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ORIGINAL ARTICLES

 

Optimal weed management in phase rotationsG.J. Doole

 

Optimal management of annual ryegrass 
(

 

Lolium rigidum

 

 Gaud.) in phase rotations in the 
Western Australian Wheatbelt*

 

Graeme J. Doole

 

†

 

Lucerne (

 

Medicago sativa

 

 L.) helps to prevent soil salinisation in the Western Australian
Wheatbelt by reducing recharge to saline water tables. There is broad consensus,
though, that it is not sufficiently profitable to motivate producers to plant it at the
intensity at which considerable off-site benefits would be conferred. This paper
employs a multiple-phase optimal control model to explore the value of this perennial
pasture for the management of herbicide-resistant annual ryegrass (

 

Lolium rigidum

 

Gaud.) in a crop–pasture rotation, given the difficulty of  observing this value in
practice. The availability of selective herbicides for efficient weed control is found to
determine whether or not it is profitable to adopt lucerne pasture under optimal
management. Herbicide resistance requires producers to employ costly, non-selective
treatments for in-crop weed control. Thus, it motivates the adoption of  perennial
pasture in which cost-effective forms of control can be implemented. Moreover, this
result is robust to feasible changes in the current economic environment.

 

Key words: 

 

annual ryegrass, herbicide resistance, multiple-phase optimal control.

 

1. Introduction

 

Low livestock profitability, wide-scale adoption of reduced cultivation and
the introduction of selective herbicides have encouraged large-scale planting
of grain crops across the Wheatbelt of Western Australia over the last
30 years. However, frequent application of selective herbicides in prolonged
crop sequences has promoted herbicide resistance among a number of important
crop weeds in this region (Monjardino 

 

et al

 

. 2004; Owen 

 

et al

 

. 2007). Herbicide
resistance motivates the use of more expensive in-crop forms of weed control
by directly reducing the efficacy of efficient selective herbicides. In addition,
crop yield declines if  insufficient weed control is attained. Continued reliance
on shallow-rooted annual crops and pastures in rotations has also encouraged
the onset of  dryland soil salinisation by allowing a higher proportion of
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rainfall to recharge saline water tables, relative to that occurring under native
vegetation (Pannell and Ewing 2006; Ward 2006).

Inclusion of  a pasture phase in a rotation may aid the management of
herbicide resistance by killing resistant weeds or by delaying its onset through
the diversification of weed treatments in an integrated weed management
(IWM) strategy (Powles 

 

et al

 

. 1997). Weed control methods available during
a pasture phase are as follows: grazing, hay and silage production, killing of
an actively growing sward using non-selective herbicides (brown-manuring) or
cultivation (green-manuring), application of a non-selective herbicide to flower-
ing weeds to sterilise seed (pasture-topping), and the use of a non-selective
herbicide to kill weeds before seed-set (winter-cleaning) (Doole and Pannell 2008).

In addition, incorporating phases of perennial pasture species, such as
lucerne (

 

Medicago sativa

 

 L.), between long cropping sequences in ‘phase
rotations’ has been identified as the ‘most promising system’ (Cocks 2001,
p. 137) for reducing groundwater recharge on broadacre farms in the Western
Australian Wheatbelt. Lucerne is intolerant of the waterlogging that typically
accompanies salinisation, and its roots are more sensitive to soil salts than
barley, the most salt-tolerant conventional crop in Western Australia (Cocks
2001). The value of  lucerne for salinity mitigation in a phase sequence
therefore lies in its capacity to grow in response to summer rainfall and to
create a buffer of dry soil that may intercept recharge occurring underneath
annual crops that follow in the rotation. There is considerable evidence that, in
most areas of the Western Australian Wheatbelt, phase farming is not profitable
enough to prompt sufficient adoption to yield considerable off-site benefits
through recharge reduction (Pannell and Ewing 2006). However, the profitability
of lucerne–cereal rotations has not been assessed in light of the value of per-
ennial pasture for the management of herbicide-resistant weeds. This value
may be considerable, but it is difficult to gauge without bioeconomic analysis.

Previous studies conducted in relation to weed management in Wheatbelt
cropping systems have focused solely on the crop phase (e.g. Gorddard 

 

et al

 

.
1995) or have been limited to the study of annual pastures (e.g. Monjardino

 

et al

 

. 2004; Pannell 

 

et al

 

. 2004). The objective of this paper is consequently to
identify the value of lucerne for weed management in phase rotations in the
Wheatbelt of Western Australia. The dearth of previous analysis motivates a
conceptual approach to modelling, whereby general principles are drawn
from a concise framework. This investigation is the first application of the
regime-programming algorithm of Doole (2007) and aids the interpretation
of a more detailed model in related work (Doole and Pannell 2008).

Section 2 introduces a multiple-phase control system. Section 3 describes a
two-stage control model of a stylised crop-rotation problem. It also outlines
parameter estimation and presents the different scenarios investigated in the
study. Section 4 reports on and discusses the results of  the analysis. Key
findings are summarised in Section 5. The regime-programming method used
to solve the multiple-phase control problem defined in the paper is described
in an Appendix.
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2. Regime programming

 

The analysis employs multiple-phase optimal control. This concerns the
optimisation of a system incorporating a number of alternate regimes of
which only one may be active at each point in time. Each of these distinct
stages may possess a different objective functional and/or set of state equations
to the other regimes. A multiple-phase optimal control solution algorithm
determines the optimal way to control each individual regime and selects
which phase is active at each point in time. The duration of  each stage is
controlled through a switching time that activates the next stage in a specified
sequence. A fixed sequence is adopted due to the geometric increase in system
size as the number of  potential phases is enlarged in a free-sequencing
problem. The inclusion of transition costs (those that occur at the point of
switching) also complicates gradient formulation if  the regime sequence is
endogenously determined.

