this analysis should not be viewed as a precise indicator of total project value as only feasibly
quantifiable costs and benefits (principally those associated with agricultural production) are factored into the calculations. Significant external benefits such as peasant organization and overall environmental rehabilitation are not considered as their determination requires substantial supposition. It is possible that the value of these external benefits exceed those that are quantified. CONTEXT AND HISTORY OF THE MAISSADE PROJECT Approaches to Watershed Management in Haiti Rural Haiti has witnessed numerous rural development, reforestation, soil conservation, and agriculture development projects. The majority have, by most accounts, produced disappointing results. Watershed management projects (including reforestation and soil conservation projects) in Haiti have predominantly utilized the "equipement du territoire" approach to environmental rehabilitation. This approach has been characterized by large-scale prescriptions for land and ravine treatment, mechanical rather than biologic structures, and monetary and commodity incentives to attract peasant participation (Lilin and Koohafkan 1987). Highly degraded and steep lands have often been primary targets for intervention. The use of this approach for the treatment of privately held lands, which constitute the vast majority of upland watershed lands, has been criticized by many development professionals for its disregard of indigenous conservation practices, social institutions, and land tenure complexities; for creating dependencies; and for failing to result in the sustained adoption and maintenance of the techniques promoted (Murray 1979 and Lilin 1986). An "agricultural parcel" approach to watershed management, which exploits internal peasant motivations to increase agricultural yields, was developed during the mid-1980's to complement and serve as an alternative to the "equipement du territoire" approach (Smolikowski 1989). Projects which use the "agricultural parcel" approach generally employ classic agricultural development strategies: training and hiring field extension agents; integrating basic agricultural goals into extension programs oriented primarily towards resource conservation; and conducting basic agricultural research. Such projects also tend to include or be associated with programs in community development or public health and have often carried the title of "integrated" watershed management projects. The Maissade Integrated Watershed Management Project ## Project History The Maissade Project, designed in 1985, was one of USAID/Haiti's pilot efforts in integrated watershed management and one of the first such projects in the country. Searching for new models for watershed management, project planners combined two embryonic yet promising extension strategies: i) the formation of "groupement" [note 2] for peasant mobilization; ii) economic benefit oriented tree planting (embodied in USAID's Agroforestry Outreach Project). The "groupement" were to form the basic unit through which the project functioned, and were to be promoted not as ends in themselves, but rather as the organizational means by which social, economic, and ecological problems would be addressed (SCF 1985). SCF was awarded a cooperative agreement with USAID and began field activities in January, 1986. First year activities consisted of identifying and training local staff and organizing "groupement". Public meetings were held on a regional basis in 1987 in which the participants identified local environmental problems and proposed strategies for their resolution. Responding to local requests, the project initiated technical assistance programs in hillside treatment (including agriculture, agroforestry, and soil conservation practices); ravine treatment (soil conservation techniques); forestry; animal husbandry; and small-scale infrastructure development. # Key Project Themes Long-term commitment. SCF began investing private funds in local community development efforts simultaneous to the initiation of the USAID sponsored watershed project. Despite the relatively low total amount of private funds available, confidence in their long-term availability has permitted SCF to make a long-term commitment to the project. This has allowed for the utilization of methods and the initiation of project activities which would not have been possible had only the short-term funding provided by USAID (though considerably larger in total amount) been available. SCF plans to build local capabilities to manage future development and to gradually transfer the management of existing development activities to local institutions (SCF 1989). Low level of investment in materials. In order to encourage a sense of responsibility for their own development on the part of local peasants, SCF operates in such a way that they will not be perceived as the provider of subsidies, material goods, or answers to local development problems. Rather, SCF seeks to maintain the role of educator, catalyst, and liaison between peasant groups and external agents. Accordingly, SCF has not invested in project-maintained infrastructure such as centralized tree nurseries, grain storage facilities, and credit programs. Similarly, SCF has acquired few vehicles, constructed few project buildings, and utilized expatriate assistance judiciously. A direct result of this approach has been low rates of expenditures, and the consequent no cost three year extension made possible for the project (Gaddis and Smucker 1988). Utilization of participatory development approaches. Peasants, as "groupement" representatives, play a key role in project decision functions: program planning, execution, and evaluation. Participation by peasants is voluntary; SCF provides no external incentives for their investment of time and materials. Peasants regularly volunteer as local extension agents in agroforestry, soil conservation, animal husbandry, and nursery management. Peasants also participate by conducting on-farm trials. # Project Components Farmer organization and training is the foundation for all project activities and is both an end in itself (forming the basis for sustained locally-driven development) and the means to achieve environmental rehabilitation goals. For this reason, farmer organization and training activities are not treated as a separate component in this analysis. The costs and benefits of these activities have been separated into those that support technical program objectives and those that support peasant organization objectives. As a percentage of group investment, capital is the only quantifiable benefit from the peasant organization activity. This component has been renamed "Group Investments" in this analysis. The "technical" project components include: hillside treatment, ravine treatment, forestry, animal husbandry, and small-scale infrastructure development. The benefits of the animal husbandry and small-scale infrastructure components have not been identified and quantified and thus these components are not included in this economic analysis (Figure 1). Figure 1. Project Structure: Components Included in this Analysis Support Activities (Joint Costs) Components hillside treatment local peasant administration organization ravine treatment group investments costs & training forestry PROJECT COSTS AND BENEFITS Costs The economic costs associated with the Project include those incurred by the executing agency as well as those incurred by local participants. Major direct costs are: external financing for project operation; voluntary local manpower for participation in training activities, and the establishment of technical treatments; and the opportunity cost of the land area invested in technical interventions. This opportunity cost is assumed to be zero because of the relatively small amount of land occupied and its relatively low value. Each of the other costs have been quantified and included in the analysis. No significant indirect costs associated with the Project were identified. Benefits: Direct and Indirect Benefits of the Project Resulting from Technical Treatments Within the overall goals of environmental rehabilitation and community development, the principal project objective is the attainment of sustainable increases in agricultural yields through soil conservation. On-site effects of the technical interventions include increased agricultural productivity, increased use of moisture demanding crops, and decreased property damage. Off-site external effects include reduced channel and reservoir sedimentation downstream, and reduced deposition of sediment on agricultural lands. For example, a 1990 SCF study found that 335 checkdams (33% of the checkdams constructed that year) held 1173 cubic meters of sediment (SCF 1990). Improvements in streamflow pattern and quantity, and in water quality, may be consequent external benefits. Due to the lack of empirical data relating watershed treatments to specific hydrological responses, the value of these potential benefits have not been quantified. With increases in agricultural production, other secondary benefits such as employment generation and population stabilization are expected to occur. However, the value of these secondary benefits have not been included in this analysis. Benefits of the Project Resulting from Peasant Organization The Maissade Project utilizes a methodology emphasizing peasant organization and mobilization to achieve specified environmental rehabilitation goals. This method produces social benefits in addition to and distinct from those occurring directly due to technical interventions. Such benefits include an organized and mobilized population which can function to resolve local problems whether agricultural or social in nature. For example, as of August 1988, there were 154 pre-cooperative farmer groups ("groupement") in Maissade engaged in various activities such as organizing local elementary schools, developing potable water sources,
