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†

 

This paper explores alternative techniques for the selection of conservation contracts
under competitive tendering programs. Under these programs, purchasing decisions
are often based on the benefits score and cost for proposed projects. The optimisation
problem is to maximise the aggregate benefits without exceeding the budget. Because
the budget rarely permits all projects to be funded, there is a binary choice problem,
known in the operations research published work as a knapsack problem. The decision-
maker must choose which projects are funded and which are not. Under some
circumstances, the knapsack problem can be unsolvable because computational
complexity increases exponentially with the number of projects. This paper explores
the use of several decision rules for solving the optimisation problem including the use
of advanced meta-heuristics. It is shown that commonly applied techniques for project
selection may not be providing the optimal solution. Improved algorithms can increase
the environmental programs benefits and staying within budget. The comparison of
algorithms is based on real data from the Western Australian Conservation Auction.
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1. Introduction

 

Competitive tendering for conservation contracts is an increasingly popular
policy instrument for efficient purchasing of environmental projects. Some
major programs based on this approach include the US Conservation
Reserve Program (CRP), the Victorian BushTender Program, the NSW
Environmental Services Scheme, the European Financial Instrument for the
Environment (LIFE program), the Australian Envirofund Program, and the
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Western Australian Conservation Auction. These programs base their purchasing
decisions on what can be termed a cost–utility analysis (CUA) framework
(Stephens and Lawless 1998; Cullen 

 

et al

 

. 2001). Under CUA, project costs
are measured in dollars via standard means, but the benefits are measured
with a non-monetary metric usually comprised of multiple attributes. This
paper explores the algorithms used in conjunction with CUA to make
purchasing decisions, that is, which projects are funded and which are not.

In most programs, a budget constraint prevents all projects being funded.
Often the acceptance rate is quite low. For example, in 2002, the European
LIFE Environment Program funded only 23 per cent of proposed projects
(EC 2002) and in the 2003 fiscal year the US Environmental Quality
Incentives Program funded around 17 per cent (USDA 2003a). In allocating
budgets, program managers are confronted with a difficult discrete choice
problem. The decision objective is to maximise the aggregate utility from
selected projects without exceeding the budget.

In the decision-maker’s optimisation problem, the total number of  com-
binations possible is equal to 

 

2

 

n

 

, where 

 

n

 

 represents the number of projects.
When 

 

n

 

 is large or several decision rules govern project selection or complex
bid interdependencies exist (i.e., the benefits score for one project influences
the benefits score for another), then there are too many combinations to
generate an optimal solution within a reasonable time frame. Therefore, a
heuristic is required. Heuristics are algorithms that search for a near-optimal
solution when the true optimum cannot be guaranteed due to excessive
computational requirements.

This paper contributes to the extensive literature on conservation planning
and reserve selection algorithms (Faith 

 

et al

 

. 1996; Pressey 

 

et al

 

. 1996; Arthur

 

et al

 

. 1997; Pressey 

 

et al

 

. 1997; Ando 

 

et al

 

. 1998; Snyder 

 

et al

 

. 1999; Polasky

 

et al

 

. 2001; Faith 

 

et al

 

. 2003; Costello and Polasky 2004; Meir 

 

et al

 

. 2004;
Moilanen 2005; Pierce 

 

et al

 

. 2005). These studies are concerned with issues
such as species representativeness, conservation area network design, habitat
connectivity, and the sequencing of conservation actions through time.

Our work focuses on the selection of natural resource management
projects when there are 

 

n

 

 projects each with a cost and benefit metric, and an
overall budget constraint 

 

b

 

. Alternative heuristics are compared by analysing
real ‘bids’ in the Western Australian Conservation Auction, referred to as the
‘Auction for Landscape Recovery’. Heuristics, from simple rules to advanced
meta-heuristics, are tested for their closeness to an optimal solution. Some
simple purchasing rules are found to differ significantly from an optimal
solution, whereas others come very close.