This study employs the regime-programming algorithm of Doole (2007)
given the insufficiency of  alternative solution methods. Gradient-based
methods are difficult to apply as the state and adjoint equations in a multi-
plephase control problem are piecewise defined and the objective functional
has discontinuous derivatives with respect to the control variables in each
stage. The method of Mueller 

 

et al

 

. (1999) also requires state and adjoint
equations that have explicit solutions, thereby limiting its application to more
abstract problems than that considered here.

A general multiple-phase system is assumed to incorporate an 

 

m

 

-dimensional
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A control input for a multiple-phase switching system 
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 consists of a set of
vectors 

 

χ
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}, where 

 

u

 

 = {u1, u2, . . . , un} is a collection of  control
functions defined for each stage in sequence K and t = {t1, t2, . . . , tn–1, tn} is a
sequence of real numbers denoting the terminal time tn and the switching
times t1, t2, . . . , tn–1. Switching time tj denotes the time at which stage kj is
terminated and the stage kj+1 becomes active. It follows that regime kj is
active over the interval  where  is the moment just after tj–1 and

 is the moment just before tj. It may be optimal for two consecutive switching
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times, such as tj and tj+1, to coalesce (that is, tj = tj+1), in which case, movement
from kj to kj+2 will occur without the activation of kj+1.

A trajectory (Γ) for a multiple-phase switching system Ξ and control
sequence χΞ is admissible over the interval t = [t0, t1, . . . , tn–1, tn] if  it satisfies
the continuous dynamics x = fj(x(t), uj(t), t), for  and j ∈ J, for a
predefined switching sequence K = {k1, k2, . . . , kn}.

A multiple-phase optimal control problem may subsequently be defined as
shown below.

Problem 1. For a multiple-phase system Ξ identify an admissible trajectory
that maximises the objective function:

(1)

subject to,

(2)

(3)

(4)

(5)

(6)

(7)

Here r is a discount rate, G(x(tn), tn) is a terminal reward function, Cj(x(tj)) is
a switching cost function for the jth phase and Fj(x(t), uj(t)) is a single-valued
reward function on X m × U v for the jth phase. Functions G(·), C(·) and F(·)
are all real-valued functions that are twice continuously differentiable in the
relevant arguments. The terminal value function G is defined for  where
i = [1, . . . , d ].

The necessary conditions required for the optimisation of Problem 1 and the
regime-programming algorithm of Doole (2007) are presented in the Appendix.

3. Model

3.1 Model description

It is assumed that a producer wishes to determine the optimal management
of a single field on a good sandplain soil in the Central Wheatbelt of Western
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Australia. The goal of the producer is to determine the optimal management
of two phases in a steady-state field rotation. The initial phase involves
lucerne pasture, and the second phase involves wheat (Triticum aestivum L.)
cropping. The model explicitly studies the management of weed control
inputs and phase length across the steady-state cycle. Time notation is
omitted where not required in the following discussion for notational simplicity.

It is assumed that:

1. Wheat only competes with a single weed (annual ryegrass).
2. This weed may develop resistance to a single Group A selective herbicide

(diclofop methyl) (Owen et al. 2007).

Assumption 1 is appropriate when given the large influence that this
weed has on crops in the study region and its recognition as the ‘world’s
most severe example of  herbicide resistance’ (Pannell et al. 2004, p. 306).
Assumption 2 helps to sharpen the focus on the optimal management of
herbicide use.

There is one switching time (t1) and the terminal time (t2) is free. The free
terminal time determines the length of the second phase in the rotation.

Two state variables represent the annual ryegrass seed population (Gorddard
et al. 1995). The seed population per square metre susceptible to the selective
herbicide following germination is denoted by x s(t). The seed population per
square metre resistant to the Group A herbicide following germination is
denoted by x h(t).

Four standard control variables representing weed management are repre-
sented, two in each regime. An additional control variable that determines
phase length in the terminal regime is described in Section 3.3. Subscripts
denote whether a control variable is used in the lucerne pasture (α) or crop
(β ) phase.

The control variables that influence the weed populations in the lucerne
phase are:

1. the sheep stocking rate ; and
2. non-selective herbicide (glyphosate) application in a standard winter-cleaning

operation, measured in kilograms of active ingredient per hectare .

The non-selective herbicide application is representative of the effective
non-selective strategies available during a pasture phase that do not contribute
to herbicide resistance. Other methods (e.g. hay and silage production) are
too costly for regular implementation. Resistance to non-selective herbicides
(e.g. glyphosate) is not represented in the model because it is rare in Western
Australia and may be prevented through appropriate management (Weersink
et al. 2005).

In comparison, the control variables that influence the weed populations in
the crop phase are (Gorddard et al. 1995):

( )uα
1

( )uα
2
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1. selective herbicide (diclofop methyl) application, measured in kilograms of
active ingredient per hectare ; and

2. the percentage of the total annual ryegrass population killed by non-selective
weed treatments used during a crop phase .

The last control variable  is a composite variable representing weed
mortality occurring through non-selective herbicide application and the use
of cultural treatments.

3.1.1 State transition equations
The general growth equation for each seed population in the absence of weed
control is:

(8)

where g is the germination rate, Mseed is the natural mortality rate of unger-
minated seeds, Mplant is the natural mortality rate of germinated seeds (i.e.
plants) and R is the mean number of seeds produced by an individual plant.
This equation is manipulated for each phase to reflect differences in control
mechanisms.

