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 SEPARATING TECHNICAL CHANGE FROM  
TIME-VARYING TECHNICAL INEFFICIENCY   

IN THE ABSENCE OF DISTRIBUTIONAL ASSUMPTIONS 
 

 
 
 
 
This paper proposes an alternative approach for separating technical change from 
time-varying technical inefficiency.  The approach uses the general index, developed 
by Baltagi and Griffin (1988), to model technical change along the production 
function, and a quadratic function of time trend, as in Cornwell, Schmidt and Sickles 
(1990), to capture the temporal pattern of technical inefficiency.  In such a setting, all 
parameters associated with the rate of technical change and the temporal pattern of 
technical inefficiency are identified separately.  Moreover, the proposed approach is 
independent of any distributional assumption concerning the one-sided error term 
associated with technical inefficiency, and can easily be estimated using FGLS.  
Comparative empirical results based on a translog production frontier function, and 
estimates of technical inefficiency and technical change are presented for the UK 
dairy sector over the period 1982-1992. 
 
 
 
 
1.  Introduction 
 

Both technical change and efficiency are important components of total factor 

productivity (TFP).  In a primal setting, technical change is defined, after Solow’s 

(1957) seminal work, as a shift in the production function with all input quantities held 

constant.  This shift may be outward (technical progress) or inward toward the origin 

(technical regress).  Technical progress (regress) results in TFP growth (slowdown).  

On the other hand, TFP growth is not affected by the presence of (technical) 

inefficiency, if the latter is time-invariant. It has been argued elsewhere that the 

improvement of efficiency over time, rather than the degree of inefficiency, really 

matters in TFP changes.  Improvements in (technical) efficiency result in TFP growth, 

and vice versa.  For a theoretical model that decomposes TFP growth into technical 

change and technical efficiency change effects, see Bauer (1990) and also Lovell 

(1996). 

In empirical modelling, the specification of time-varying (technical) efficiency 

and technical change is a crucial issue.  Both technical change and time-varying 

inefficiency have usually been modelled via a simple time trend, as part of the 
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econometric estimation of the production frontier function.  In such cases, none of the 

parameters associated with the time trend in the production function or the one-sided 

error term capturing technical inefficiency can be identified, because the time trend 

appears (in a linear fashion) as a regressor in both the production function and the one-

sided error term.  In particular, identification of the separate effects of neutral technical 

change, which is common to all producing units, and technical efficiency change, which 

is also common to all firms, would be problematic (Lovell, 1996).  It is therefore not 

possible to separate the effects of technical change and of changes in technical 

efficiency without further complicating the estimation process. 

Several approaches, discussed in detail in the next section, have been proposed 

to overcome this shortcoming.  All involve provision of an alternative to the simple 

time trend specification of the temporal pattern of technical inefficiency, based on 

particular distributional assumptions for the one-side error term associated with 

technical inefficiency.  These attempts comprise either (i) positing a non-linear 

specification of time trend in the function identifying the temporal pattern of technical 

inefficiency (i.e., Kumbhakar (1990), Battese and Coelli (1992)); or (ii) using time 

dummies to capture the temporal pattern of technical inefficiency (Lee and Schmidt, 

1993); or (iii) defining a technical inefficiency effects function, within which the time 

trend is one of the explanatory variables (Battese and Coelli, 1995); or (iv) measuring 

time-varying technical inefficiency residually from producer-specific persistent 

technical efficiency (Kumbhakar and Hesmati, 1995).  Each of these alternatives 

involves a certain loss of realism, through particular distributional assumptions for the 

one-sided error term associated with technical inefficiency. 

The objective of this paper is to propose an alternative approach for separating 

the effect technical change and technical inefficiency may have into TFP changes, 

involving a radical departure from previous attempts.  Notably, rather than focusing on 

the specification of the temporal pattern of technical inefficiency, technical change is 

modelled differently, avoiding the use of a simple time trend.  Specifically, the 

proposed approach uses the general index, developed by Baltagi and Griffin (1988), to 

model technical change along the production function, and a quadratic function of time 

trend, as in Cornwell, Schmidt and Sickles (1990), to capture the temporal pattern of 

technical inefficiency.  In such a setting, all parameters associated with the rate of 

technical change and the temporal pattern of technical inefficiency are identified 
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separately. More importantly, the proposed approach is independent of any 

distributional assumption concerning the one-sided error term associated with technical 

inefficiency, and can easily be estimated econometrically using a feasible generalised 

least squares (FGLS) approach.   

The remainder of this paper is organised as follows: the various approaches 

used to model technical change and time-varying technical inefficiency within panel 

data are reviewed in the next section, followed by a development of our proposed 

alternative.  The data and the estimations are discussed in the third section.  

Comparative empirical results, based on translog production frontier functions and 

estimated for the UK dairy sector, are presented in the fourth section.  Concluding 

remarks form the final section. 