providing free agricultural counsel, and developing local public health committees. Though significant, the value of these types of activities cannot be quantified with precision and have not been included in this analysis. Collective economic investments are a major activity of all farmer groups. These include grain storage and marketing, livestock rearing, and farming. A "lumpiness" [note 3] exists in investment opportunities. Because of cash scarcity, collective investment is often necessary. Peer pressure among group members to contribute funds and effort to collective activities also exists. Group members state that these funds would probably not have been invested productively if each member had acted individually. Largely because of investment opportunity "lumpiness", group investments have regularly proven to be more productive than the sum of individual investments of the same amount. Though it is not possible for other benefits accrued due to peasant organization, project records of group investments by group by year permit the quantification of this activity. ### Other Project Benefits There are a number of other project benefits whose value cannot be readily quantified, and have not been for this analysis. In keeping with the project's "pilot" role, conservation oriented techniques and implementation strategies are regularly tested and evaluated. Donor organizations along with other development workers in Haiti benefit from the lessons learned in Maissade. The Project also directly benefits the Maissade area by providing employment and on-the-job training to approximately 40 local inhabitants. This employment increases the possibility of future and enhanced employment opportunities for the participants, and local merchants clearly benefit from both official and unofficial expenditures in the local area. This "multiplier effect" results in the support of a substantial, albeit unknown, number of local families. Table 1. Physical Inputs and Outputs: Participant Perspective Item Units Year 1 2 3 4 | Inputs | | | | | | |--|--|---|--|--|---| | Group Investment | p-d/yr | 279.3 | 558.6 | 1117.2 | 1173.1 | | Hillside Treatment | F 7 - | | | | | | Training | p-d/yr | 0 | 1591.5 | 1591.5 | 1591.5 | | Construction | p-d/yr | | 263.8 | | | | Maintenance | p-d/yr | | 87.0 | | | | Ravine Treatment | 1 1 | | | | | | Training | p-d/yr | 0 | 954.9 | 954.9 | 954.9 | | Construction | p-d/yr | | 100 | 274.4 | 320 | | Maintenance | p-d/yr | | 30 | 112.3 | 208.3 | | Forestry | | | | | | | Training | p-d/yr | 0 | 636.6 | 636.6 | 636.6 | | Tree Planting | p-d/yr | 0 | 1040 | 1560 | 1950 | | | | | | | | | Outputs | | | | | | | Hillside Treatment | ha/yr | 0 | 21.1 | 87.9 | 156 | | Increased Corn Pr | od. | | | | | | | kg | 0 | 5501 | 28856 | 71834 | | Increased Sorghum | | | | | | | | kg | 0 | 8921 | 46799 | 116500 | | Ravine Treatment | #/yr | 0 | 250 | 686 | 800 | | New Productive Ar | | | | | | | | ha | 0 | 0.2 | | | | Rice Produced | kg | 0 | 200 | 749 | 1389 | | _ | | | | | | | Forestry | | 0 | 00000 | 100000 | 150000 | | Trees Planted | #/yr | 0 | 80000 | 120000 | 150000 | | Poles Produced | #/yr | 0 | 0 | 0 | 0 | | | | | | | | | | | | | | | | Ttem | IInita | | Ve | ar | | | Item | Units | 5 | | ear
7 | 8 | | | Units | 5 | Y∈
6 | ear
7 | 8 | | Inputs | | | 6 | 7 | - | | Inputs
Group Investment | | 5
1231.7 | 6 | | - | | Inputs
Group Investment
Hillside Treatment | p-d/yr | 1231.7 | 6
1293.3 | 7
3 1358.0 | 1425.9 | | Inputs
Group Investment
Hillside Treatment
Training | p-d/yr
p-d/yr | 1231.7
1591.5 | 6
1293.3
1591.5 | 7
3 1358.0
5 0 | 1425.9 | | Inputs
Group Investment
Hillside Treatment | p-d/yr
p-d/yr
p-d/yr | 1231.7
1591.5
2477.5 | 6
1293.3
1591.5
3200.0 | 7 3 1358.0 6 0 312.5 | 1425.9
0
312.5 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance | p-d/yr
p-d/yr | 1231.7
1591.5
2477.5 | 6
1293.3
1591.5
3200.0 | 7 3 1358.0 6 0 312.5 | 1425.9
0
312.5 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment | p-d/yr
p-d/yr
p-d/yr
p-d/yr | 1231.7
1591.5
2477.5
1910.7 | 6
1293.3
1591.5
3200.0
2966.7 | 7 8 1358.0 6 0 9 312.5 7 3069.8 | 1425.9
0
312.5 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7 | 6
1293.3
1591.5
3200.0
2966.7 | 7 3 1358.0 6 0 312.5 7 3069.8 | 1425.9
0
312.5
3173.0 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600 | 7 3 1358.0 6 0 312.5 7 3069.8 9 0 100 | 1425.9
0
312.5
3173.0
0
100 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600 | 7 3 1358.0 6 0 312.5 7 3069.8 9 0 100 | 1425.9
0
312.5
3173.0
0
100 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1 | 7 3 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 | 1425.9
0
312.5
3173.0
0
100 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1 | 7 3 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 | 1425.9
0
312.5
3173.0
0
100
570.1 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1 | 7 8 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 | 1425.9
0
312.5
3173.0
0
100
570.1 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1 | 7 8 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 | 1425.9
0
312.5
3173.0
0
100
570.1 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300 | 7 8 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 6 0 130 | 1425.9
0
312.5
3173.0
0
100
570.1 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr ha/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300 | 7 8 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 6 0 130 | 1425.9
0
312.5
3173.0
0
100
570.1 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment Increased Corn Pr | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr ha/yr od. kg | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300 | 7 8 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 6 0 130 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300 | 7 8 1358.0 6 0 9 312.5 7 3069.8 9 0 100 540.1 6 0 130 25 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130
25 | |
Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment Increased Corn Pr | p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr p-d/yr d/yr p-d/yr p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235
198.2 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300
256
206331
334625 | 7 8 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 6 0 130 25 228981 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130
25
251872
408483 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment Increased Corn Pr Increased Sorghum Ravine Treatment | p-d/yr kg prod. kg prod. kg #/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235
198.2 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300 | 7 8 1358.0 6 0 312.5 7 3069.8 9 0 100 540.1 6 0 130 25 228981 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130
25
251872
408483 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment Increased Corn Pr | p-d/yr | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235
198.2
129252
209619
1015 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300
256
206331
334625
1500 | 7 8 1358.0 6 0 9 312.5 7 3069.8 9 0 100 540.1 6 0 130 25 228981 371358 250 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130
25
251872
408483
250 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment Increased Corn Pr Increased Sorghum Ravine Treatment New Productive Ar | p-d/yr ha/yr od. kg Prod. kg #/yr ea ha | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235
198.2
129252
209619
1015 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300
256
206331
334625
1500 | 7 8 1358.0 6 0 9 312.5 7 3069.8 9 0 100 540.1 6 0 130 25 228981 371358 250 4 3.6 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130
25
251872
408483
250
3.8 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment Increased Corn Pr Increased Sorghum Ravine Treatment New Productive Ar Rice Produced | p-d/yr ha/yr od. kg Prod. kg #/yr ea ha | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235
198.2
129252
209619
1015 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300
256
206331
334625
1500 | 7 8 1358.0 6 0 9 312.5 7 3069.8 9 0 100 540.1 6 0 130 25 228981 371358 250 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130
25
251872
408483
250