The state-transition equation for each seed population in the lucerne phase is:

(9)

where ϕ = {s, h}, v1 = –g – (1 – g)Mseed, v2 = g(1 – Mplant), d and l are parameters
describing a relationship between grazing rate and weed control and ϑ is a
parameter designating the strength of  the relationship between ryegrass
mortality and non-selective herbicide application. The function described by
d and l is concave and increasing, asymptotically approaching a maximum
level of weed control. Weed invasion occurs at low grazing rates due to selective
grazing by sheep. Increasing the stocking rate helps to overcome selective
grazing, but this marginal benefit declines as the maximum level of  weed
control is approached (Pratley and Godyn 1991).

In comparison, the state-transition equation for the susceptible seed popu-
lation in the crop phase is  where q is a parameter
describing selective herbicide efficacy. The motion equation for the resistant
seed population in this regime is  The only difference
between these equations is that the resistant seed population is unaffected by
selective herbicide dose.

3.1.2 Objective functionals
Light grazing is required in the initial year of a lucerne phase because of its
slow establishment. Full production is generally achieved in the third year,
but the stand will seldom persist past four or five years of age in the study
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region because of plant disease and low rainfall. A logistic function (Φα) is
consequently used to represent the productivity of the lucerne pasture over
time. This defines production as a proportion of its potential (i.e. Φα = [0, 1]).
This function is:

(10)

Here ς is a parameter and τ is the maximum productive length of a lucerne
phase.

A concave function is generally used to describe the relationship between
grazing density and animal production on a given area of pasture in the
absence of supplementary feed (Mott 1960). Feed quality declines at low
stocking rates due to weed invasion resulting from selective grazing (Pratley
and Godyn 1991). Also, production decreases beyond an optimal stocking
rate because of  overgrazing, which promotes weed infestation and the
compaction and/or erosion of soil. These factors motivate the use of a logistic
function to represent grazing profit (πα) as a function of the stocking rate

. This function is:

(11)

Here a and b are shape parameters.
Crop yield (yβ) (measured in tonnes) is multiplied by a constant price ( p)

(defined per tonne) to obtain total revenue for the crop phase. Crop yield is
defined as (Pannell et al. 2004):

(12)

Here y0 is weed-free yield, η is the proportion of yield lost to phytotoxic
damage for a given dose of selective herbicide, z is the maximum proportion
of grain yield lost at high weed density, m is a crop-density parameter, k is a
constant representing the degree of competition between the weed population
and the wheat crop and w(t) is the total weed population at time t. The total
weed population is defined as w = w s + w h, where w s is the susceptible weed
population and w h is the herbicide-resistant weed population. These are
related to the susceptible and resistant seed populations through the rela-
tionships 
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prior to seeding. However, attaining extremely high rates of control (around
98 per cent) requires cultural methods, such as the green-manuring of crops
(Pannell et al. 2004). These are extremely costly since crop yield is sacrificed
in that year. These factors motivate the definition of an increasing marginal
control cost  for non-selective strategies that increases sharply at high
levels of control (Gorddard et al. 1995):

(13)

Here  is the cost of  killing 50 per cent of  weeds using non-selective
methods in the crop phase.

A fixed establishment cost (clest) is incurred at the inception of the lucerne
phase. In contrast, the establishment cost for wheat (ccest) is incurred each
year during the cereal phase. Removing lucerne is difficult and requires the
heavy application of non-selective herbicides (Devenish 2001). A switching-cost
function for t1 is therefore defined as , where clrem is the fixed cost of
lucerne removal.

3.1.3 Multiple-phase control problem
The stationarity of the rotation is imposed through enforcing equality
between the initial  and terminal  state vectors. Numerical experi-
ments with the standard model identify that the incorporation of multiple
rotations between lucerne and wheat in a single problem leads to cycling
(repeated expressions of the same optimal solution for each phase, regardless
of its order in the phase sequence) but with optimal management in the initial
and terminal phases heavily biased by the initial and terminal conditions
(data not shown). Defining a stationary state removes this bias and is more
computationally efficient. It also removes the need to identify an appropriate
terminal value function, for which there is little available information.

The free terminal time is incorporated through the definition of  an
additional control variable . This variable may take any value in the set

, where tmax is the maximum length of the cereal phase.
The multiple-phase control problem may be defined, in accordance with

Problem 1, as:
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(17)

(18)

(19)

(20)

where,

(21)

(22)

Equations (15) and (16) are the state equations for the lucerne phase.
Equations (17) and (18) are the state equations for the wheat stage. The
boundary conditions for the problem are defined in Equations (19) and (20).
The objective functionals for each phase are stated in Equations (21) and (22).

3.2 Parameter estimation

The standard parameter values used in the analysis are listed in Table 1.
Many of  the parameters are taken from the resistance and integrated
management (RIM) model (Pannell et al. 2004), a framework constructed to
compare the profitability of different IWM strategies for annual ryegrass
control in the study area. The following discussion focuses on the estimation
procedures for those parameters that are not taken directly from other
sources.

The average rate of  seed production per plant (R = 100) is well below
maximum seed production, which is around 1350 seeds plant–1 according to
the seed production model reported in Pannell et al. (2004). However, it is
appropriate as competition with wheat adversely affects ryegrass seed production
and wheat density is assumed to be 100 plants m–2.

The maximum level of annual ryegrass control achieved by sheep grazing
lucerne is assumed to be 90 per cent. This estimate is drawn from data for
French serradella (Ornithopus sativus Brot.) in Pannell et al. (2004). It is
conservative as lucerne is generally more competitive with weeds than annual
pastures, such as serradella (Roy Latta, pers comm., 2005). This estimated
level of  the maximum rate of  weed control obtained by grazing yields
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d = 1/0.9 = 1.11. Data on the efficacy of grazing for ryegrass control is taken
from Pearce and Holmes (1976) and the RIM model. The remaining parameter
(l ) in this function is then varied, with d held fixed, until the relationship
adequately fits this data. This is achieved at l = 0.5. The resulting function is
shown in Figure 1a. This method of estimation is heuristic, but it is necessary
given the lack of appropriate data.