 

2. Methodology 
 
 The stochastic production frontier model with panel data is given as 

 

ititit x εβ +′=Υ                            (1) 

 
where Yit is the output of the ith firm (i = 1,...,n) at time t (t = 1,...,T), Xit is the 

corresponding matrix of � inputs and the state of technology R, and ß is a �����[�

vector of unknown parameters to be estimated.  The error term is specified as  

ititit u−=νε , where vit are statistical noise and are assumed to be independently and 

identically distributed, and uit > 0 represents technical inefficiency.  Technical 

inefficiency is defined, according to Timmer (1971), in an output-based manner as the 

discrepancy between a firm’s actual output and its potential output, using the same 

amount of inputs employed with the frontier technology.  That is, a firm’s degree of 

technical inefficiency in each year is derived from ).exp( itit uTE −=  

 In order to keep the structure of technology in production frontier function as 

general as possible, a flexible functional form is used to approximate the underlying 

frontier function.  For the purpose of the present study, a translog specification has 

been chosen as follows: 
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(2)    
It is well known that translog functional form does not impose any a priori restrictions 

on the structure of production and, in consequence many hypotheses, such as constant 

returns to scale, separability, Cobb-Douglas, neutral technical change, can be 

statistically tested. 

 
2.1. Models of Technical Change 
 
 Beginning with Tinbergen (1942), technical change has been described through 

the inclusion of a simple time trend, as part of the production function.  Thereafter, 

quadratic terms in time and interactions of the time trend with input quantities were 

introduced to account for increases at a non-constant rate and for non-neutral technical 

change.  Empirically, first- and second-order time terms were found to be dominant, 

suggesting a smooth and slowly changing pattern of technical change at a constant 

rate.  That is, the model yields a smooth index of technical change driven by the 

passage of time, but is constrained from describing bursts of rapid technical change and 

periods of stagnation. 

 By replacing R and R2 with t and t2 into (2), the standard time trend model is 

obtained.  Then, the primal rate of technical change is defined as 

 

                        ∑++=
∂

∂
=

j
jitij

it
p xt

t

Y
T ln

ln
21 γββ    (3) 

 
The rate of technical change can be decomposed into two components: (i) effects due 

to pure technical change (ß1+ß2t) and (ii) effects due to non-neutral technical change 

( )∑ jitij xlnγ .  Pure technical change will be constant, increasing or decreasing at a 

constant rate, according to whether 2β  is zero, positive or negative, respectively.  

More importantly, pure technical change is common to all firms.  In contrast, non-

neutral technical change is firm-specific.  Further, the non-neutral component is 

independent of the neutral one and thus, even for unchanged input quantities, there 

could still be an impact on the rate of technical change. 

 On the other hand, the general index of technical change, developed by Baltagi 

and Griffin (1988), can be obtained by replacing R and R2 into (2) with A(t), where 
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and Dt is the time dummy for year t.1  Notice that A(t) is not constrained to obey a 

given functional form.  Moreover, since A2(t) is the same as A(t), (2) does not have the 

squared Dt term, which is the same as Dt.  However, given that time dummies appear 

interactively with input quantities, the estimated model is non-linear in parameters, and 

capable of describing complex and sometime erratic patterns of technical change.  A(t) 

can be calculated only when the initial year is taken as base (i.e., A(1) = 0), which 

allows relevant parameters to be identified. 

 In the general index model, the rate of technical change is defined as 

 

                        







+−−= ∑

j
jitjp xtAtAT ln1)1()(( γ    (5) 

 
As in the case of a simple time trend, the rate of technical change can be decomposed 

into a pure technical change effect (A(t)-A(t-1)) and a non-neutral component 

( )∑−− jitj xtAtA ln)1()( γ , which is firm-specific.  In this case, however, the non-

neutral component depends on the neutral component.  That is, the non-neutral 

component is different from zero only if the neutral component is different from zero 

(Baltagi and Griffin, 1988).  As a result, if A(t) is unchanged, changes in input 

quantities have no effect on the rate of technical change. 

 A hydrid model has recently proposed by Hesmati (1996), in which pure 

technical change is captured in a manner similar to Baltagi and Griffin (1988), and the 

non-neutral component is modelled with a simple time trend.  The main advantage of 

this model is its linearity with regard to estimated parameters.  In particular, R is 

defined as Dst, where Ds is a time dummy representing the time interval s of 

unspecified length, in the pure technical change effect, and as t in the non-neutral 

component.    