3.8 | | Inputs Group Investment Hillside Treatment Training Construction Maintenance Ravine Treatment Training Construction Maintenance Forestry Training Tree Planting Outputs Hillside Treatment Increased Corn Pr Increased Sorghum Ravine Treatment New Productive Ar | p-d/yr ha/yr od. kg Prod. kg #/yr ea ha | 1231.7
1591.5
2477.5
1910.7
954.9
406
330.1
636.6
1235
198.2
129252
209619
1015 | 6
1293.3
1591.5
3200.0
2966.7
954.9
600
510.1
636.6
1300
256
206331
334625
1500 | 7 8 1358.0 6 0 9 312.5 7 3069.8 9 0 100 540.1 6 0 130 25 228981 371358 250 4 3.6 | 1425.9
0
312.5
3173.0
0
100
570.1
0
130
25
251872
408483
250
3.8 | | Trees Planted
Poles Produced | #/yr
#/yr | 95000
0 | 100000 | 10000
20000 | | |--|--------------|---------------------------|-----------------------|------------------|----------| | Item | Units | 9 | | ear
11 | 12-14 | | Inputs | | | 10 | 11 | 12 11 | | Group Investment
Hillside Treatment | p-d/y | r 1497 | .2 1572.0 | 1650.6 | 5 1821.2 | | Training | p-d/y | r 0 | 0
.5 312.5 | 0 | 0 | | Construction
Maintenance | p-d/y | r 312 | .5 312.5
.1 3379.2 | 312.5 | 312.5 | | Ravine Treatment | р ч/у | 1 3270 | .1 3377.2 | 2 3402. | 3000.0 | | Training | | r 0 | 0 | 0 | 0 | | Construction | | r 100 | | | | | Maintenance | p-d/y | r 600 | .1 630.3 | 1 660.1 | 1 720.1 | | Forestry
Training | p-d/y | r 0 | 0 | 0 | 0 | | Tree Planting | p-d/y | | | | 130 | | | 1 , 1 | | | | | | Outputs | | | | | | | Hillside Treatment | _ | 25 | 25 | 25 | 25 | | Increased Corn Pr | | 272771 | 293763 | 210562 | 211210 | | Increased Sorghum | kg
Prod | | 293703 | 310302 | 344340 | | increased sorgium | kg | | 476421 | 503665 | 558459 | | Ravine Treatment | | 250 | | | 250 | | New Productive Ar | ea | | | | | | n' n 1 1 | ha | | .0 4.2 | | | | Rice Produced Forestry | kg | 4001 | 4201 | 4401 | 4801 | | - | #/yr | 10000 | 10000 | 10000 | 10000 | | Poles Produced | #/yr | | 23750 | 35000 | 17708 | | | | | | | | | Item | | Units | | Year | ^ | | I Celli | | UIIICS | 15-17 | | | | Inputs | | | | | | | Group Investment | | p-d/yr | 2108.3 | 3 2440 | 0.6 | | Hillside Treatment | | 3 / | • | | _ | | Training
Construction | | p-d/yr
p-d/yr | 0
312. | |)
2.5 | | Maintenance | | p-d/yr
p-d/yr | 3998.0 | | | | Ravine Treatment | | ρ α/ / Ι | 3330. | 3 130 | 3 | | Training | | p-d/yr | 0 | (|) | | Construction | | p-d/yr | 100 | 100 | | | Maintenance | | p-d/yr | 810.3 | 1 900 | 0.1 | | Forestry | | n d/1170 | 0 | (|) | | Training
Tree Planting | | p-d/yr
p-d/yr | 0
130 | 13(| | | 1100 1 101101115 | | <u>.</u> ~, <u>, , , </u> | 100 | 130 | - | | Outputs | | | | | | | Hillside Treatment | | ha/yr | 25 | 25 | | | Increased Corn Pro | | kg
ka | 389026 | 429645
696793 | | | Increased Sorghum Ravine Treatment | | kg
#/yr | 630918
250 | 250 | | | New Productive Ar | | ha | 5.4 | | 5.0 | | | | | | | | | Rice Produced | kg | 5401 | 6001 | |----------------|------|-------|-------| | Forestry | | | | | Trees Planted | #/yr | 10000 | 10000 | | Poles Produced | #/yr | 19167 | 15583 | #### Notes: - 1. The shadow price of labor is based on a 5 hour work day. - 2. For periods of combined years, average annual values are displayed. ### PHYSICAL FLOWS OF INPUTS AND OUTPUTS ## Group Investments Project experience indicates that approximately 25% of group meeting time is spent on managing economic activities. The remaining time is focused on other concerns which have not been quantified for either this or the other project components. Aggregate peasant input for this component is thus a product of the total number of groups and the total number of meetings held each year. This information was calculated by the project (see Annex 1) for the year 1988 and totaled 1117 person-days/year. The authors assume that inputs for the years preceding and following 1988 are proportional to the 1988 cost based on the number of farmer groups existing in each of those years. Based on trends observed subsequent to 1988, it is estimated (conservatively) that there will be a 5% annual growth rate in the number of farmer groups after project termination, and it is assumed that the number of meetings per year is directly proportional to the number of groups. Group investment component outputs, which constitute a fixed percentage of total investment capital, is presented in the value flow table (Table 4). without project scenario it is assumed that the time allocated to the management of these activities would not have been more productive than ordinary individual activities. ### Hillside Treatment ### Inputs Inputs in the hillside treatment component of the project which could be quantified and were contributed by project participants include: participation in technical training activities, and the establishment and maintenance of soil conservation measures. These inputs are measured in person-days per year. Data and consequent projections are derived from project reports and are presented in Table 1. Participation in technical training includes farmer participation in field seminars, the work of volunteer extension agents, and participation in formal training events. Project records indicate that in 1988 peasant participation in technical training activities summed to a total of 3183 person-days (see Annex 1 for calculations). Records also indicate that approximately 50% of this participation focused on hillside treatment activities (1592 person-days), 30% on ravine treatment, and 20% on forestry activities. Project training efforts remained approximately constant from 1987 until 1990. It is assumed that this effort will remain at the same level in 1991. No technical training activities and no hillside treatments were conducted in 1986. Hillside treatments ("i.e.", hedgerows planted on the contour, trash barriers, and rock walls) were established and maintained [note 4] by approximately 750 farmers between 1987 and 1990. Project time studies indicate the amount of time required to construct and maintain (on an annual basis) each linear meter of structure. This data was used to calculate the actual input (in person-days) for the hillside treatments (see Annex 1 for calculations). ## Outputs The average inter-structure spacing was used together with the actual amounts of contour structures established each year to calculate a total hectare measure of hillside treated (Annex 1). The authors assumed that 25 hectares of land would be treated annually via
spontaneous peasant initiative following project termination. A corn/sorghum inter-cropping system is the dominant cropping system on lands where soil conservation treatments are being constructed. Project records indicate that corn and sorghum production on non-treated plots averages 1185 and 1510 kg/ha respectively. An agricultural yield study conducted by the Project in 1988, a year of poorly timed rainfall, indicated that lands treated with trash barriers produced an average of 51% more corn and 28% more sorghum than non-treated plots. The difference between the means was significant at the 95% level. A similar yield study in 1989, a more normal year, indicated that treated plots produced an average of 22% more corn and 32% more sorghum than non-treated plots (SCF 1990). For the purposes of this analysis the lower of the percent yield increase figures for each crop ("i.e.", 22% for corn, 28% for sorghum) were used to predict first year yield increases following the construction of hedgerows and trash barriers. It was assumed that yields would continue to increase 5% per year from the second to the fifth years following treatment due to improved moisture regime as the terrace formed by sediment deposited upslope of the hedgerow and trash barrier gradually stabilizes. It was also assumed that yields would increase a further 2% per year from the second through the tenth years following treatment as organic matter and nutrient cycling reach new (higher) equilibrium levels. These increases compare with a no treatment scenario ("i.e.", without the project) for which it was assumed that agricultural yields would decrease 1% per year due to soil erosion. Ravine Treatment ### Inputs Ravine treatment inputs include the person-days invested in technical training and in establishing and maintaining gully plugs (see Table 1). Participation in technical training (including time spent as volunteer extension agents, and participating in field seminars and formal training events) was estimated to be 955 person-days in 1988. The effort invested in project training remained relatively constant from 1987 through 1990, and is expected to remain at the same level in 1991. technical training activities were conducted and no ravine treatments were implemented in 1986. Ravine treatments began in 1987, totaling 250, and increased each year to a total of 1,015 in 1990. The authors estimate that 1500 structures will be built in 1991 and that 250 structures will be constructed each year following project termination. Project time studies show an average construction time of 0.4 person-days per structure. Maintenance was estimated to require 30% of construction effort (i.e., 0.12 person-days). ## Outputs Ravine treatments result in the slowing of sediment-laden overland flow, leading to sediment deposition and the consequent creation of enriched microsites upslope of each gully plug. During the dry season farmers regularly