All non-linear regression results reported below are estimated using the
LSQCURVEFIT function in the Optimisation toolbox of MATLAB version
7.1 (Miranda and Fackler 2002). The residual sum of squares is minimised
over multiple initial guesses for each parameter value to reduce the probability
that the estimation algorithm converges to local minima.

Table 1 Parameter values for the two-phase model

Parameter Description Value Source

d, l Parameters describing weed 
control by grazing

d = 1.11, l = 0.5 See text for details

g Germination rate g = 0.8 RIM model
Mseed Rate of seed mortality Mseed = 0.05 RIM model
Mplant Rate of plant mortality Mplant = 0.05 RIM model
R Seed production per plant R = 100 seeds plant−1 See text for details
q Efficacy of selective herbicide q = 7.45 Gorddard et al. (1995)
ϑ Efficacy of non-selective 

herbicide
ϑ = 7.87 (s.e. = 0.58)*,† See text for details

r Discount rate r = 0.05 Doole (2007)
ς Parameter describing lucerne 

productivity
ς = 0.78 (s.e. = 0.04) See text for details

τ Maximum productive length 
of a lucerne phase

τ = 4.96 (s.e. = 0.18) See text for details

a, b Profit function parameters for 
pasture phase

a = 25.32 (s.e. = 1.27), 
b = 14.88 (s.e. = 0.54)

See text for details

Cost of chemical for non-
selective herbicide

Agriculture Western 
Australia (2004)

clest Cost of lucerne establishment clest = $88.17 See text for details
clrem Cost of lucerne removal clrem = $18.90 See text for details
p Price per tonne of wheat p = $185 t−1 RIM model
y0 Weed-free yield y0 = 1.82 t ha−1 Doole (2007)
η Parameter describing rate of 

phytotoxic damage
η = 0.14 Gorddard et al. (1995)

z, m, k Wheat yield function 
parameters

z = 0.6, m = 105, 
k = 0.33

Pannell et al. (2004)

Cost of herbicide application RIM model

Cost of chemical for selective 
herbicide

Agriculture Western 
Australia (2004)

Cost of non-selective control 
methods in crop

See text for details

ccest Cost of cereal establishment ccest = $82 Doole (2007)

* The term s.e. denotes standard error.
† All reported results from non-linear regression procedures are rounded to two decimal places.
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The parameter (ϑ) describing the efficacy of glyphosate applied during the
lucerne phase is identified from non-linear regression of data (n = 40) from
Wakelin et al. (2004). The sum of squares is 0.4, indicating an excellent fit.
The estimated function is shown in Figure 1b.

The parameters (ζ, τ ) describing the productivity of lucerne as a function
of time are estimated through non-linear regression of production estimates
outlined in Department of Agriculture and Food Western Australia (DAFWA)
(Keith Devenish and Roy Latta unpublished data). The sum of squares is
3307 for n = 10. The resulting function is shown in Figure 1c.

An estimate of the gross margin received for livestock production in the
study region is taken from the RIM model. This estimate is $15 per dry sheep
equivalent per hectare (DSE ha–1). DSE is a measure of the stocking rate and
represents an average-sized, non-lactating sheep (Doole and Pannell 2008). A
constant stocking rate (sr = 7.7 DSE ha–1) corresponding to that used to
rotationally graze an established lucerne stand is estimated from data in
Devenish (2001). Mott (1960) presented a general relationship between
stocking rate and animal production, both as a proportion of a standard
profitable level. The levels listed above and this curve are used to identify 35
data points that are regressed with non-linear least squares to identify a and
b. The sum of squares is 4820 for n = 35. The estimated function is depicted
in Figure 1d.

Figure 1 Functions in the standard model representing the relationships between (a) the
stocking rate and the proportion of the weed population killed by grazing, (b) the rate of non-
selective herbicide application in the lucerne phase and the proportion of the weed population
killed by this chemical, (c) the length of the lucerne phase and its production represented as a
proportion of its potential, and (d) the stocking rate in the lucerne phase and profit.
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The cost of a kilogram of active ingredient (kg a.i.) of the non-selective
herbicide  is $12.50 (Agriculture Western Australia 2004). The cost of
a kilogram of  active ingredient of  the selective herbicide  is $40
(Agriculture Western Australia 2004).

The cost of non-selective control methods available during a cropping
phase and their efficacy are obtained from the RIM model. Equation (13) is
fitted to this data using non-linear least squares. Only the cheapest destructive
technique available during the cropping phase (green-manuring) is incorporated
given the relatively high cost of hay and silage production. The value of
weed-free yield is included as an opportunity cost given that this method of
control sacrifices crop yield. The sum of squares for this non-linear regres-
sion is 5862 for n = 5. Alternative functional forms did not improve the fit of
this equation.

The total cost of lucerne establishment (clest.) is $88.17 ha–1 (Doole 2007).
The total cost to remove lucerne (clrem) is $18.90 ha–1 (Doole 2007). Lucerne
is removed in spring with a mixture of 1 litre of Glyphosate CT®

(0.4 kg a.i. ha–1) and 1.5 L of  2,4-D Amine 625® (0.9375 kg a.i. ha–1) per
hectare (Devenish 2001). The glyphosate component of  this mixture is
incorporated for its high efficacy against weeds given lucerne’s relative tolerance
of this chemical.

3.3 Model scenarios

The model is used to investigate a range of different scenarios (Table 2). The
standard model incorporates initial conditions of 50 s. s. m–2 (susceptible
seeds per square metre) and 25 r. s. m–2 (herbicide-resistant seeds per square
metre). This population may be adequately controlled under standard man-
agement. It may become troublesome, though, since the proportion of the
population consisting of  resistant seeds is higher than that level inferred
by genetic probability—around 1 : 1000 000 (Gressel and Segel 1990). Such
a high proportion occurs through the interbreeding of herbicide-resistant
weeds. This provides insight into the optimal management of herbicide-
resistant weeds and is necessary because an equilibrium framework is not suited
to representing the development of herbicide resistance.