        
2.2 Models of Time-Varying Technical Efficiency 
 
 Models of time-varying technical efficiency can be divided in two categories, 

depending on whether distributional assumptions are imposed on the temporal patterns 
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of efficiency.  Within the first category, where no distributional assumptions are made, 

Cornwell, Schmidt and Sickles (1990) modelled the temporal pattern of inefficiency 

through a quadratic function of time (t),  

 
                                      2

321 ttu iiiit δδδ ++=     (6) 

 
where iii 321 ,, δδδ  (i = 1,...,n) are the firm-specific parameters to be estimated.2  The 

main advantages of this specification are that it is flexible, and it allows inefficiency to 

vary across firms and time.  That is, (6) represents firm-specific levels of technical 

inefficiency, as well as over time.  But, since time appears in a linear fashion as a 

regressor in both the production frontier (2) as well as in uit, not all parameters 

associated with the simple time trend can be identified.  Consequently, it is not possible 

to separate technical change from improvements in technical efficiency over time.  

 Within the second category, where no functional specification of the temporal 

pattern is assumed, distributional assumptions about uit are made and/or non-linear 

formulations are used to separate the time (trend) effect into technical change and 

improvements in technical efficiency.  Without these distributional assumptions the two 

effects cannot be individually identified.  Several models have been developed in this 

direction:3 first, Kumbhakar (1990) suggested that  

 

                                  [ ] iit uttu
12

21 )exp(1
−++= δδ                  (7) 

 
where ui is assumed to have a half normal distribution, and 1δ  and 2δ  are parameters 

to be estimated.4  Second, Battese and Coelli (1992) modelled the temporal pattern of 

inefficiency as an exponential function of time, i.e., 

 
                                   iit uu = ))(exp( iTt −−δ     (8) 

 
where  ui is assumed to be independently and identically distributed as a truncated 

normal distribution and δ  is a parameter to be estimated.5  Technical efficiency 

increases, remains constant, or decreases overtime when δ  is greater, equal to or less 

than zero.  Third, Lee and Schmidt (1993) proposed that  

 
                                                     tiit uu δ=                            (9) 
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where tδ  are time-effects, represented by time dummies.  Despite its non-linearity, this 

specification is attractive as it does not impose any functional specification on the 

temporal pattern of inefficiency and it is reasonable when the number of time periods 

(T) is small.  Fourth, Kumbhakar and Hesmati (1995) included a firm-specific error 

component within the one-side error term, to capture time-invariant persistent 

technical inefficiency.6  That is,  

 
                                                      itiitu τµ +=                                                    (10) 

 
where iµ  is the persistent component, which is only firm-specific, and itτ  is the 

component that is both firm- and time-specific.7  Within this approach, time-varying 

technical inefficiency is measured residually.  Nevertheless, separate measures of 

persistent and time-varying technical inefficiency require distributional assumptions 

about both of them.  Despite these distributional assumptions, a further disadvantage 

of this specification is that if there is any persistent time-specific inefficiency, it is 

masked in technical change (Kumbhakar and Hesmati, 1995).8    

 One common disadvantage of (7), (8) and (9) is that the temporal pattern of 

inefficiency, not the magnitude, is assumed to be the same for all firms.9  However, a 

model proposed by Battese and Coelli (1995) overcomes this shortcoming.  They 

assumed that 

 
                                        ∑ += itlitlit zu µδ               (11) 

 
where zit is an (lx1) vector of firm characteristics explaining technical inefficiency and 

itµ  is defined by the truncation of the normal distribution with zero mean, such that 

the point of truncation is ∑− litl zδ .10  The simple time trend can be included as part 

of the zit vector and it can be interpreted as the change (in a linear fashion) in technical 

inefficiency over time.  The stochastic nature of and the distributional assumptions on 

the inefficiency effects in (11) permit the effect of technical change and time-varying 

behaviour of inefficiency to be identified, even though both are modelled via a simple 

time trend.   

This specification may also be extended to the case of a non-neutral stochastic 

frontier (see Huang and Liu) by incorporating interaction terms between firm-specific 
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variables (zit) and input quantities into (11).  In this case, (11) may be reformulated, 

following Battese and Broca (1997), as: 

 

                                      ∑ ∑ µ+ϑ+δ= ∗
LWOLWOOLWOLW ]]X                                        (12) 

 

where 
Oϑ  are parameters to be estimated and ∗

OLW]  are appropriate interactions between 

firm-specific variables (zit) and input quantities itx .  Notice that, in this case, time-

varying technical inefficiency also depends on the levels of inputs used, as the frontier 

of each firm shifts differently over time. 

 
2.3. Proposed Formulation 
 
 A suitable, easy to implement, and distribution-free model of time-varying 

technical inefficiency may be obtained by incorporating the general index of technical 

inefficiency into the Cornwell, Schmidt and Sickles (1990) setting.  The general index, 

given by (4), is used to model technical change along the production frontier function, 

and a quadratic function of time trend, given by (6), is used to capture the temporal 

pattern of technical inefficiency.  This formulation has all the advantages associated 

with modelling technical change with the general index, but at the same time 

circumvents the need for distributional assumptions regarding the one-sided error term.  