 

2. The knapsack problem

 

In operations research terminology, the environmental contract purchasing
problem can be formulated as a 0–1 binary knapsack problem (Martello

 

et al

 

. 2000; Caccetta and Kulanoot 2001). In a knapsack problem (KP), 

 

n
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items are available for packing into a knapsack. Each item has a cost (in
terms of space taken within the knapsack) 

 

α

 

i

 

 and a price 

 

p

 

i

 

 when sold at the
market. The knapsack has a capacity 

 

b

 

. The decision-maker must choose
which of the 

 

n

 

 items are packed into the knapsack, with the aim of maximising
benefit (

 

Z

 

), that is, total revenue in this case, without exceeding the knapsack’s
capacity. With a binary decision variable 

 

x

 

i

 

, where item 

 

i

 

 is selected if  

 

x

 

i 

 

=

 

 1
and not selected if 

 

x

 

i 

 

=

 

 0, this can be expressed as an integer linear programming
problem (Martello 

 

et al

 

. 2000):

(1)

Maximise
subject to:

(2)

Because of the simplicity of the KP formulation, many practical problems
can be analysed based on its principles. Examples are: (i) selecting among a
set of projects to produce the highest returns given a total budget constraint;
(ii) selection of skills to maximise output given total salary budget; and (iii)
loading cargo onto a ship with a fixed capacity. The KP is sometimes solved
as a subproblem of larger combinatorial optimisation problems, as in the case
of the set partitioning problem (Syslo 

 

et al

 

. 1983). Many extensions of the
general KP have also been addressed in the literature, for example, the multi-
dimensional KP (Hanafi and Freville 1998), and the multiple KP (Martello and
Toth 1980).

 

3. Purchasing strategies in environmental programs

 

Although it may appear an abstract concept, the knapsack problem provides
satisfactory representation of real-world project funding decisions in many
environmental programs. In an environmental program, items are replaced
with projects, where the cost of projects is equivalent to the space taken, and
the capacity (volume) of the knapsack is represented by the program budget.
The decision-maker attempts to maximise the aggregate environmental
benefits score subject to the budget constraint. In this section, the manner
by which project purchasing decisions are made under several real-world
environmental programs is explored.

The United States Conservation Reserve Program (CRP) commenced in
1985 and pioneered much of the contemporary work on design of environ-
mental auction systems worldwide. Since inception, it has been the subject
of numerous academic studies exploring methodological issues of auction
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design and implementation (Reichelderfer and Boggess 1988; Ribaudo 

 

et al

 

.
2001). Through the CRP, farmers receive annual rental payments to retire
cropland from production and place it under conservation use. The payments
system is based on competitive tendering from farmers for 10–15 years con-
servation contracts. Contract benefits are assessed using a multi-attributed
environmental benefits index (EBI). One of the factors comprising the EBI is
project cost, which allows bidders to increase their EBI score by lowering
their bid. The program’s administrators make contract purchasing decisions
based on the EBI. All eligible offers are ranked in order of their EBI scores.
Funds are then allocated in that order until a cut-off  point is reached (USDA
2003b). It can be presumed that the EBI cut-off  point is at least partially
based on a budget ceiling. This means that project selection occurs in
descending order of project benefit scores until a budget constraint binds.

The Victorian BushTender program was run as a pilot auction for biodi-
versity contracts during 2001–2003 (Stoneham 

 

et al

 

. 2003). Landholders
placed a once-off  sealed bid (

 

b

 

) for the provision of biodiversity services. The
Victorian Government calculated the benefits of each bid using a habitat
services score (HSS) and a biodiversity services score (BSS) (see Parkes 

 

et al

 

.
2003). Purchasing decisions were made on the basis of a biodiversity benefits
index (BBI):

(3)

Projects were funded in descending order of BBI until a budget constraint
applied. All the bids were treated as independent of one another. This meant
that the BSS and HSS scores did not change when any one of the projects
was selected.