The highest initial seed densities considered in this model are 200 s. s. m–2

and 100 r. s. m–2. It is difficult to undertake a meaningful analysis of higher
initial seed burdens because the model does not incorporate control variables,
such as burning, that directly affect the seed bank.

The effect of improving the efficacy of weed control in the lucerne phase is
investigated given its importance to results reported in Sections 4.1 and 4.2
and to highlight the relative benefit of conducting research in this area. An
additional term (1 – U) is incorporated into equations 15 and 16 to represent
this scenario. Here U is a parameter representing the hypothetical propor-
tional increase in weed control that is attained in a lucerne phase. For example,
U = 0.05 represents a 5 per cent increase in weed control efficacy in the

( ),cα dose
2

( ),cβ dose
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pasture phase. The introduction of this parameter is equivalent to improving
the competitiveness of the perennial pasture without impacting production
or weed management costs.

The implications of large changes occurring in the profitability of livestock
husbandry are analysed through the estimation of new profit functions for
the pasture phase. The stocking rate sr used to formulate the profit function
for the lucerne phase (see Section 3.2) is decreased or increased by 2 DSE ha–1

to formulate a low- and high-profitability scenario, respectively. These mani-
pulations are equivalent to decreasing or increasing livestock profitability by a
quarter. The updated values for sr and the proportions of Mott (1960) are
used to re-estimate the parameters for πα through non-linear regression.

The cost of achieving 50 per cent weed control using non-selective treatments
in the crop phase  is varied by 25 per cent from its standard value. This
is done because this form of  control is used intensively when herbicide
resistance constrains selective herbicide efficacy.

Table 2 Scenarios evaluated in the model

Description Parameter Value

Section 4.1: Optimal weed control with herbicide resistance
Low initial weed density* 26 s. s. m−2 and 13 r. s. m–2

Standard initial weed density 50 s. s. m−2 and 25 r. s. m–2

High initial weed density 200 s. s. m−2 and 100 r. s. m–2

Section 4.2: Optimal weed control without herbicide resistance
Low initial weed density 26 s. s. m–2

Standard initial weed density 50 s. s. m–2

High initial weed density 200 s. s. m–2

Section 4.3: Higher efficacy of weed control in lucerne phase
With herbicide resistance U = {0.05, 0.1, 0.15, 0.2}
Without herbicide resistance U = {0.05, 0.1, 0.15, 0.2}

Section 4.4: Sensitivity analysis
Low wheat price plow = $148 t–1

High wheat price phigh = $222 t–1

Low stocking rate sr = 5.7 DSE ha–1

Profit function parameters a = 20.07 (s.e. = 0.60)†,‡
b = 15.66 (s.e. = 0.51)
n = 35
SS§ = 1097

High stocking rate sr = 9.7 DSE ha–1

Profit function parameters a = 37.72 (s.e. = 1.85)
b = 13.22 (s.e. = 0.5)
n = 35
SS = 10 237

Low cost of destructive treatments in crop phase
High cost of destructive treatments in crop phase

* The initial seed densities are labelled {low, standard, high} according to their magnitude relative to one
another.
† The term s.e. denotes standard error.
‡ All reported results from non-linear regression procedures are rounded to two decimal places.
§ SS denotes the sum of squares accruing to each non-linear regression result.
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4. Results and discussion

4.1 Optimal weed control with herbicide resistance

This scenario is referred to throughout the discussion as the standard
solution. The optimal switching time is 3.6 years, and the optimal transition
states (i.e. the level of the state variables at the optimal switching time) are
45 s. s. m–2 and 23 r. s. m–2. Both seed populations are lower at the switching
time than at the start of the horizon (Figure 2). This reflects the combined
efficacy of grazing and non-selective herbicide application for weed control in
the pasture phase. Grazing is maintained at an optimal rate of 7.46 DSE ha–1

over the most productive years of  the lucerne stand. It is necessary to
constrain the weed population over the lucerne phase; however, maintaining
sustained, intensive control over this period would greatly increase weed-
management costs. Accordingly, glyphosate application decreases from a rate
of 0.67 kg a.i. ha–1 to 0.29 kg a.i. ha–1 over the duration of this stage, giving
rise to the convexity of the state trajectories observable in Figure 2.

Only one selective herbicide is represented in this model, so only non-
selective methods are effective against the total weed population if any resistant
weeds are present. Accordingly, the selective herbicide is never applied if  a
positive population of resistant seeds is present at the beginning of the
period; instead, intensive non-selective control is maintained across the cereal
phase. These treatments are used to kill, on average, 98 per cent of ryegrass
plants over the duration of this regime. The intensive use of non-selective
treatments is motivated by the strong economic incentive to maintain a low
number of seeding plants given the competitiveness and large seed production
of annual ryegrass.

The lucerne pasture and cropping phase are also adopted at initial con-
ditions of (1) 26 s. s. m–2 and 13 r. s. m–2, and (2) 200 s. s. m–2 and 100 r. s. m–2.

Figure 2 Optimal seed trajectories for a lucerne–wheat rotation with initial seed populations
of 50 s. s. m–2 and 25 r. s. m–2.
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The optimal switching time for scenario 1 is 3.4 years, and the optimal tran-
sition states are 23 s. s. m–2 and 11 r. s. m–2. In comparison, the optimal
switching time for scenario 2 is 3.9 years, and it is optimal to switch at
171 s. s. m–2 and 85 r. s. m–2. This demonstrates the value of the IWM strategy
adopted during the pasture phase. The selective herbicide is never applied at
any of these different initial conditions.