The proposed model may be estimated in two stages (Neogh and Ghosh, 1994; Ahmad 

and Bravo-Ureta, 1996).  In the first stage, (1), with the specification of (2), is 

estimated, as a random effect model, using feasible generalised least squares (FGLS), 

making no distributional assumption about the one-side error term.  Then, the temporal 

pattern of technical inefficiency is estimated in the second stage through (6).   

More importantly, as technical change and the temporal pattern of technical 

inefficiency are each captured through different variables, the identification problem 

inherent in the Cornwell, Schmidt and Sickles (1990) approach is eliminated.  That is, 

all parameters associated with the rate of technical change and the temporal pattern of 

technical inefficiency are identified separately.  Then, the rate of technical change is 

measured by (5) and the changes in technical inefficiency are obtained by using (6).  As 

a result, firm-specific TFP changes can be attributed to the effect of technical change, 

the effect of changes in technical inefficiency, and to economies of scale.  
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In addition, there is no inconsistency in this two-stage approach, as in the 

second stage predicted inefficiency is not regressed on a number of firm-specific 

factors, but on a variable (time trend) identically distributed among firms.  This is 

consistent with the first-stage assumption of independently and identically distributed 

inefficiency effects in the stochastic frontier.  The only complexity remains the non-

linearity in parameters in the first-stage, but the model can easily become linear by 

assuming Hicks-neutral technical change. 

 To compare relative performance, the Cornwell, Schmidt and Sickles (1990) 

time-varying efficiency model is estimated with three variants of technical change: first, 

with a simple time trend; second, with the general index of technical change assuming 

Hicks-neutrality; and third, by allowing for non-neutral technical change.  The second 

variant may also be viewed as a special case of multiple time trend model (Hesmati, 

1996), with time intervals specified to be equal to one.  In each case, measures of the 

rate of technical change and of temporal variation in technical inefficiency are obtained 

and compared to each other, using an unbalanced panel data set for UK dairy sector 

over the period 1982-1992. 

 
3. Data and Estimation Procedure 
 

Financial data from dairy farm accounts are drawn from the Farm Business 

Survey (FBS) for England and Wales (MAFF, 1994a).11  The FBS is an annual survey 

covering about 3,000 farms in England and Wales, selected from a random sample of 

census data that is stratified according to region, economic size of farm and type of 

farming.  From this sample 242 dairy farms, defined as those where 60 per cent or 

more of their total revenue is derived from milk or milk products, observed for varying 

numbers of years, were extracted to form an unbalanced panel. The final panel data set 

consists of 2,147 observations, which in turn implies that on the average each farm is 

observed almost 9 times during the 1982-92 period.   

Dairy farms were chosen in the present analysis because they are the most 

widely represented farm-type in the FBS, both in terms of geographical distribution 

and in the total number surveyed.  Milk is relatively important in the agricultural 

economy of the U.K., accounting on aggregate for 34 per cent of all livestock output, 

and just over 20 per cent of the gross output of the industry as a whole (MAFF, 

1994b).  It also provides relatively high incomes: in 1992-1993, 47 per cent of English 
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dairy farms in the FBS sample had an occupier’s net income of more than £30,000, 

whereas overall only 29 per cent of farms achieved such a performance.  The 

corresponding figures for Wales were 58 and 25 per cent, respectively (MAFF, 

1994b).   

Over the period of the analysis, the structure of the industry has undergone 

significant change, both in terms of the policy environment, industry structure and 

technological enhancement.  Milk quotas were introduced in 1984 and tightened in 

1988, and in 1992 legislation was initiated to liberalise the milk market; import 

competition also became more vigorous, especially in the milk product sector. In 1982, 

51 per cent of dairy herds had fewer than 50 cows, whereas by 1992 this had fallen to 

45 per cent; over the same period, the number of herds with 100 cows or more rose 

from 15 to 19 per cent (MAFF, 1982, 1992).  Dairy cow numbers fell by 19 per cent, 

although as average yields rose from 5085 to 5250 litres per cow, marketed output 

decreased considerably less (MMB).  Innovative approaches to fertility and genetic 

improvement, enhanced grassland productivity, labour-efficient milking and greater 

enterprise specialisation combined with the market, policy and sector organisational 

changes to provide a challenging environment for analysis of technical change and 

efficiency.  Finally, as milk is a relatively homogeneous product, generally accounting 

for a high proportion of farm revenue, aggregation problems are minimised.   