The New South Wales Environmental Services Scheme was also run as a
pilot auction for environmental contracts (Grieve and Uebel 2003). Land-
holder bids were evaluated using a multi-attributed EBI covering factors such
as carbon sequestration, biodiversity, salinity, soil health, and water quality.
Purchasing decisions were based on three criteria: (i) the EBI; (ii) the project’s
cost effectiveness determined by the EBI to cost ratio; and (iii) the demonstration
value of the project as scored by experts. The demonstration value measured
the knowledge gained for other land managers arising from the project. Each
of the three criteria was given equal weight and then combined to create an
overall benefits score. Funds were allocated to projects in order of benefits
until a 

 

#

 

A2 million budget constraint was reached. Some modifications were
made to the final selection to ensure both a satisfactory geographical spread
of offers and the representation of a sufficient range of farming enterprises.

The European Commission’s Financial Instrument for the Environment
(LIFE program) involves competitive tendering for environmental projects
but covers a much larger range of services than those described above. Under
LIFE, citizens of member States submit project proposals to Brussels. A

BBI
BSS HSS
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i i

i

  
  

=
⋅



 

Optimisation and conservation contracts 43

 

© 2007 CSIRO
Journal compilation © 2007 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Ltd

 

team of experts scores the performance of the projects against several criteria
and an overall performance score is calculated. Projects are ranked according
to their overall performance and funds are distributed until a budget thresh-
old is reached. This process is similar to that used in Australia’s Envirofund
program, which is part of the Natural Heritage Trust. Again, projects are
scored by experts against multiple criteria. Some type of aggregate perform-
ance function is applied that produces a unified index of performance. Funds
are distributed in order of performance until a budget constraint binds.

Table 1 summarises the purchasing strategies used by the programs
described above. In each case, the project funding decision fits the ‘knapsack’
format because:

1. There is a binary decision on each project, it can be either funded or not
funded. Substantial re-negotiation of project activities and budget is rarely
undertaken due to high transaction costs.

2. The projects all have a cost and benefit, where the benefit is based on a
non-monetary multi-attributed metric.

3. The projects are treated as independent. This means that a decision to
fund any one project does not explicitly influence the benefits score of another.

4. There is generally a budget constraint for the program. Ultimately, all
programs must have some budget constraint, but there are differences in
how rigidly a predefined budget is applied.

5. It can be assumed that the objective of funding agencies is typically to
maximise the level of  benefit and staying within budget. This means
selecting the optimum project portfolio.

From these observations, it can be seen that the knapsack formulation of the
optimisation problem represents the real decision relatively well. The major
way in which the integer program formulation of the knapsack problem fails,
or needs more complex definition, is if  there exists strong interdependencies
between the environmental projects being funded. Bid interdependencies
mean that the decision to fund any one project changes the benefits score for
other projects. For example, when the goal is regional biodiversity conserva-
tion, the biodiversity contribution of a project reflects only those components
of biodiversity not yet captured by other funded projects (the principle of
‘complementarity’). We return to this issue in the discussion. However, in the
majority of other practical environmental and agricultural program applications,
an assumption of independence represents the decision problem with sufficient
accuracy.

 

4. Alternative solution methods

 

There is an extensive published work of techniques applied to find optimal
and heuristic solutions to the KP problem. Methods to find an optimal
solution include branch and bound and dynamic programming (Horowicz
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and Sahni 1974), linear programming relaxation (Ram and Sarin 1988), and
more recently branch and bound combined with surrogate relaxation to
derive lower bounds (Pisinger 1999). The latter method solved large instances
of up to 

 

n 

 

=

 

 100 000 within a few seconds of CPU time. Although an optimal
solution can be found for large instances of a standard KP, the difficulty
arises within the methods when additional constraints are added. Such
constraints include mutual exclusiveness across sets of projects and profit, 

 

p

 

i

 

,
being dependent upon projects selected within the knapsack.

Table 1 Purchasing strategies used in agricultural land management and environmental programs

Environmental program Description
Basis of 
purchasing decisions

US Conservation 
Reserve Program

Competitive landholder bidding 
for the retirement of cropland for 
conservation purposes. Benefits 
measured with a multi-attributed 
environmental benefits index.

Benefit score

Victorian BushTender Trial
(Stoneham et al. 2003)

Competitive landholder bidding 
for the provision of biodiversity 
and habitat management services. 
Benefits are measured with a 
biodiversity services score (BSS) 
and a habitat services score (HSS). 
The bids are treated as independent.