4.2 Optimal weed control without herbicide resistance

It is optimal to bypass the pasture phase and begin cropping immediately if
there are no herbicide-resistant weeds at the initial time t0. The cereal phase
is maintained for four years in this scenario, and the weed population is con-
trolled with a combination of selective herbicide (applied at a mean dose rate
of 0.503 kg a.i. ha–1) and non-selective control (used to kill an average of 49
per cent of ryegrass plants at each point in time). This solution is identified
through the identification of  for all tj during
the initialisation stage of the regime-programming algorithm. This corresponds
to t0 = t1 according to necessary condition A.9 in Theorem 1 in the
Appendix. This result is observed for all initial ryegrass populations.

The cereal crop is always more profitable than the pasture regime in the
absence of  herbicide resistance as the selective herbicide permits efficient
control of the weed population. Consequently, though grazing income is
important in a lucerne phase, at the parameter values used in this study, the
susceptibility of annual ryegrass to the selective herbicide directly determines
whether or not perennial pasture phases should be adopted in the optimal
rotation. There is only a single selective herbicide represented here, so this
result is specific to where no selective herbicide options are available to the
producer. This extends the findings of Monjardino et al. (2004), who identified
that annual pasture was only sufficiently profitable to adopt in crop rotations
once ryegrass had developed resistance to both Group A and B herbicides.

This relationship between the presence of  herbicide resistance and the
optimal adoption of perennial pasture is robust to large changes in the
important economic parameters used in the model. For example, it is only
profitable to adopt lucerne pasture at a wheat price below $101 per tonne, a
decrease of over 45 per cent relative to the parameter used in the standard
model. This decrease is too large to foresee its occurrence in the near-term,
given forecasts of  increased demand for Australian grain in developing
countries (Food and Agriculture Organisation 2002). Removing the estab-
lishment cost for lucerne (clest = $88.17) is also insufficient to warrant use of
perennial pasture if  no herbicide resistance is present.

However, lucerne is adopted if the stocking rate is increased to 17 DSE ha–1,
which is 9.54 DSE ha–1 higher than the optimal stocking rate reported in the
standard set of results (7.46 DSE ha–1), or following an $18.11 increase in the
current gross margin received for sheep production ($15 DSE–1). Using a variant
of  the RIM model incorporating both wild radish and annual ryegrass,

H t re c H trt
lucerne lrem crop( )    ( )–1 1

+ ≤−
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Monjardino et al. (2004) identified that the most-valuable rotation incorpo-
rating annual pasture required an increase in the carrying capacity of pasture
of 7 DSE ha–1, or a $15.50 DSE–1 increase in the sheep gross margin, to be as
profitable as a continuous-cropping sequence in the absence of herbicide
resistance. These increases are 33 and 17 per cent lower, respectively, than
those identified in the current study. This result is logical since lucerne
requires a greater level of profitability to offset its larger establishment cost
relative to the annual pasture species studied by Monjardino et al. (2004).
However, either set of improvements appear unlikely to occur in the near
future as though sheepmeat prices are forecast to increase by around a third
by 2020 (Kingwell and Pannell 2005), wool prices are expected to fall by up
to 50 per cent by 2030 (Sackett 2004).

4.3 Higher efficacy of weed control in the lucerne phase

Improving the efficacy of weed control in the lucerne phase in the presence of
herbicide resistance decreases the optimal length of the pasture phase and
lowers the weed population at the switching time (Table 3). This reflects an
improved capacity to reduce the weed population prior to grain production.
Profit increases in the cereal phase as control efficacy in the pasture phase is
improved. For example, there is a 12 per cent increase in profit in the wheat
stage when U = 0.2 as there is a lower weed burden and thus a reduced need
to employ costly in-crop, non-selective treatments. In contrast, an increase in
control efficacy is insufficient to warrant the adoption of lucerne pasture in
the absence of herbicide resistance. This reflects the efficient in-crop weed
control offered by selective herbicides, relative to the expense of establishing
a pasture and implementing an IWM strategy therein.

4.4 Sensitivity analysis

4.4.1 Wheat price
The low wheat price ( plow = $148t–1) motivates an increase in the optimal
switching time from 3.4 years to 4.8 years (Figure 3). The optimal transition
states also increase from 45 s. s. m–2 and 23 r. s. m–2 to 49 s. s. m–2 and 24 r. s. m–2,

Table 3 Optimal output as the efficacy of weed control in the lucerne phase (U) is improved 
in the presence of herbicide resistance

U t1 xs(t1) xh(t1)

0 (standard value) 3.6 45 23
0.05 3.4 40 20
0.1 3.1 38 19
0.15 2.8 36 18
0.2 2.6 32 16
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respectively. This reflects a reduction in the marginal value of  weed con-
trol conducted during the pasture phase. The curvature of  the state trajec-
tories in Figure 3 reflects the decreased value of weed control in the pasture
phase and the cost of maintaining intensive control over the duration of this
extended regime.

In contrast, the optimal switching time and transition states are lower at
the high wheat price. The optimal switching time is reduced to three years,
and the optimal transition states decrease from 45 s. s. m–2 and 23 r. s. m–2 to
39 s. s. m–2 and 19 r. s. m–2, respectively. These results follow logically from the
higher value of the cereal crop, which increases the marginal value of the
IWM strategy implemented during the pasture stage.

The optimal stocking rate  remains unchanged following both price
changes. The marginal contribution of an additional grazing unit to weed
control is rapidly diminishing at higher stocking intensities (Figure 1a).
Moreover, increasing grazing intensity is not profitable due to a decline in the
productivity of  livestock at high stocking rates because of  overgrazing
(Figure 1d).