The dependent variable in the translog production frontier (2), is total annual 

milk products in hectolitres of milk equivalent.  The aggregate inputs included as 

explanatory variables are: (a) total agricultural land in hectares;  (b) total labour, 

comprising hired (permanent and casual), family and contract labour, measured in 

working hours; (c) number of dairy cows; (d) purchased dairy concentrated feed, 

coarse fodder and other livestock expenses (such as veterinary and medicine costs) 

measured in pounds sterling (constant 1992 prices).  Summary statistics for these 

variables are provided in Table 1.  

To reduce the number of parameters to be estimated, the random effect 

specification is used in all models.  Since the first two models are linear in parameters, 

they can be estimated using the FGLS procedure, as the variance of the error term in 

(1) is unknown.  The variance of statistical noise 2
νσ  is estimated from the mean sum 

of squared errors from the within regression, and the variance of the one-sided error 
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term 2
uσ  is estimated as ( ) 
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residuals of the OLS model.  Then FGLS estimates can be obtained by using OLS into 

a transformed model, which arises by multiplying both sides of (2) by a and then 

subtracting their means, where ( )( ) 212221 uTa σσσ νν +−= . 

For the third model, which is non-linear, we follow the procedure proposed by 

Kumbhakar and Hjalmarson (1995).  In this case, 22 )()1(1
iitv eeTN ∑∑ −−=σ  

and ( )( )∑ ∑ −−= 222 )1(/1/1 νσσ iu eNTT , where eit are the residuals of the non-

linear OLS model and ∑= Tee iti / .  Then, (2) is transformed as previously, using the 

new values of a, and non-linear OLS is used to estimate all relevant parameters. 

 
4. Empirical Results 
 

The estimated parameters of the translog production frontier function for the 

variants of technical change are reported on Table 2.  All models predict positive 

marginal products for inputs, but only the last two have positive semi-definite Hessian 

matrices, indicating quasi-concave production frontier functions.  The simple time 

trend model fails to satisfy curvature conditions.  In addition, all models predicted a 

similar production structure (see Table 3).12  There are, however, some differences in 

estimated marginal products (see Table 4) as well as in returns to scale, which range 

from 0.86 in the simple time trend model to 0.94 in the general index model. 

 Much more significant differences are found for the estimated rate of technical 

change (see Table 5).  These differences are both qualitative and quantitative.  Even 

though all models rejected the hypothesis of zero technical change and of Hicks-

neutrality, the average estimated rate of technical change differs significantly among 

the three models.  During the period 1982-1992, the average annual rate of technical 

change is estimated at 1.25 per cent with the simple time trend model and at 0.31 per 

cent with the multiple time trend model, while the general index model indicates a 

technological regress of 0.03 per cent.  Moreover, the pure technical change effect was 

found to be dominant in the multi time trend and the general index model, while the 

opposite is true for the single time trend model. 
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 The temporal pattern of technical change is depicted in Figure 1.  The simple 

time trend model (upper panel) indicates a progressive slowdown in the rate of 

technical change over time, which became much more significant since 1987 when the 

non-neutral component started also declining.  In 1982, the annual rate of technical 

change was 1.91 per cent, it declined to 1.55 per cent by 1987, and even further to 

0.23 per cent in 1992.  This was mainly due to the declining contribution of the pure 

technical change effect.  It is also worth noticing that the non- neutral effect has 

dominated the neutral component since 1986.  This is in contrast with previous 

empirical findings supporting the entire dominance of the pure technical change effect 

and it may be due to the violation of curvature conditions in this model. 

 A quite different pattern of technical change is indicated by the multiple time 

trend model (middle panel of Figure 1). Two sub-periods were found with technical 

progress (1984-1987 and 1991-1992) combined with a sub-period (1988-1990) of 

technical regress.  In the two sub-periods of technical regress, the rate of technical 

change increased initially, and fell afterwards.  The opposite pattern was observed 

during the technical regress sub-period.  During the entire period under consideration, 

except 1991-1992, the pure technical change effect was dominant in determining both 

the direction and the magnitude of the rate of technical change.  Notice though, that 

the non-neutral component was also progressive in nature for the entire period. 

 A similar temporal pattern of technical change is indicated by the general index 

model (see lower panel of Figure 1), although with significant qualitative differences 

with respect to the components of technical change.  Specifically, for the period of 

technical progress (1983-1987 and 1991-1992) the pure effect is positive but the non-

neutral component is negative, indicating a slowdown into the rate of technical change.  

The opposite occurred during the technical regress period (1988-1990).  In addition, 

the general index model predicted the smallest, in absolute terms, contribution of the 

non-neutral component among the competing models.  Finally, as expected, this model 

predicted much more volatile technical change than the other two, contributing to a 

smaller rate of change on average. 

 Frequency distributions of technical efficiency for the three alternative models 

are reported on Table 6.  It seems that the multiple time trend and the general index 

models predicted a lower degree of technical inefficiency, which were very similar to 

each other.  During the period 1982-1992, technical inefficiency was found, on 
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average, to be 63.07 per cent in the single time trend model, 76.05 per cent in the 

multiple time trend model, and 76.30 per cent in the general index model.  In the 

multiple time trend and the general index model, there were only a limited number of 

firms with lower than 50 per cent degree of technical efficiency.   