Ratio of benefits to costs

NSW Environmental 
Services Scheme 
(Grieve and Uebel 2003)

Competitive tendering from 
landholders to supply 
environmental services. 
Benefits are measured with a 
multi-attribute EBI.

Benefit ranking

Natural Heritage Trust 
Envirofund

Competitive tendering for a wide 
range of environmental projects 
across Australia. Projects are 
scored by experts against several 
criteria.

Benefit score

European Commission’s 
LIFE program

Competitive tendering from 
within Europe for a wide range of 
environmental projects. Projects 
are scored by experts against 
several criteria.

Benefit score

Western Australian 
Conservation Auction

Competitive tendering by 
landholders to supply 
environmental services. Benefits 
are measured within a systematic 
conservation planning framework, 
based on regional biodiversity 
targets, and supplementary 
multi-attribute EBI.

Maximising improvement 
in representation, subject 
to regional targets and 
budget

Note: EBI, environmental benefits index.
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Heuristic methods can be more robust for applications where additional
constraints are added. Heuristics for the KP problem can be grouped into
three main types: (i) heuristic rules; (ii) greedy/interchange heuristics; and
(iii) meta-heuristics. Heuristic rules are the simplest of the three types and are
easily incorporated within a spreadsheet. Based on the environmental
programs reviewed above, project funding decisions are typically made using
the following heuristic rules: (i) fund in descending order of the environmental
benefits score until a budgetary threshold is reached; and (ii) fund in ascending
order of a cost to utility (e.g., 

 

#

 

/EBI) ratio until a budgetary threshold is
reached.

Although simple project selections are used extensively in practice
(Table 1), they can produce solutions that are substantially inferior to the
optimal. Greedy and interchange heuristics are fast methods for finding a
local optimal solution. A common greedy search heuristic starts with an initial
solution, say using method (ii) above. It then swaps selected projects with
unselected projects, iterating through every available pair in the set. The
combination with the highest benefit score (Z) is the solution. The main
disadvantage of the greedy search heuristic is that it converges to the first
local optimal solution, which may still be a long way from the global optimum.

Meta-heuristics overcome the problem of being stuck in local optimal
solutions, and there are a large range of meta-heuristics available. Methods
based on local search that have been applied to the KP include simulated
annealing (Drexl 1988) and tabu search (Hanafi and Freville 1998). Higgins
(2003) applied simulated annealing and tabu search, along with evolutionary
methods such as genetic algorithms (Reeves 1996) and ant systems (Bonabeau

 

et al

 

. 2000). Higgins (2003) performed an extensive comparison between
these meta-heuristics for problems up to 

 

n 

 

=

 

 500 000. The paper showed the
tabu search and ant system meta-heuristics produced the best solutions,
although it did depend on the values set for parameters 

 

p

 

i

 

 and 

 

a

 

i

 

. For a
detailed description of the application of each meta-heuristic to the KP, the
reader is referred to Hanafi and Freville (1998) and Higgins (2003).

 

5. The Auction for Landscape Recovery (Western Australia)

 

The Auction for Landscape Recovery (ALR) is a voluntary land and nature
conservation program for landholders in the wheatbelt agricultural region of
the Avon River basin (Gole 

 

et al

 

. 2005). The auction is one of  a series of
market-based instrument pilots being conducted around Australia (Australian
Government 2002). Rather than prescribe behaviour or technology use,
market-based instruments use price signals to change behaviour to benefit
the environment. They offer the potential to achieve environmental goals at
lower cost to the community and with less disruption to resource users. For
example, Stoneham 

 

et al

 

. (2003) report that a traditional fixed-price scheme
would require a budget seven times greater to achieve the same level of
benefit delivered from the Victorian BushTender conservation auction.
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In the Avon wheatbelt region, there is anecdotal evidence that require-
ments for landholders to match grant funds were limiting participation in
devolved-grant and other cost-sharing environmental programs (Clayton
2004). An auction design, with no restrictions placed upon size of  tender
and the possibility of  full-opportunity cost recovery (including an element
of normal profit), was considered worth testing to encourage landholder
participation and innovation in environmental management.