plant more moisture demanding crops in these areas, such as rice, bananas, taro, and market vegetables. The difficulty in quantifying yields with and without treatment, and of establishing the economic value of crop diversification, led the authors to employ the simplifying assumption that 50% of all structures resulted in new 16 m2 of rice production areas. SCF surveys indicate that average rice yield in ravines in the Maissade area is 0.1 kg/m2. The authors assumed that in a without project scenario, cropping patterns and yields would remain constant. Not included as a benefit from the ravine treatment, due to the lack of data necessary to quantify it, is the avoidance of the further loss of productive land caused by continued gully downcutting and headcutting which would occur without the treatment. Forestry Inputs Inputs for the forestry component include the time invested (in person-days) in technical training and in tree planting (see Table 1). Participation in technical training (including time spent as volunteer extension agents, and participating in field seminars and formal training events) was estimated to be 382 person-days in 1988. The effort invested in project training remained relatively constant from 1987 through 1990. It is assumed that this effort will remain at the same level in 1991. No technical training activities and no forestry activities were conducted in 1986. Tree planting inputs are a function of the number of trees planted each year and the effort expended per tree. The number of trees planted from 1986 to 1990 are known from project records, as is the fact that the average amount of time required to plant an single tree is 4 minutes. The Project plans to plant a total of 100,000 trees in 1991. Due to significant effort at training farmers in low input tree propagation, the accessibility of seed, and a growing demand for tree seedlings and wood products, the authors estimate that approximately 10,000 trees will be planted per year following project termination. No maintenance or harvest inputs are assumed because of their low relative cost. #### Outputs The primary economic output of the forestry component is construction poles. The authors estimate that 25% of trees planted will survive until the fifth year after planting [note 5], all trees surviving after the fifth year will be harvested for posts, 50% of trees harvested will coppice, and each tree that has coppiced will be harvested for posts 4 years following the initial harvest. It is assumed that 40% of those trees will coppice again, and again be harvested after a further 4 years. It is further assumed that 30% of those trees will coppice and be harvested for a final time after an additional 4 years. VALUE FLOWS OF INPUTS AND OUTPUTS Project Agency Outlays The Maissade Project was initially financed by USAID with a total of \$900,000 for three years (August 1, 1985 to July 31, 1988). Based on the mid-term evaluation team's recommendation, the project received a no-cost extension of one year to July 31, 1989. Mid-way through fiscal year 1989, it was realized that substantial funds remained, potentially permitting another no-cost extension to July 1990. An additional \$200,000 in local funds (PL480) was made available to SCF by USAID in February 1989 raising the total external financing cost to \$1,100,000. In 1990 SCF planned to continue project operations at lower annual budget levels, thus permitting project extension for a sixth year, to July 1991 (see Table 2). Table 2. Project Outlays (\$1000/year) | Component | 7 | Year | | | | |------------------|-----------|------|------|------|------| | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | | Total Project Ex | penditure | | | | | | 90 | 140 | 200 | 250 | 220 | 200 | | Infrastructure | | | | | | | 7.2 | 19.8 | 17.8 | 32.2 | 31.5 | 31.0 | | Animal Husbandry | | | | | | | 7.2 | 6.3 | 17.8 | 18.7 | 18.0 | 17.5 | | Hillside Treatme | nt | | | | | | 23.4 | 38.0 | 60.6 | 94.3 | 71.8 | 63.8 | | Ravine Treatment | | | | | | | 7.2 | 6.3 | 30.3 | 36.6 | 40.4 | 35.9 | | Forestry 16.2 | 44.3 | 56.2 | 47.2 | 40.3 | 35.8 | | Group Investment | | | | | | | 28.8 | 25.3 | 17.3 | 21.0 | 18.0 | 16.0 | Note: All components include 15% overhead, 20% local administration, and peasant organization and training costs. Project expenditures on farmer organization and training activities have been separated into the amounts supporting each project component. Experience indicates that about 60% of all expenditures for organization and training support technical activities (20% for hillside treatment, 10% each for ravine treatment, forestry, infrastructure, and animal husbandry), while 40% supports organizational goals (represented by the group investment component). Since infrastructure development and animal husbandry do not directly contribute to the benefits included in this analysis, the direct costs of those components, as well as the associated overhead (15%) and local administration (20%) costs, have been subtracted from the total annual project expenditures. What remains are the net expenditures on the watershed management portion of the project. Project budgets were used to disaggregate net watershed management expenditures (comprised of salaries and materials) into separate components (hillside treatment, ravine treatment, forestry, and group investments). No outputs (benefits) are returned to the project. Costs and Benefits for Project Participants ## Group Investments Costs of the group investment component (see Table 3) is derived from the number of person-days invested (from Table 1) and the opportunity cost of that labor (from Table 3). Benefits of the component are represented by a percentage of the group investment profits. Project records indicate that total group capital equaled \$2,600 in 1987, \$6,400 in 1988, and \$10,542 in 1989 (SCF 1988 and SCF 1990). The authors estimate that group capital will grow 30% per year during the period of project intervention, and 10% per year thereafter. Group investments are assumed to be 10% more productive than the average investments made by individual farmers due to the lumpiness in investment opportunities. In essence, it is assumed that without the project investments made by individual group members would have produced 10% less capital. Table 3. Economic Prices | Item | Price | |-----------------|-------------| | Inputs: | | | Unskilled labor | \$0.60/day | | Outputs: | | | Corn | \$0.22/kg | | Sorghum | \$0.26/kg | | Rice | \$0.88/kg | | Wood Poles | \$0.40/pole | #### Hillside Treatments The aggregate cost of the hillside treatment activities is the sum of costs of participation in training events, and the establishment and maintenance of soil conservation measures. Values presented in Table 4 are a product of economic prices presented in Table 3 and the physical inputs of Table 1. Aggregate benefits equal the financial value of increased agricultural yields and are calculated using output prices presented in Table 3. Table 4. Value Flow:
Participant Perspective | Item | | | Year | | | |-------------------|-------|-------|-------|--------|--------| | | 1 | 2 | 3 | 4 | 5 | | Costs | | | | | | | Group Investment | 167.6 | 335.2 | 670.3 | 703.8 | 739.0 | | Hillside Treatmen | ıt | | | | | | Training | 0 | 954.9 | 954.9 | 954.9 | 954.9 | | Construction | 0 | 158.3 | 659.3 | 1170.0 | 1486.5 | | Maintenance | 0 | 52.2 | 269.8 | 655.9 | 1146. | | Ravine Treatment | | | | | | | Training | 0 | 572.9 | 572.9 | 572.9 | 572.9 | | Construction | 0 | 60.0 | 164.6 | 192.0 | 243.6 | | Maintenance | 0 | 18.0 | 67.4 | 125.0 | 198.1 | | Forestry | | | | | | | Training | 0 | 382.0 | 382.0 | 382.0 | 382.0 | | Tree planting | 0 | 624 | 936 | 1170 | 741 | | Net Costs | 168 | 3158 | 4677 | 5927 | 6464 | | | | | | | | | Benefits | | | | | | | Group Capital | 0 | 260.0 | 640.0 | 1054.2 | 1370.5 | | Hillside Yields | 0 | 3530 | 18516 | 46093 | 82936 | | Net Returns | Ravine Yields
Forestry Yields | 0 | 176.0 | 658.9 | 1222.1 | 1936.7 | |---|----------------------------------|------------|---------------|----------------|----------------|----------------| | Costs | Net Benefits
Net Returns | 0
(168) | 3966
809 | 19815
15138 | 48369
42443 | 86243