The multiple time trend and the general index models show a very similar 

temporal pattern of technical inefficiency, except for the period 1983-1984, while a 

different pattern is depicted by the single time trend model.  In addition, the multiple 

time trend and the general index models predicted a slow improvement of technical 

efficiency over time, while the single trend model indicated a period (1985-1986) of 

efficiency deterioration (see also Figure 2).  Thus, it seems that the temporal pattern of 

technical inefficiency is affected by the way of modelling technical change in the 

production frontier. 

In England and Wales, the imposition of milk quotas in 1984 forced additional 

culling, improving the genetic merit of the aggregate herd, which is captured correctly 

in the evolution of estimated technical change in the multiple time trend model, and 

adequately in the general index model.  Further external corroboration of pressures 

causing the pattern of technical change may be gleaned from the average cost-output 

ratio (MMB; see also Mukhtar and Dawson, 1990).  As Figure 3 indicates, this fell in 

the early years of the period of the analysis, from 1.30 in 1982-1983 to 1.16 in 1984-

1985, before rising to another peak of 1.37 in 1988-1989, and falling back to 1.22 by 

1992-1993.  The technical regress clearly estimated by both the multiple time trend and 

general index models after 1989 reflects a shift from concentrate to grass feed, 

motivated by this cost price squeeze.  The efficiency estimates also behave, to some 

extent, inversely in relation to the cost-price ratio. 

 When compared with similar recent studies of temperate dairy production (e.g. 

Kumbhakar and Heshmati, 1995; Ahmad and Bravo-Ureta, 1995, 1996; Heshmati, 

1998), the technical change and efficiency measures are broadly concordant.  The 

approach used here, however, allows investigation of firm-specific measures that may 

be of significantly greater use in terms of policy development at farm level, as 

improving efficiency will become increasingly important.  Fewer public resources are 

being devoted to agricultural research and development and, depending on market 

conditions (especially increased concentration on the purchasing side), this may not 

always have an impact on farming prosperity (Dryburgh and Doyle, 1995).  
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Additionally, the pace and direction of technical progress may be increasingly 

constrained by environmental legislation, especially in the dairy sector (where 

grassland monocultures and water pollution hazard are increasingly common; Rigby 

and Young, 1996), leaving efficiency improvement the only option for achieving 

productivity gains. 

 

 
5. Conclusion  
 

This paper proposes an alternative approach for separating the effects of 

technical change and of technical inefficiency into TFP changes, involving a radical 

departure from previous analyses.  Notably, rather than focusing on the specification of 

the temporal pattern of technical inefficiency, technical change is modeled differently, 

avoiding the use of a simple time trend.  The general index, developed by Baltagi and 

Griffin (1988), models technical change along the production function, and a quadratic 

function of time trend, as in Cornwell, Schmidt and Sickles (1990), captures the 

temporal pattern of technical inefficiency.  

This approach has several advantages: first, it captures more complicated 

patterns of technical change than the simple time trend. Second, it has no need for 

distributional assumptions as far as the one-sided error term is concerned, since it is 

estimated with FGLS.  Third, there is no inconsistency between the two stages of 

estimation, as inefficiency predicted in the second stage is not regressed on a number 

of firm-specific factors, but on a variable (time trend), identically distributed among 

firms. Fourth, both the effects of technical change and of changes in technical 

inefficiency can be clearly interpreted.  The only remaining complexity of the model is 

in the non-linearity of parameters at the first-stage of estimation. 
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Table 1 

Summary Statistics of the Variables 

Variable Mean Std Deviation Min Max 

Output (hectolitres) 4,436 2,757 320 18,685 

Area (ha)  58 31 12 205 

Labour (hours) 5,902 2,539 1,600 23,929 

Herd Size (No of Cows) 145 86 19 564 

Feeding Stuff and Livestock 
Expenses (£) 

31,350 21,638 996 213,719 
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Table 2 

Parameter Estimates of the Translog Production Frontiers for the Single, Multiple and 

General Index Time Trend Model 

Parameter Single TT Multiple TT General Index TT 

 Estimate Std Error Estimate Std Error Estimate Std Error 

ß0 -0.007 (0.002) 0.009 (0.002) 0.017 (0.005) 

ßH 0.188 (0.038) 0.168 (0.038) 0.332 (0.083) 

ßL 0.122 (0.037) 0.108 (0.037) 0.063 (0.017) 

ßA 0.276 (0.036) 0.272 (0.037) 0.070 (0.026) 

ßF 0.377 (0.025) 0.420 (0.026) 0.521 (0.050) 