The ALR was conducted as a simple sealed bid, price discriminating
auction, similar to Victoria’s BushTender program (Stoneham 

 

et al

 

. 2003).
Landholders were encouraged to submit a tender describing their proposed
management activities, anticipated environmental outcomes, and the
remuneration they required to undertake and complete the works (Burton

 

et al

 

. 2004). The tender process was communicated simply as rewarding
those who would deliver the greatest environmental benefit per dollar
funded.

Within the ALR, sufficient data was collected to allow the tenders to be
evaluated in two ways (Huggett 

 

et al

 

. 2004a,b; Gole 

 

et al

 

. 2005). Tender
decisions were based on a consideration of biodiversity complementarity
(Faith 1995) within a ‘systematic conservation planning (SCP) framework’
(Margules and Pressey 2000). This approach selected tenders on the basis of
their contribution to achieving target levels of protection for ecosystem types.
Essentially, the outcomes from this were the solution to a knapsack problem,
with potential complementarity in benefits between tenders.

For the purposes of this paper, with its focus on optimisation rules, the
EBI has been used as the basis for assessing the benefits from each tender
(and not the SCP). As a result of this, and due to some tenders being
screened out by an expert panel (see below), the results generated will not
correspond to the actual selections made in the ALR.

The EBI comprised a ‘biodiversity benefits index’ (BBI), which assessed
native biodiversity values, and an ‘other environmental benefits index’
(OEBI), which assessed salt and water management, soil management, and
other land management activities (e.g., livestock, fire, and pest plants
and animals). These conformed to target environmental goals, outcomes, and
measures defined for the project and consistent with regional goals (Avon
Catchment Council 2004). The attribute categories and data types for
the BBI were largely adapted from site-assessment frameworks used in the
Victorian BushTender trial (Parkes 

 

et al

 

. 2003) and a prototype toolkit for
scoring biodiversity benefits in NSW (Oliver and Parkes 2003). The OEBI was
largely derived from the NSW Liverpool Plains auction trial (DLWC 2002).
Minor adjustments were needed to adapt scores and indices to the condition
and range of vegetation types found within the Avon Catchment, to ensure
consistency with regional goals, and to account for the capacity of field officers
undertaking site assessments (Huggett and Williams 2004). Data to drive the
EBI came from on-site assessments and spatial mapping of  landholder
proposals by the field officers, desk-top spatial analysis of biodiversity and



 

Optimisation and conservation contracts 47

 

© 2007 CSIRO
Journal compilation © 2007 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Ltd

 

land inventory data, and landholder statements of management objectives
and activities submitted with each tender.

The overall design of the EBI used in the ALR program is presented in
Table 2. The BBI utilises four surrogate measures of biodiversity: (i) vegetation
or habitat condition; (ii) vegetation or habitat complexity; (iii) landscape
context; and (iv) conservation significance. A formula adapted from Oliver
and Parkes (2003) calculates a biodiversity significance score and a land use
change impact score and combines these into an overall BBI. The biodiversity
significance score combines and weights conservation significance and land-
scape context, and the land use change impact score combines and weights
conservation significance and vegetation or habitat condition and complexity.
The resulting BBI is a multiplicative combination of the biodiversity signifi-
cance score, the land use change impact score, and a logarithm to base-10
transformation of area in hectares (representing the extent of land use change
resulting from successful implementation of on-ground works contained in a
tender). The extent of  land use change factor effectively weights the BBI.
The OEBI attributes were grouped into two categories – salt, water and soil
management benefits, and other environmental benefits (grazing, fire, weeds,
and feral animals). These were added and a weight of 0.5 applied to the
resulting index. The final EBI was calculated as the sum of the two indices. A
comprehensive description of the attributes, scores, and weights associated
with the calculation of the EBI is given in Gole 

 

et al

 

. (2005).
The auction was conducted over two rounds. The first round closed at the

end of April 2004. Fifty-six bids were received from 38 landholders (some
landholders having bid separately on each of their sites), totalling over 

 

#

 

A1.5
million for a 

 

#

 

A100 000 budget. The auction guidelines encouraged flexibility
in the way landholders designed their bids – incorporating options for single,
multiple, and joint bids (Burton 

 

et al

 

. 2004). If  a landholder submitted
multiple tenders, each corresponding to a different site or different project
activity on the same site, it is possible that more than one could be selected.