In contrast, a change in cereal price causes a marked change in optimal
glyphosate application . The reductions in the weed populations at the
beginning and the end of the pasture phase at plow (Figure 3) are achieved
through high rates of glyphosate application (Figure 4). In comparison, the
shorter pasture phase adopted at phigh encourages the producer to maintain
low seed populations throughout its duration using a primarily declining
dose rate (Figure 4).

4.4.2 Livestock profitability
The state trajectories are very similar to those of the standard model at the
low level of livestock profitability. In fact, the resistant seed populations are

Figure 3 The optimal seed trajectories across a lucerne–wheat rotation for a low wheat price
(plow = $148 t–1).
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equivalent at the switching times, while the susceptible seed population at the
switching time is higher by two seeds following the price change. However,
the optimal length of the pasture phase decreases from 3.6 to 2.8 years.
Although shorter than before, the pasture phase is still of considerable
length, highlighting the importance of animal production to farm profit in
the presence of severe herbicide resistance.

In contrast, the higher level of  livestock profitability motivates the
adoption of continuous pasture in phases of a mean duration of 3.17 years,
with an optimal mean grazing rate of 6.58 DSE ha–1 year–1. This demonstrates
that resistance to selective herbicides may motivate a complete movement
away from crop production to livestock husbandry if  the latter is sufficiently
profitable.

4.4.3 Cost of non-selective control
The high intensity of non-selective control applied under optimal management
remains unchanged at  and . This is driven by
strong economic incentives to minimise in-crop competition, particularly
given the high seed production of individual plants. Accordingly, the optimal
transition states experience little change, with a maximum adjustment of
around 4 per cent. However, a decrease (cf. increase) in the cost of  non-
selective control motivates the adoption of a shorter (cf. longer) pasture
phase. For example, the optimal switching time decreases from 3.6 to 2.55
years with  and increases from 3.6 to 4.15 years with a cost of

. These changes reflect a direct relationship between the cost of
non-selective control and the profitability of cropping, relative to livestock
husbandry, in the presence of herbicide resistance.

Figure 4 Kilograms of glyphosate applied during the pasture phase for a low wheat price
( plow = $148 t–1) and a high wheat price (phigh = $222 t–1).
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4.5 Limitations

The model represents two alternative land uses on a single field. This
approach disregards other land uses (such as annual pastures), different soil
types and the implications of the management of this field for whole-farm
profit and organisation. This allows a greater focus on optimal weed manage-
ment since other studies (e.g. Bathgate and Pannell 2002) have considered the
whole-farm implications of perennial pasture adoption.

The value of lucerne for the prevention of dryland salinisation is also not dealt
with. The length of the lucerne phases in the rotations containing perennial
pasture in Sections 4.1–4.4 are sufficient to prevent the development of dryland
salinisation on the field of interest. This is identified through the calculation
of mean recharge over the last century for each rotation using the Leakage-Buffer
model (Ward 2006) (data not shown). Furthermore, Doole (2007) identified
that, if  the value of lucerne phases for weed management is not considered
and the only effect of salinisation is the loss of agricultural production, perennial
pasture is only profitable to adopt for salinity prevention if  a saline water
table is less than 3.5 m from the soil surface. Hence, at current commodity
prices, the adoption of lucerne for salinity prevention is likely to be profitable
only in extreme circumstances, particularly given the limited spatial impact
of perennials in the Western Australian Wheatbelt (Pannell and Ewing 2006).

It is never profitable to implement large reductions in the weed seed banks
in model output. Use of an equilibrium framework may conceptually
dampen the marginal benefit accruing to any weed control. However, a
steady-state approach is retained because of  its greater computational
efficiency and the lack of an appropriate terminal value function (see Section
3.1.3). Moreover, the lack of any such large reductions arises primarily from
the definition of this model in continuous time because the impact of weed
treatments and biological processes on the seed populations are not temporally
distinct (see, for example, Equation (9)). This permits the weed population to
continually respond to intensive control through seed production, and thus
promotes the intensity at which weed treatments are applied under optimal
management. Control variables that directly influence the seedbank (e.g.
burning) are also not included as they are not regularly used in the study
region. Another impact of  defining the model in continuous time is that
optimal phase duration is calculated with a precision that is not entirely
practicable; for example, the optimal length of the lucerne phase is 3.6 years
in the standard solution.

Despite these limitations, a continuous-time framework is retained as:

1. This model still provides important and intuitive conceptual insight. For
example, a perennial pasture phase of 3.6 years duration under optimal manage-
ment in the presence of established herbicide resistance suggests that incorpo-
rating a lucerne phase of standard length (three to four years) in a rotation
is profitable, relative to continuous cropping, in these circumstances.
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2. It aids interpretation of output from a more detailed model in Doole and
Pannell (2008). For example, the central relationship between lucerne’s value
to phase rotations and the severity of herbicide resistance highlighted here
is also observed in Doole and Pannell (2008).

3. Other studies of  IWM in Western Australian cropping systems (e.g.
Gorddard et al. 1995; Monjardino et al. 2004) have not considered optimal
rotation length. This motivates the definition of this problem as a multiple-
phase control system, of which it is a relevant and interesting example.

4. No suitable discrete-time algorithms for multiple-phase control have been
developed.

5. Summary and conclusions

This study employs the regime-programming algorithm of Doole (2007) to
analyse the optimal management of herbicide-resistant annual ryegrass in
lucerne–wheat rotations in the Central Wheatbelt of Western Australia. This
is important as the value of perennial pastures for weed control in this region
is unknown. This could promote the adoption of lucerne over greater areas
of the Wheatbelt with subsequent benefits for the prevention of dryland
salinisation. Bioeconomic analysis is employed as the decision facing pro-
ducers is complex, incorporating multiple land uses, a temporal dimension,
numerous non-linearities and many alternative forms of weed control.