ßHL 0.301 (0.081) 0.276 (0.080) 0.104 (0.072) 

ßHA 0.161 (0.087) 0.162 (0.086) 0.644 (0.093) 

ßHF 0.186 (0.059) 0.167 (0.059) 0.171 (0.071) 

ßHH -0.286 (0.063) -0.273 (0.062) -0.447 (0.072) 

ßLA -0.046 (0.062) -0.039 (0.061) 0.148 (0.063) 

ßLF -0.194 (0.047) -0.189 (0.046) 0.005 (0.052) 

ßLL -0.036 (0.048) -0.025 (0.047) -0.158 (0.053) 

ßAF 0.006 (0.051) 0.013 (0.050) -0.122 (0.050) 

ßAA -0.116 (0.049) -0.120 (0.049) -0.342 (0.042) 

ßFF -0.026 (0.011) -0.016 (0.018) -0.025 (0.012) 

ßT 0.019 (0.008) - - - - 

ßTT -0.008 (0.004) - - - - 

ßHT 0.019 (0.004) 0.019 (0.004) 0.031 (0.013) 

ßLT -0.016 (0.019) -0.016 (0.018) -0.028 (0.069) 

ßAT -0.017 (0.014) -0.014 (0.014) 0.073 (0.058) 

ßFT -0.031 (0.011) -0.029 (0.011) -0.032 (0.014) 

d83 - - -0.037 (0.013) 0.002 (0.015) 

d84 - - -0.027 (0.013) 0.030 (0.015) 

d85 - - 0.004 (0.013) 0.060 (0.015) 

d86 - - 0.016 (0.010) 0.069 (0.015) 

d87 - - 0.026 (0.013) 0.094 (0.015) 

d88 - - 0.015 (0.008) 0.076 (0.015) 

d89 - - -0.026 (0.013) 0.017 (0.015) 

d90 - - -0.041 (0.015) 0.014 (0.008) 

d91 - - -0.034 (0.017) 0.018 (0.022) 

d92 - - -0.033 (0.018) 0.005 (0.023) 
2R  0.966 0.906 0.891 

Where, H: herd size, L: labour, A: area, F: feeding stuff and livestock expenses and T: time. 
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 Table 3 

Hypothesis Test for the Production Technology 

 

Hypothesis Calculated Chi-Square statistic Tabulated 

 STT MTT GITT (α=0.05) 

Homotheticity 23.58 21.19 17.11 ( ) 49.92
4 =χ  

Homogeneity 28.12 24.82 19.12 ( ) 1.112
5 =χ  

Linear Homogeneity 36.76 32.04 73.92 ( ) 6.122
6 =χ  

Additive Separability 33.56 31.29 15.23 ( ) 6.122
6 =χ  

Strong Separability 41.32 39.42 53.98 ( ) 3.182
10 =χ  

Zero TC 34.62* 94.30 39.30 ( ) 7.232
14 =χ  

Hicks-Neutral TC 29.62 29.17 16.14 ( ) 49.92
4 =χ  

* in the single time trend model the hypothesis of zero technical change involves only six restrictions.  
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Table 4 

Estimates of Output Elasticities and Returns to Scale  

 

 STT MTT GITT 

Herd Size 0.200 0.180 0.317 

Labour 0.097 0.083 0.040 

Grazing Area 0.244 0.245 0.074 

Feed and Livestock Costs 0.323 0.370 0.505 

RTS 0.864 0.877 0.936 
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Table 5 

Estimates of Technical Change  

Year Total Technical Change Neutral TC Biased TC 

 STT MTT GITT STT MTT GITT STT MTT GITT 

1982 1.910 - - 1.122 - - 0.788 - - 

1983 1.720 -3.038 0.146 1.376 -3.706 0.171 0.345 0.668 -0.025 

1984 1.914 1.280 2.412 1.041 1.012 2.850 0.873 0.268 -0.437 

1985 1.745 3.847 2.797 0.804 3.080 3.024 0.942 0.767 -0.227 

1986 1.461 2.098 0.784 0.619 1.262 0.829 0.842 0.835 -0.045 

1987 1.551 1.692 2.407 0.469 0.947 2.564 1.083 0.745 -0.156 

1988 1.281 -0.100 -1.811 0.342 -1.072 -1.849 0.939 0.973 0.038 

1989 0.739 -3.305 -5.688 0.232 -4.149 -5.845 0.508 0.844 0.157 

1990 0.526 -0.979 -0.337 0.134 -1.429 -0.353 0.392 0.450 0.015 

1991 0.574 1.000 0.363 0.047 0.641 0.425 0.527 0.358 -0.062 

1992 0.290 0.639 -1.409 -0.031 0.151 -1.360 0.321 0.488 -0.049 

Mean 1.247 0.312 -0.034 0.559 -0.326 0.045 0.687 0.609 -0.079 
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Table 6 