Table 2 Summary of attributes and scores used in the environmental benefits index for the
Auction for Landscape Recovery project (Western Australia)

Index Attribute type
Number of 
attributes

Maximum 
score

BBI Vegetation or habitat condition 5 32
Vegetation or habitat complexity 9 48
Landscape context 8 61
Conservation significance 4 34
Area in hectares of land use change 1 n/a

OEBI Salt, water, and soil management benefits 6 35
Other environmental benefits 
(grazing, fire, weeds, and feral animals)

7 44

Note: BBI, biodiversity benefits index; OEBI, other environmental benefits index.
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It was also possible for a landholder to develop alternative projects involving
the same area of land, or identifying higher levels of management requiring
a higher level of  payment. In this case, only one of  the mutually exclusive
tender options would be selected. In recognition that landscape features
could extend beyond individual farm boundaries, joint submissions from
groups of landholders were also encouraged. For example, if  connected areas
of remnant vegetation overlapped different farms, then each landholder
could submit a single tender and identify its association with a joint tender
submitted by a group coordinator. An option existed for landholders
involved in joint bids to also have their farm-tender considered as a single
bid. In this case, the single bid was a subset of the joint bid and would only
be considered if  the joint bid was not selected.

Of the 56 Round 1 tenders, only 54 were included in our evaluation. Two
tenders did not have accompanying EBI scores and these were not included
in the analysis. An additional ‘dummy tender’ was created as a replicate of an
existing tender, but with the tender cost replaced by an estimate of the full
cost of material and labour, resulting in 55 tenders being analysed. The
‘dummy tender’ was selected as providing the most ‘generic’ environmental
outcomes possible, and hence should be replicable across the area. This tender
was used to test whether any of the real bids were being overpriced.

The EBI scores by bid cost for 54 tenders are presented in Figure 1. One
tender is not shown because it is an outlier with a very high bid value
(> #A500 000). This did not prevent it being included in the analysis set.
Most of  the tenders were single, independent bids. Two sets of  multiple
tenders – three in one group and two in another, were mutually exclusive.
Two sets of tenders were flagged as being linked to joint bids, with the option

Figure 1 Environmental benefits index scores by bid value in Australian dollars for 54 round
1 tenders in the Auction for Landscape Recovery (Western Australia).
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of being included as single bids. These single and joint bids were mutually
exclusive. Other multiple tenders were independent (i.e., different sites and/or
different activities on sites) and were treated as single tenders.

Before evaluation, the tenders were assessed for feasibility by an independent
reference group comprising scientists, land managers, and landholders. The
management actions proposed by some landholders were not considered
feasible or were deficient in explanation and therefore would not satisfy the
requirements of a management contract if  selected. The review process
reduced the set of tenders for evaluation to 32. For benchmarking purposes,
the full set of 55 tenders were evaluated and compared with the results from
the feasible set of 32 tenders.

6. Performance of purchasing strategies

In the present study, we re-examined the data for the n = 32 and n = 55
instances of the Western Australian Auction for Landscape Recovery case
study. Solutions were found using the following methods: (i) fund in
descending order of  the environmental benefits score until a budgetary
threshold is reached; (ii) fund in ascending order of a cost to utility (#/EBI)
ratio until a budgetary threshold is reached; (iii) greedy search algorithm; (iv)
tabu search meta-heuristic; and (v) optimal using a commercial software package
GAMS OSL 3 (Brooke et al. 1988), based on linear relaxation.

For both instances of the case study, a budget ceiling of #A100 000 was used.
Table 3 contains the total EBI under each method (and the percentage of the
maximum EBI achieved by each method) and Table 4 shows the unallocated
funds. The last column is in the case where there was mutual exclusiveness
between some sets of  projects. Mutual exclusiveness between projects is
represented by the following additional constraints:

(4)

where Ej is the jth set of mutually exclusive projects.