79779 | | Costs | Ttem | | | Vear | | | | Group Investment 776.0 814.8 855.5 898.3 943.2 Hillside Treatment Training 954.9 0 0 0 0 0 0 0 0 0 | Teem | 6 | 7 | | 9 | 10 | | Hillside Treatment Training 954.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | 776 0 | 81 <i>4</i> 8 | 855 5 | 808 3 | 943 2 | | Construction Maintenance 1920.0 187.5 187.5 187.5 187.5 2027.5 Ravine Treatment Training 572.9 0 | | | 014.0 | 033.3 | 0,00.5 | 743.2 | | Maintenance 1780.0 1841.9 1903.8 1965.6 2027.5 Ravine Treatment Training 572.9 0 0 0 0 Construction 360.0 60.0 60.0 60.0 60.0 60.0 Maintenance 306.1 324.1 342.1 360.1 378.1 Forestry Training 382.0 0 0 0 0 Tree planting 780 78 78 78 78 78 Net Costs 7832 3306 3427 3550 3674 Benefits Group Capital 1781.6 1959.8 2155.7 2371.3 2608.4 Hillside Yields 132395 146929 161618 175669 188497 Ravine Yields 2992.7 3168.7 3341.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> | _ | | | | | | | Ravine Treatment Training 572.9 0 0 0 0 0 0.0 Construction 360.0 60.0 60.0 60.0 60.0 Maintenance 306.1 324.1 342.1 360.1 378.1 Forestry Training 382.0 0 0 0 0 0 0 Tree planting 780 78 78 78 78 Net Costs 7832 3306 3427 3550 3674 Benefits Group Capital 1781.6 1959.8 2155.7 2371.3 2608.4 Hillside Yields 132395 146929 161618 175669 188497 Ravine Yields 2992.7 3168.7 3344.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 Construction 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 Tree planting 78 78 78 78 78 Net Costs 3801 4464 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | | | | | | | Training 572.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 1841.9 | 1903.8 | 1905.0 | 2027.5 | | Construction Maintenance 360.0 60.0 60.0 60.0 60.0 60.0 378.1 Forestry Forestry Training Traininininininininininininininininininin | | | 0 | 0 | 0 | 0 | | Forestry Training 382.0 0 0 0 0 0 0 Tree planting 780 78 78 78 78 Net Costs 7832 3306 3427 3550 3674 Benefits Group Capital 1781.6 1959.8 2155.7 2371.3 2608.4 Hillside Yields 132395 146929 161618 175669 188497 Ravine Yields 2992.7 3168.7 3344.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 Construction 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 Tree planting 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | | | | | | | Training 382.0 0 0 0 0 0 0 0 0 0 Tree planting 780 78 78 78 78 78 78 78 78 78 78 78 78 78 | Maintenance | 306.1 | 324.1 | 342.1 | 360.1 | 378.1 | | Tree planting 780 78 78 78 78 78 78 78 Net Costs 7832 3306 3427 3550 3674 Benefits Group Capital 1781.6 1959.8 2155.7 2371.3 2608.4 Hillside Yields 132395 146929 161618 175669 188497 Ravine Yields 2992.7 3168.7 3344.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 0 Construction 187.5 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 78 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 1872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | - | | | | | | | Net Costs 7832 3306 3427 3550 3674 Benefits Group Capital 1781.6 1959.8 2155.7 2371.3 2608.4 Hillside Yields 132395 146929 161618 175669 188497 Ravine Yields 2992.7 3168.7 3344.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year Temporal Processor Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 Construction 187.5 187.5 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training< | | | | | | | | Benefits Group Capital 1781.6 1959.8 2155.7 2371.3 2608.4 Hillside Yields 132395 146929 161618 175669 188497 Ravine Yields 2992.7 3168.7 3344.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 0 Construction 187.5 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 78 78 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | | _ | _ | - | - | | Group Capital 1781.6 1959.8 2155.7 2371.3 2608.4 Hillside Yields 132395 146929 161618 175669 188497 Ravine Yields 2992.7 3168.7 3344.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 | Net Costs | 1832 | 3306 | 3427 | 3550 | 36/4 | | Hillside Yields 132395 | Benefits | | | | | | | Ravine Yields 2992.7 3168.7 3344.7 3520.7 3696.7 Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 0 0 Construction 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 0 0 0 Tree planting 78 78 78 78 78 78 Net Costs 3801 4064 4475 4914
Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | Group Capital | 1781.6 | 1959.8 | 2155.7 | 2371.3 | 2608.4 | | Forestry Yields 0 8000 12000 15000 9500 Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 0 0 Construction 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 0 0 Construction 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 0 0 0 Tree planting 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 387.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | Hillside Yields | | 146929 | 161618 | 175669 | 188497 | | Net Benefits 137169 160058 179118 196561 204302 Net Returns 129337 156751 175692 193012 200628 Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 Construction 187.5 | | | | | | | | Net Returns 129337 156751 175692 193012 200628 Item Year Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 Construction 187.5 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 Construction 60.0 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 Training 0 0 0 0 0 Tree planting 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 22095 | - | | | | | | | Item Year 11 12-14 15-17 18-20 Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 Construction 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 Construction 60.0 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 Tree planting 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 2 | | | | | | | | Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 Construction 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 Tree planting 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 | net Returns | 129337 | 150/51 | 1/5092 | 193012 | 200628 | | Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 Construction 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 Tree planting 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 | | | | | | | | Costs Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Item | | | | | | | Group Investment 990.4 1092.8 1265 1464.4 Hillside Treatment Training 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Costs | 11 | 12 | 2-14 | 15-17 | 18-20 | | Hillside Treatment Training 0 0 0 0 0 0 Construction 187.5 187.5 187.5 187.5 Maintenance 2089.4 2213.1 2398.8 2584.4 Ravine Treatment Training 0 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 0 Tree planting 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | 990 4 | 100 | 22 8 | 1265 | 1464 4 | | Training 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | 10. | 2.0 | 1203 | 1101.1 | | Maintenance2089.42213.12398.82584.4Ravine Treatment
Training0000Construction60.060.060.060.0Maintenance396.1432.1486.1540.1Forestry
Training0000Tree planting78787878Net Costs3801406444754914BenefitsGroup Capital2869.33482.34635.06169.2Hillside Yields199276220956249624275688Ravine Yields3872.74224.74752.75280.7Forestry Yields140007083.37666.76233.3Net Benefits220018235746266678293371 | | | | 0 | 0 | 0 | | Ravine Treatment Training 0 0 0 0 0 0 Construction 60.0 60.0 60.0 60.0 Maintenance 396.1 432.1 486.1 540.1 Forestry Training 0 0 0 0 0 0 Tree planting 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | Construction | 187.5 | 18 | 37.5 | 187.5 | 187.5 | | Training 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | Maintenance | 2089.4 | 223 | 13.1 | 2398.8 | 2584.4 | | Construction60.060.060.060.0Maintenance396.1432.1486.1540.1ForestryTraining00000Tree planting78787878Net Costs3801406444754914BenefitsGroup Capital2869.33482.34635.06169.2Hillside Yields199276220956249624275688Ravine Yields3872.74224.74752.75280.7Forestry Yields140007083.37666.76233.3Net Benefits220018235746266678293371 | | | | | | | | Maintenance396.1432.1486.1540.1Forestry
Training0000Tree planting78787878Net Costs3801406444754914Benefits3600406444754914Group Capital2869.33482.34635.06169.2Hillside Yields199276220956249624275688Ravine Yields3872.74224.74752.75280.7Forestry Yields140007083.37666.76233.3Net Benefits220018235746266678293371 | | | | | | | | Forestry Training 0 0 0 0 0 0 Tree planting 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | | | | | | | Training 0 0 0 0 0 78 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | 390.1 | 4. | 52.1 | 400.1 | 540.1 | | Tree planting 78 78 78 78 78 Net Costs 3801 4064 4475 4914 Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | - | 0 | | 0 | 0 | 0 | | Benefits Group Capital 2869.3 3482.3 4635.0 6169.2 Hillside Yields 199276 220956 249624 275688 Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | | | | | | | Group Capital2869.33482.34635.06169.2Hillside Yields199276220956249624275688Ravine Yields3872.74224.74752.75280.7Forestry Yields140007083.37666.76233.3Net Benefits220018235746266678293371 | Net Costs | 3801 | 406 | 54 | 4475 | 4914 | | Hillside Yields199276220956249624275688Ravine Yields3872.74224.74752.75280.7Forestry Yields140007083.37666.76233.3Net Benefits220018235746266678293371 | | | | | | | | Ravine Yields 3872.7 4224.7 4752.7 5280.7 Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | | | | | | | Forestry Yields 14000 7083.3 7666.7 6233.3 Net Benefits 220018 235746 266678 293371 | | | | | | | | Net Benefits 220018 235746 266678 293371 | | | | | | | | | | | | | | | | 1.00 1.000110 21021, 201000 202200 200107 | Net Returns | 216217 | | | 262203 | 288457 | Note: For periods of combined years, average annual values are displayed. ### Ravine Treatments Aggregate ravine treatment costs equal the sum of person-days invested in technical training, and the construction and maintenance of gully plugs. Values presented in Table 4 are a product of physical inputs (Table 1) and their economic price (Table 3). Increased rice yields represent benefits from treatment. ### Forestry Forestry treatment costs are based on person-days invested in technical training, the number of trees planted annually (Table 1), and the effort expended per tree. Component benefits are based on the value of poles produced from the planted trees (Table 3). ### Results of the Economic Analysis As stated in the introduction, the purpose of this analysis is to answer the following questions: - * Is the project economically efficient at the aggregate level? - * Are each of the (quantified) project components economically efficient? - * Is the aggregate project economically attractive to participating peasants? - * Are each of the (quantified) project components economically attractive to participating peasants? Table 5. Measures of Economic Efficiency for the