Frequency Distribution of Technical Efficiencies  

% 82 83 84 85 86 87 88 89 90 91 92 

Single Time Trend Model        

<40 0 1 0 0 3 3 1 0 3 2 2 

40-50 0 2 3 3 3 65 58 4 0 2 2 

50-60 47 70 12 43 37 157 157 62 19 21 14 

60-70 101 118 83 158 159 11 19 114 85 65 39 

70-80 43 22 114 30 33 1 1 26 33 43 25 

80-90 5 4 10 5 2 2 1 3 10 2 3 

>90 1 1 1 1 1 1 1 1 1 1 1 

Mean 65.3 62.6 70.3 64.7 64.5 52.9 53.6 63.4 66.4 63.7 66.5 

Multiple Time Trend Model        

<40 0 0 0 0 0 0 0 0 0 0 0 

40-50 0 2 0 0 0 0 0 0 1 1 0 

50-60 17 77 0 3 1 1 0 2 1 4 3 

60-70 108 131 20 52 4 1 3 15 6 26 3 

70-80 63 6 168 175 189 106 40 139 63 66 36 

80-90 8 1 32 9 42 129 180 51 74 7 36 

>90 1 1 3 1 2 3 15 3 6 2 8 

Mean 68.5 61.6 76.2 72.2 77.9 80.3 82.9 77.5 79.9 72.5 80.1 

General Index Model        

<40 0 0 0 0 0 0 0 0 0 0 0 

40-50 0 1 0 0 0 0 0 0 1 1 0 

50-60 2 12 0 3 1 1 0 2 1 3 3 

60-70 61 53 22 41 1 1 3 36 5 8 20 

70-80 106 131 173 186 191 85 89 152 55 79 42 

80-90 25 18 24 8 44 150 138 18 78 13 15 

>90 3 3 4 2 1 3 8 2 11 2 6 

Mean 72.8 72.5 75.4 72.5 78.3 80.9 80.9 73.9 81.0 75.2 75.8 

N 197 218 223 240 238 240 238 210 151 106 86 
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Figure 1 

Development of Technical Change in the Single Time Trend Model 

Development of Technical Change in the Multiple Time Trend Model 

Development of Technical Change in the General Index Time Trend Model 
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Figure 2 

Development of Mean Technical Efficiencies over Time 
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Figure 3 

Average Output-Cost Ratios over Time, England and Wales Dairy Farms 
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Endnotes 
                                                        
1 For previous empirical applications see Baltagi, Griffin and Rich (1995); 

Kumbhakar and Hjalmarsson (1996); Kumbhakar and Hesmati (1997). 
2 Estimation is carried out with FGLS.  Examples of empirical applications include 

Fecher and Pestieau (1993), Ahmad and Bravo-Ureta (1995); Neogi and Ghosh 

(1994). 
3 The first two models are estimated with maximum likelihood while the third one 

could be estimated with FGLS. 
4 To the best of our knowledge there is not an empirical application of Kumbhakar 

(1990) model. 
5 Examples of empirical applications include Battese and Tessema (1993), Battese, 

Malik and Broca (1993) and Tran, Coelli and Fleming (1993). 
6 For previous applications of this model see Kumbhakar and Hesmati (1995), 

Hesmati and Kumbhakar (1997), and Hesmati (1998).  This model is estimated in 

two steps: the first consists of estimating the frontier with FGLS and the second 

measuring the persistent and the time-varying inefficiency by using either 

maximum likelihood (Kumbhakar and Hesmati (1995), Hesmati and Kumbhakar 

(1997)) or the method of moments (Hesmati, 1998). 
7 Persistent technical inefficiency is closely related to government policy and firm-

ownership, while the residual time-varying technical inefficiency is due to 

temporary factors (Kumbhakar and Hesmati, 1995).  In the extreme case of 

0=iµ , technical inefficiency varies randomly across firms as well as over time.  

8 This may be case with changes in governmental policy.  Lovell (1996) also raised 

the concern of whether is possible to distinguish the effect of firm-specific 

persistent technical inefficiency from that of quasi-fixed inputs, which also vary 

across firms but not through time. 
9 This assumption is quite restrictive, but not unreasonable for a putty-clay industry 

(see Kumbhakar, Hesmati and Hjlmarsson, 1997). 
10 This model is also estimated with maximum likelihood. Examples of empirical 

applications include Coelli and Battese (1996); Battese (1996); Battese, Malik and 

Gill (1996); Yao and Liu (1998). 
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11 Grateful acknowledgement is made to MAFF, for permission to use data from the 

Farm Business Survey, provided through the ESRC Data Archive at the 

University of Essex. 
12 All relevant parameter restrictions for the structure of production technology are 

given in detail by Kim (1992). 