Table 3 Total environmental benefits index of projects selected using each of the methods†

Solution method n = 32 instance n = 55 instance
n = 55 instance with mutual 

exclusiveness between projects

i 72 619.0 (96.5) 79 225.0 (77.6) 87 531.1 (92.9)
ii 75 030.8 (99.7) 101 805.9 (99.7) 90 798.8 (96.4)
iii 75 222.7 (100) 102 010.1 (99.9) 90 798.8 (96.4)
iv 75 222.7 (100) 102 153.6 (100) 94 170.4 (100)
v 75 222.7 (100) 102 153.6 (100) 94 170.4 (100)

Note: †The percentage of maximum achievable benefits reported in parentheses.

   x ji
i E j∈
∑ = ∀1
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The most noticeable effect in Table 3 was the gain in EBI when using methods
recognised for combinatorial optimisation (iii, iv, and v) versus simple heuristic
rules commonly used in practice (i and ii). The method based on descending
order of environmental benefits, method (i), performed the worst and for n
= 55, produced a total EBI slightly more than 75 per cent of the optimal EBI.
The method based on ascending order of  cost utility, method (ii), produced
a solution with up to about 5 per cent less total EBI compared with the
optimal. For the two small instances in Table 3, the tabu search was able to find
the optimal solution. When the optimal solution was found, there was minimal
budget remaining (Table 4), compared with the methods that produced
solutions far from optimal. Given that the optimal solution was found (using
GAMS) within 1 second of CPU time, the application of a meta-heuristic
may be considered unnecessary for the Western Australia case study.
However, meta-heuristics will handle more readily additional complexities
than optimal solution methods in large instances, such as the EBI of projects
being co-dependent.

When mutual exclusiveness was incorporated into the n = 55 instance,
method (ii) was further away from the optimal than without mutual exclu-
siveness (third column of Table 3). Furthermore, the relatively simple greedy
search heuristic (iii) was unable to improve upon the benefit-to-cost ratio
ranking (ii) with the decision rules. This highlights the value of improved
solution methods for combinatorial optimisation (methods iv and v) when
further complexities are added to the model formulation.

7. Discussion

The results presented above show that considerable efficiency gains were
possible by applying improved optimisation algorithms. By progressing upwards
through methods (i) to (v), the environmental benefit was significantly
increased without crossing the budget threshold. The six environmental
programs reviewed in this study, in practice, have employed method (i), and
in fewer cases (ii), although the ALR, in its on-ground implementation, used

Table 4. Unallocated funds (A#)†

Solution method
n = 32 

instances
n = 55 

instances

n = 55 
instances with mutual 

exclusiveness between projects

i 178 598 875
ii 2095 1005 8325
iii 295 555 8325
iv 295 5 75
v 295 5 75

Note: †Total budget was #A100 000. We note that, for these data, when the optimal solution was found,
there was minimal budget remaining. However, this is not a general property of optimal solutions.
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a form of (iii), with benefits not defined by an EBI. If  the decision-maker’s
objective is to maximise benefits and staying within budget these are not the
best approaches.

Although GAMS determined the true optimal solution using method (v),
this may not always be possible. If the number of projects is large, or there are
additional rules (e.g., mutual exclusiveness rules) or several bid interdepend-
encies, then standard computers may not produce a result within a reasonable
time frame. This means a true optimal solution may be unavailable and a heur-
istic will be required (iii or iv). In the Western Australian case, the meta-heuristic
produced the same result as the GAMS optimal solution, adding to the confid-
ence in its application where problem complexity prevents true optimisation.

The losses, in percentage terms, from using a suboptimal solution will
depend on the size of individual tenders relative to the overall budget. The
maximum possible increase in total EBI that could be achieved under the
more complex algorithms is given by the ratio of the residual budget generated
by method (ii) to the cost-to-utility ratio of the marginal tender under
method (ii). Thus, the existence of a number of ‘small’ tenders in the ranked
list around the budget constraint will mean there is a relatively small residual
budget, and hence, a small potential gain. Conversely, the identification of
the true optimal set of tenders using the proposed advanced algorithms will
be particularly important in cases where the selected set will comprise a small
number of expensive projects.