Aggregate Project and for Each Component: Donor Perspective | Project Component | Net | Present | Value | |--------------------|-----------|---------|--------| | | (\$1,000) | | | | | 8% | 12% | 16% | | Aggregate Project | 732.1 | 336.6 | 104.7 | | Hillside Treatment | 1076 | 671.4 | 425.5 | | Ravine Treatment | -100.3 | -94.5 | -88.0 | | Forestry | -150.3 | -149.1 | -144.7 | | Group Investment | -93.2 | -91.2 | -88.2 | | Project Component | Benefit/Cost | Periods to | Real Economic | |--------------------|--------------|--------------|----------------| | | Ratio | Pay Back at | Rate of Return | | | | Discout Rate | (%) | | | | (years) | | | Aggregate Project | 1.50 | 12 | 18.81 | | Hillside Treatment | 3.46 | 7 | 41.05 | | Ravine Treatment | 0.17 | >19 | Not Calculated | | Forestry | 0.19 | >19 | Not | Calculated | |------------------|------|-----|-----|------------| | Group Investment | 0.15 | >19 | Not | Calculated | #### Notes: 1. Benefit/Cost Ratio, Payback Periods, and Economic Rate of Return are based on a discount rate of 12%. 2. All values are in 1988 dollars. The answers to these questions are discussed in the following section and are organized from both the donor and the peasant perspectives. In the donor perspective analysis, all costs (both those accrued by the project agency and participating peasants) are included. This analysis was conducted for the aggregate project (treating each project component as a separate input), and for each component (treating each component as a separate project with participant and project outlays as inputs). Only costs incurred by participants were included in the participant perspective analysis. This analysis was conducted for both the aggregate project (permitting comparison of the relative economic attractiveness of the different components) and for the separate components (permitting a more detailed analysis of activity costs and benefits). Economic Efficiency From the Donor Perspective Analysis of the Aggregate Project The positive present net value (NPV) and the benefit/cost ratio of 1.5 indicate that, considering only the inputs and outputs quantified and included, the aggregate project is economically efficient (see Table 5). The aggregate project may be considered to be a desirable investment as long as the opportunity cost of capital (or the real interest rate) does not exceed the economic rate of return of 18.81% (see Table 5). Analysis of the sensitivity of NPV to 10% changes in input and output values demonstrates that the hillside component has the greatest influence upon the efficiency of the project (see Table 6). Overall, inputs have a fairly balanced impact on project outcome (they range from 10.70 to 27.28), whereas there is great disparity in the sensitivity of outcome to changes in the output values for the different project components (with a range of 1.58 to 94.42). Hillside benefits far outweigh those of ravine treatment, forestry, or group investment in terms of their affect on the economic efficiency of the aggregate project. Table 6. Sensitivity of Aggregate Project NPV to 10% Changes in Inputs and Outputs: Donor Perspective | Project Component | Inputs (\$1,000) | Outputs (\$1,000) | |--------------------|------------------|-------------------| | Hillside Treatment | 27.28 | 94.42 | | Ravine Treatment | 11.41 | 1.95 | | Forestry | 18.48 | 3.57 | #### Notes: - 1. Values are based on a real discount rate of 12%. - 2. All values are in 1988 dollars. The sensitivity analysis also indicates that the value of project outputs and inputs would have to fluctuate to a far greater degree than 10% to drive NPV to zero. Therefore, the estimates of input and output values can deviate from actual values by an amount far exceeding 10% without significantly affecting the net outcome of the project. In order to analyze each component as a separate project, project outlay costs were included in the separate component costs for the sensitivity analysis discussed above (and presented in Table 6). In addition to understanding relative component efficiency, donors might also be interested in knowing the relative weight of project outlays when compared to peasant inputs and net project returns. In this case, each component is treated as a different project input, as is project outlay. When project outlay costs are subtracted from component costs, the remaining value is that which is contributed by participating peasants. To better demonstrate performance sensitivity to specific changes in project outlay costs, another sensitivity analysis was conducted (see Table 7). This analysis further demonstrates the prominence of hillside treatment relative to other peasant inputs in influencing project performance. This analysis also clearly indicates that project outlay cost and hillside treatment benefits are by far the two most important factors affecting project efficiency. All other inputs and outputs pale by comparison. It is also striking to note that project NPV is more sensitive to changes in hillside treatment outputs than to project outlay inputs. This indicates that hillside treatments are worthy of greater project investment. Table 7. Sensitivity of Aggregate Project NPV to 10% Changes in Inputs and Outputs: Donor Perspective (With Project Outlay as a Separate Input) | Project Component | Inputs (\$1,000) | Outputs (\$1,000) | |--------------------|------------------|-------------------| | Peasant Inputs | | | | Hillside Treatment | 1.82 | 94.42 | | Ravine Treatment | .50 | 1.95 | | Forestry | .47 | 3.57 | | Group Investment | .63 | 1.58 | | Agency Inputs | | | | Project Outlay | 64.44 | | #### Notes: - 1. Values are based on a real discount rate of 12%. - 2. All values are in 1988 dollars. Results of the analyses conducted for each separate component are presented in Table 5. The benefit/cost ratio of 3.46 and economic rate of return of 41.05 obtained for the hillside treatment component demonstrate that it is economically efficient and a good social investment. In fact, the returns to hillside treatment are probably conservative. The figures used to predict increases in corn and sorghum yield in the first year following treatment were based on the lower of the two yield increase figures obtained for each crop, not on either the average or the higher of the two. Further, in determining the total number of hedgerows and trash barriers constructed, project technicians counted only those which had been constructed using a level. One project document purported these "correctly constructed" structures comprised only approximately 50% of all structures built by peasants. Presumably, some of those not counted were at least partially effective at reducing overland flow, causing sediment deposition, and, consequently, increasing crop yields. If included, then these "sub-optimal" structures might have doubled project NPV. Benefit/cost ratios for the other components are all well below 1, demonstrating that with the inputs and outputs quantified for this analysis, these components are not independently economically efficient. The high rate of return from hillside treatments obviously makes up for the less productive components, and drives the aggregate project measures positive. This poor performance does not necessarily mean that these components are not worthy of donor investment. It should be remembered that only a portion of benefits from each component were quantified (e.g., in addition to increased rice production, ravine treatments permit the cultivation of other diverse, nutritious and higher valued crops such as bananas and taro, and reduce further loss of cultivable land to gully erosion). This analysis does clearly indicate, though, that activities which enhance agricultural productivity have a greater net benefit and internal rate of return than ravine, forestry, and group economic investment activities. Table 8. Sensitivity of NPV for Separate Project Components to 10% Changes in Inputs and Outputs: Donor Perspective | | Hillside | Ravine | Forestry | Group | |---------------|---------------|-----------|-----------|-------------------------| | _ | Component | Component | Component | Investment