In results from the standard model, the presence of  severe herbicide
resistance motivates the intensive use of in-crop, non-selective treatments to
reduce weed competition during the cereal phase. The low efficiency of these
treatments, relative to selective herbicides, promotes the use of  an IWM
strategy, consisting of grazing and a winter-cleaning application, in a perennial
pasture in the optimal rotation. However, with the availability of selective
herbicides for efficient weed control, lucerne pasture is only profitable to
include in rotations at very high livestock prices.

The low value of lucerne pasture phases for IWM in the absence of severe
herbicide resistance is unlikely to motivate wide-scale planting of this perennial
in the near future. This has direct implications for the prevention of dryland
salinisation in the study region. However, recent research highlights the
potential efficacy of  alternative perennial legumes, such as hairy canary
clover (Dorycnium hirsutum L.) (Bell et al. 2007), that may be suitable for
recharge reduction in the Central Wheatbelt. This study suggests that the
benefit of these pastures for IWM could be an important driver for their
adoption. It therefore requires consideration in any economic evaluations
conducted for these species.
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Appendix

Theorem 1 presents the set of necessary conditions required for the solution
of the multiple-phase control problem described in Problem 1.

Theorem 1. For j = [1, 2, . . . , n] and switching sequence K = {k1, k2, . . . , kn},
let  denote the admissible trajectory that maximises the value
of J in Problem 1. This is the optimal trajectory Γ*.

Define a Hamiltonian function for each regime kj as:

(A.1)

across the interval 
An optimal trajectory Γ* requires:

1. initial condition x0 = x(t0) for fixed initial state variable(s) x0, (A.2)
2. n m-dimensional vectors of real-valued, piecewise-continuous adjoint func-

tions  defined across j = [1, 2, . . . , n] and
piecewise continuously differentiable over the interval  that satisfy,

(A.3)

where  denotes the transpose of the n adjoint vectors,
3. optimal control function(s) that satisfy,

(A.4)

4. a terminal adjoint vector λn(tn) that satisfies,

(A.5a)

for state variables , where i = [1, . . . , d ], free at the terminal time and
defined in G,
NOTE:  replaces Equation (A.5a) for those state variables ,
where i = [1, . . . , d ], that are not defined in G, (A.5b)
NOTE:  replaces Equations (A.5a) and (A.5b) for fixed terminal
state variables , where i = [d + 1, . . . , m], (A.5c)
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5. a terminal time that satisfies,

(A.6a)

if  no terminal value function is defined, then the equivalent of Equation
(A.6a) is,

(A.6b)

if, instead, the terminal time is fixed, then t = tn, (A.6c)
6. adjoint vectors that satisfy the boundary conditions,

(A.7)

at switching times t = {t1, t2, . . . , tn–1} and j = [1, 2, . . . , n – 1],

(A.8)

for those switching times in t = {t1, t2, . . . , tn–1} for which tj–1 < tj < tj+1 holds,

(A.9)

for those switching times in t = {t1, t2, . . . , tn–1} for which tj–1 = tj < tj+1 holds, and

(A.10)

for those switching times in t = {t1, t2, . . . , tn–1} for which tj–1 < tj = tj+1 holds.

Proof. See Doole (2007).

The structure of Theorem 1 motivates the decomposition of the regime-
programming algorithm into two parts: (i) solution of  each phase as an
independent control problem at each iteration, and (ii) updating of  the
estimates of the optimal switching times and transition states using Conditions
(A.7) and (A.8) and a bisection technique (Miranda and Fackler 2002). The
presence of  no optimal switching times, as described by Equations (A.9)
and (A.10), appears in the initialisation stage when Hamiltonian values that
alternate in sign cannot be identified. This application is programmed in
MATLAB version 7.1 (Miranda and Fackler 2002). Each individual phase is
solved using a variant of the MISER control parameterisation algorithm of Teo
et al. (1991). The code for this procedure is available from the authors on request.
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Regime-programming algorithm
Initialisation: 

a. Let numeric superscripts denote the iteration number for ease of reference.
Let (·)x denote the derivative of the term enclosed in brackets with
respect to the subscripted variable (x in this example). Determine a
fixed stage sequence K. Define the maximum number of permissible
iterations (i ). Define the stopping tolerance ε. Define a set of initial con-
ditions Λ = {t0, x0}. Provide estimates of the optimal switching times (
for j = [1, 2, . . . , n – 1]) and the transition states (  for j = [1, 2, . . . ,
n – 1]) for i = {1, 2}. Ensure .

b. Optimise each phase kj, for j = [1, 2, . . . , n – 1], as a fixed-point control
problem using Conditions (A.1)–(A.4) and (A.5c) and (A.6c). Conditions
(A.5c) and (A.6c) are determined by the estimates of . Optimise
the terminal stage using Conditions (A.1)–(A.4) and the relevant terminal
conditions from (A.5)–(A.6). Obtain  and compute Hj(tj) for all j.
Do for i = {1, 2}.

c. Ensure that 
< 0 and 
< 0 before starting the main computation.

Main computation:
For i = 3 to i :

1. Form switch points using the midpoint formulas 
and .

2. Optimise each phase kj for j = [1, 2, . . . , n – 1] as a fixed-point control
problem using Conditions (A.1)–(A.4) and (A.5c) and (A.6c). Optimise
the terminal stage using Conditions (A.1)–(A.4) and the relevant
terminal conditions in (A.5)–(A.6). Obtain  and compute Hj(tj)
for all j.

3. If  ,
then  and . Else,  and

.

4. If  ,
then  and . Else,  and .

5. Stop and print output if   and  for all j, or
 and .

6. If  i = i , then stop and report progress; else, go to Step 1.
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