Component | | Costs | | | | | | Training | 0.34 | 0.21 | 0.14 | | | Establishment | & Maintenance | | | | | | 1.47 | 0.29 | 0.33 | 0.63 | | Agency Outlay | 25.46 | 10.91 | 18.01 | 10.07 | | Benefits | 94.42 | 1.95 | 3.57 | 1.58 | | | | | | | Notes: - 1. Values are based on a real discount rate of 12%. - 2. All values are in thousands of 1988 dollars. Although the forestry component had the second highest benefit/cost ratio (Table 5), that ratio was only marginally greater than that for either the ravine treatment or group investment components. Aggregate NPV was also more sensitive to changes in forestry inputs and outputs than to changes in the other two components (Table 6). It is clear that forestry inputs were high relative to forestry outputs [note 6], and that the bulk of forestry costs were born by the project agency, rather than by peasants participating in the project. High project outlay costs for the forestry component are due to the cost of tree seedlings (\$0.07/seedling), transport, and the salaries of agency personnel concerned with the forestry component. Less capital intensive methods ("i.e.", local production of seedlings, use of low input propagation techniques, and less monitoring) might have been more efficient, but would not necessarily have achieved the same result of catalyzing local demand and production. The low value of poles (\$0.40-Table 3) is also responsible for the relatively low benefit/cost ratio of the forestry component. Wood products are not scarce in the Maissade area; demand for them has not risen significantly in recent years. In fact, there is currently limited export of charcoal and high valued timber from the region. Analysis of the sensitivity of NPV to 10% changes in the values of inputs and outputs for each of the
separate project components (Table 8) further reveals the relative importance the hillside treatment component to the outcome of the overall project. Although costs (project agency outlay, and the costs of training and structure establishment and maintenance incurred by project participants) are highest for the hillside treatment component, they are still within approximately the same range as those for each of the other three project components. By contrast, the benefits obtained from the hillside component are far greater than those for the other three components combined, exceeding them by over 1,200%. Benefits from the hillside component are approximately 2,500% higher than those from forestry, and almost 5,900% higher than those for group investment. Table 9. Measures of Economic Efficiency for the Aggregate Project and for Each Component: Participant Perspective | Project Component | Net Present Value | | | | | |--------------------|-------------------|-----|------|--|--| | | (\$1,000) | | | | | | | 12% | 24% | 50% | | | | Aggregate Project | 981 | 384 | 101 | | | | Hillside Treatment | 926 | 284 | 99.0 | | | | Ravine Treatment | 14.6 | 5.1 | .9 | | | | Forestry | 31.0 | 8.4 | .6 | | | | Group Investment | 9.4 | 3.1 | .5 | | | | Project Component | Benefit/Cost | Periods to | Real Economic | |--------------------|--------------|--------------|----------------| | | Ratio | Pay Back at | Rate of Return | | | | Discount Rat | e (%) | | | | (years) | | | Aggregate Project | 29.68 | 1 | >200 | | Hillside Treatment | 51.95 | 1 | >200 | | Ravine Treatment | 3.93 | 4 | >200 | | Forestry | 7.56 | 7 | >200 | | Group Investment | 2.49 | 4 | 87.9 | #### Notes: - 1. Benefit/Cost Ratio, Payback Periods, and Economic Rate of Return are based on a discount rate of 12%. - 2. Values presented are in 1988 dollars. Economic Efficiency From the Participant Perspective Analysis of the Aggregate Project Peasant participation in the project is economically efficient. This is clearly evidenced by the overall benefit/cost ratio of 29.68, and the economic rate of return of over 200% (see Table 9). Participation in project activities (in the form of labor) pays full return on investment within a year (at the 12% discount rate). This is important in light of the widely held belief that poor peasants place a much greater emphasis on obtaining returns on their investments in a short period of time than do wealthier individuals, and in light of the high usury rates (30% per month) common in the Maissade area. Capital is scarce, consistently so in the form of money, and at times in the form of labor, as well. For this reason, discount rates of 24 and 50% were also used in the analysis. Interestingly, based on the assumptions made, the project provides adequate returns to peasant investment ("i.e.", is economically justified) even when analysis is performed using a 50% discount rate. The sensitivity of aggregate project NPV to changes in input and output values is presented in Table 10. Again, project performance is most affected by changes in hillside treatment inputs and outputs. This activity is apparently a better use of peasant time in terms of potential to yield economic returns than are the ravine treatment, forestry, or group investment components. Table 10. Sensitivity of Aggregate Project NPV to 10% Changes in Inputs and Outputs: Participant Perspective | Project Component | Inputs | Outputs | | |--------------------|-----------|-----------|--| | | (\$1,000) | (\$1,000) | | | Hillside Treatment | 1.82 | 94.42 | | | Ravine Treatment | 0.50 | 1.95 | | | Forestry | 0.47 | 3.57 | | #### Notes: - 1. Values are base on a real discount rate of 12%. - 2. All values are in 1988 dollars. Analysis of Each Separate Project Component Measures of the economic efficiency of each separate component are presented in Table 9. From the perspective of project participants hillside treatments show the greatest benefit/cost ratio (51.95), paying back investment within one year. Investment in forestry activities has the second highest ratio (7.56), but requires seven years for a full return on investments. It may be noted that this is so despite the fact that during the course of the project peasants receive seedlings for free, and thus incur none of the costs of tree production other than their time invested in training and their labor invested in planting. Investments in both ravine treatment and group investment activities show lower benefit/cost ratios than forestry, but pay back within four years. As was the case for the donor's perspective, sensitivity analysis conducted for each individual project component further demonstrates that investment in hillside treatment ("i.e.", participation in training activities, and the establishment and maintenance of structures) yields the greatest relative return (see Table 11). It is clear that the dominant element in this economic analysis, and hence in the success of the project, is the hillside treatment component of the project. Table 11. Sensitivity of NPV for Separate Project Components to 10% Changes in Inputs & Outputs: Participant Perspective | | Hillside | Ravine | Forestry | Group Investment | | | |-----------------------------|-----------|-----------|-----------|------------------|--|--| | | Component | Component | Component | Component | | | | Costs | | | | | | | | Training | 0.34 | 0.21 | 0.14 | | | | | Establishment & Maintenance | | | | | | | | | 1.47 | 0.29 | 0.33 | 0.63 | | | | Benefits | 94.42 | 1.95 | 3.57 | 1.58 | | | ### Notes: - 1. Values are based on a real discount rate of 12%. - 2. All values are in thousands of 1988 dollars. ## CONCLUSIONS Throughout this analysis, estimates of project benefits are conservative, whereas, by contrast, estimates of costs are relatively realistic. On top of that, only a portion of all project benefits have been analyzed. Therefore, it is likely that the true aggregate NPV of the project (from the donor perspective) is actually greater than that calculated (\$336,600 at a 12% discount rate) and that the true benefit/cost ratio (also from the donor perspective) is wider than that presented (1.5). Analyzed separately, the hillside treatment component is economically efficient while the other components (forestry, ravine treatment, and group investments) are not. As the sensitivity analyses demonstrate, project outcomes are most sensitive to changes in project outlay inputs and hillside treatment benefits. Both the aggregate project and all separate project components are economically efficient from the perspective of project participants, and all but the group investment component have internal rates of return exceeding 200%. Investment in hillside treatment yielded what was by far the greatest return. Investment in activities which serve to increase agricultural production ("i.e.", hillside and ravine treatments) appears substantially more worthwhile in economic terms than does investment in forestry activities. As these sorts of treatments also appear to achieve more in terms of environmental protection than the forestry treatments employed in this project, the results of this analysis strongly suggest that project efforts should place more of an emphasis on environmentally protective and sustainable agricultural production [note 7] than on forestry activities. This analysis also demonstrates that the fiscally conservative low profile approach to watershed management, emphasizing peasant organization and training, employed in the Maissade Integrated Watershed Management Project, can be economically efficient. Similar economic analyses of other watershed management projects and strategies utilized in Haiti should be conducted to permit a comparative evaluation. #### APPENDIX Annex 1: Physical Flow Calculations [note 8] Participation in Technical Training - 1) Participation in technical seminars in 1988: (175 seminars x 3 hr/seminar x 15 participants/seminar)/ (5 hr/person-day) = 1575 person-days - 2) Volunteer extension agents: (20 volunteers x 36 wk/yr x 3 hr/wk)/(5 hr/person-day) = 432 person-days/year - 3) Participation in formal training: (196 participants x 30 hr/participant/yr)/(5 hr/person-day) = 1176 person-days/year - 4) Total technical participation in 1988 = 3183 person-days Group Investments Inputs 1) Group investments in 1988: (1862 meetings x 1.5 hr/meeting x 8 participants x 0.25)/ (5 hr/person-day) = 1117 person-days Hillside Treatment Inputs and Outputs Table A1. Hillside Treatments Implemented Each Year (SCF 1988 and SCF 1990) | Structure Type | | ~ | | | ed by Year | - | |----------------|-------|--------|----------|---------|------------|----------| | | 1986 | 1987 | 1988 | 1989 | 1990 | 1991 | | trash barrier | 0 | 20,280 | 91,866 | 150,000 | [note b] | | | | | ŕ | • | • | 200,000 | [note b] | | | | | | | | 250,000 | | [note b] | | | | | | | | hedgerow | 0 | 4,160 | 6,568 | 25,000 | [note b] | | | | | | | | 43,167 | 65,000 | | [note b] | | | | | | | | rock wall | 0 | 2000 | [note b] | | | | | | | | 11,486 | 20,000 | [note b] | | | | | | ŕ | • | 4,545 | 5,000 | | [note b] | | | | | | | | total | 0 | 26,440 | 109,920 | 195,000 | 247,712 | 320,000 | | total hectares | [note | c] | | | | | | | 0 | 21. | .1 87 | .9 156 | .0 198.2 | 256.0 | ## Notes: - a. Presented in linear meters. - b. Project data not available, authors' projection. - c. Based on 1250 linear meters per treated hectare. - 1) Contour structure establishment requires 3 minutes/linear meter. With an inter-row spacing of 8 meters, 1250 linear meters were treated per hectare. - (3 min/linear m x 1250 linear m/ha)/(60 min/hr x 5 hr/person-day) = 12.5 person-days/treated hectare. - 2) Annual maintenance includes hedgerow lopping and trash barrier reconstruction. These tasks are estimated to require 33% of establishment effort. ## Annex 2: Description of Treatments ### Hillside Treatments Hillside treatments include trash barriers, hedgerows, and rock walls, with trash
barriers and hedgerows frequently implemented together. All three structures are established on the contour with an average spacing of 8 meters between structures. Surveying is accomplished with the use of an A-frame level. Trash barriers are established by digging a ditch approximately 20 cm. deep, piling the soil into a ridge downslope. Stakes are placed approximately 10 cm. upslope of the of the ditch and crop residue ("e.g.", corn and sorghum stalks) is piled perpendicular to, and upslope of the stakes. Another ditch is dug upslope to the trash barrier and the soil is piled over the barrier. This is done to make the barrier less permeable to water flow, as well as to keep rats from nesting in the barrier. Such barriers require annual repair and reconstruction. If a hedgerow is established in conjunction with the trash barrier "Leucaena leucocephala" seed (at the rate of approximately 100 seeds/m.) is planted on the upslope side of the ridge formed downslope of the first ditch. In the second year after establishment, instead of repairing the trash barrier in place, crop residue is piled directly against the leucaena and the stalks used the previous year are removed or allowed to decay in place. Soil is piled over the trash barrier as before. Annual maintenance is also required. ## Ravine Treatments Ravine treatments include: trash barriers with support stakes capable of reproducing vegetatively; hedgerows of "Leucaena leucocephala, Pennisetum purporeum", and "Saccharum officinarum;" and rock checkdams. To improve structure efficiency and durability, more than one treatment is often implemented at a given site. The structures average 0.75 meters in height and 3 meters in width. On an annual basis, approximately 30% of the structures require reconstruction following the rainy season. All structures require some annual maintenance. The non-vegetative portion of the structure ("i.e.", trash barrier or rock checkdam) is normally constructed during the dry season. If stakes which propagate vegetatively are used, these too are planted towards the end of the dry season. "Pennisetum" and "Saccharum" hedges may be planted downslope of the non-vegetative barrier at any time during the rainy season. If "Leucaena" is planted, seeds are planted towards the end of the rainy season, after high flows have subsided, but before the ravine dries out. #### Forestry The forestry component of the project aimed at encouraging the planting of trees along property boundaries. Species used include: the indigenous "Catalpa longissima, Columbrina arborescens," and "Simaruba glauca"; and the exotics "Cassia siamea, Azadirachta indica", and "Acacia auriculiformis." ### Group Investments The two most common types of group investment were in animal husbandry and the marketing of agricultural products. Swine production was an important activity, in which piglets were farrowed and sold. Marketing was mostly grains and beans, grown or purchased and stored till the market price reached an acceptable level. #### NOTES - 1. Calculations were performed using the Cash Flow and Sensitivity Analysis Program (CASH) developed by M.L. Belli, D.W. Rose, C.R. Blinn, and K. Ho, Department of Forest Resources, University of Minnesota. - 2. "Groupement" are pre-cooperative peasant groups based on traditional social linkages. The groups commonly engage in collective social and economic activities and average eight members. - 3. "Lumpiness" refers to situations in which certain, presumably significant, levels of capital are required for investment in a given activity, and incremental units below that level cannot be purchased. Investment in cattle, for example, requires the purchase of at least one animal. - 4. For details on the methods of establishment and maintenance see Annex 2. - 5. Average nine-month survival is 53% (SCF 1990). - 6. It may be noted that, in this analysis, the benefit flow from the forestry component was arbitrarily cut off 20 years after the initiation of the project, despite the fact that benefits from forestry activities continued to accrue for 17 years beyond that without further cost. To see the impact of that decision on the analysis, the data for the entire 37 year period were analyzed. The resulting benefit/cost ratio was 0.20, and the sensitivity of NPV to 10% changes in input and output values, -\$1469. The fact that these values differ only slightly from those obtained for the 20 year period suggests that the decision to analyze only 20 years of data in no way affected the results of the analysis. - 7. It should be noted that such an emphasis may be compatible with, or very likely require, the use of agroforestry systems. It is not being suggested here that trees are irrelevant, or even unnecessary, to the achievement of watershed management goals in Haiti. Indeed hillside treatments in the Maissade Project make integral use of trees. Rather, the results of this analysis suggest that the use of trees within agricultural systems, both for environmental protection and to improve agricultural production, may be their most economically advantageous use. 8. The sources for these data are SCF 1988 and SCF 1989. #### REFERENCES FAO. 1979. Economic Analysis of Forestry Projects. FAO Forestry Paper 17. Rome: Food and Agriculture Organization (FAO). 193 pp. Gaddis, Ron and Glenn Smucker. 1988. Peasant Groups and Conservation Farming; Evaluation of the Save the Children Project, Maissade, Haiti. Save the Children Federation/Haiti. Port-au-Prince, Haiti. Lilin, Charles. 1986. Evolution des Pratiques de Conservation des Sols dans les Pays en Developpement. In: Documents Systemes Agraires; No. 6 Tome II; Actes de IIIeme Seminaire, Montpellier, 16 - 19 decembre, 1986. CIRAD, Montpellier, France. Lilin, Charles and A.P. Koohafkan. 1987. Techniques Biologiques de Conservation des Sols en Haiti. Projet: Centre de Formation en Amenagement Integre des Mornes, Organization des Nations Unis Pour L'Alimentation de L'Agriculture and Ministere de L'Agriculture de Ressources Naturelles et du Developpement Rural. Port-au-Prince, Haiti. Murray, Gerald F. 1979. Terraces, Trees, and the Haitian Peasant: An Assessment of Twenty-Five Years of Erosion Control in Rural Haiti. Report for US Agency for International Development/Haiti. Port-au-Prince, Haiti. 41 pp. Save the Children Federation (SCF). 1985. Operation Program Grant Proposal for Haiti. Port-au-Prince, Haiti. - ----. 1988. Rapport Couvrant la Periode du 1er Octobre 1987 au 31 Juillet 1988. Projet de Developpement des Resources Locales (LORD I). Port-au-Prince, Haiti. - ----. 1989. Plan d'Amenagement des Sous Bassins-Versants Incluant la Commune de Maissade, Plateau Central Haiti. Port-au-Prince, Haiti. - ----. 1990. Les Actions de Developpement de LORD I Pour L'Exercice 1989 - 1990; Rapport Couvrant la Periode D'Aout a Octobre 1989 et de Janvier a Mars 1990. Port-au-Prince, Haiti. Smolikowski, Bernard 1989. Rapporteur de Atelier sou Amenagement des Bassins - Versants. In: Dlo se Zafe Nou; Actes su Colloque "La Semaine de L'Eau" Maitrise de L'Eau en Milieu Rural, 8 - 12 Mai 1989. Conjonction; Revue Franco-Haitienne Nos. 182, 183. Institut Français D'Haiti. Port-au-Prince, Haiti. .