In practice, decision-makers are likely to have additional objectives that
introduce further constraints and interdependencies. For example, the New
South Wales Environmental Services Scheme required selection of projects that
were representative of multiple agricultural industries and all regions. In other
words, an even or equitable spread of funding was required. The introduction of
these requirements need not necessarily lead to the abandonment of improved
optimisation algorithms. They can be handled by introducing constraints, for
example, select n projects from region Y and m projects from region X.

It is possible that improved optimisation algorithms are not used in practice
due to their complexity. Although it is relatively easy to justify project
selection on the basis of methods (i) or (ii), it will be much more difficult to
explain methods (iii), (iv), and (v) to stakeholders. For example, a project
proponent will find it difficult to understand why their project was not
funded if  it obtained a higher benefit score than a funded project. Therefore,
the use of suboptimal project selection procedures might be justified based
on perceptions that these provide better reflections of transparency, account-
ability, and auditability.

Perhaps another reason why algorithms are not used is the failure of pro-
gram designers to frame the purchasing strategy as an optimisation problem.
With some exceptions, environmental programs are often not explicit about the
program’s aim to maximise the benefits score subject to a budget constraint.
Sometimes program managers have flexibility over the budget, and are able
to allocate more funds if  a particularly beneficial set of projects is proposed.
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Nonetheless, at some point a budgetary allocation is fixed and funds limit
project selection. Therefore, it will be appropriate to structure the problem as
an optimisation KP problem. However, as the projects’ benefits scores
become more sophisticated, and interdependency between bids occurs, then
the KP problem also becomes more complex.

Optimisation decisions are made more difficult when interdependencies are
present. For example, Barton et al. (2003) describe a regional trade-offs
framework for targeting payments to private landholders for biodiversity
conservation in Costa Rica. They used a heuristic selection algorithm to
incorporate complementarity values and highlighted gains in efficiency relative
to conventional scoring approaches.

The discussion about the relative merits of optimal versus heuristic methods
parallels the general debate about methods for reserve selection. These
methods often consider biodiversity complementarity, and involve some
consideration of  ‘costs’. Faith (1995) describes general approaches linked
to multicriteria analyses, whereas Church et al. (1996) identify the ‘maximal
covering location problem’, which tries to maximise the conservation benefit
of a reserve system given some maximum number of sites.

The issue of  optimality and heuristics was raised early in systematic
conservation planning (e.g., Underhill 1994; Pressey et al. 1996). Recently,
Moore et al. (2003) argued that, for their reserve selection case study, there
was no time penalty in using optimal methods. But time considerations have
been critical in many other studies. For example, Church et al. (1996), who
interpreted the selection of  a set of  conservation management areas as a
multi-dimensional knapsack problem, observed that even moderately sized
problems required ‘an inordinate amount of computer time’ to solve optimally.
Consequently, they focused on the design of robust heuristics. Similarly,
Sarkar et al. (2004) found little reason to prefer optimal to heuristic area-
selection algorithms for their probabilistic data sets. For their large data sets,
the optimal algorithms often required long computation times and produced
no better results than the heuristic ones.

Pressey et al. (1996), in response to Underhill (1994), argued that ‘subopti-
mality is not necessarily a disadvantage for many real-world applications’
and that the criteria for judging utility of  methods must be broader than
simple mathematical optimality. One related issue in the present context
is the degree of  doubt about values of  EBI (see Huggett et al. 2004a,b).
The large confidence intervals for EBI scores may mean that little is gained
by small increments in apparent optimality (see Table 3). Given such doubts
about the data and indices, some workers (Cowling et al. 2003) have suggested
that expert opinion may match the quantification of algorithms.

Another consideration in addressing uncertainties is that, in practice, the
selected set of places may never be implemented as a whole. Thus, selecting
the optimal set may be less important than flexibility, and finding ways to
schedule selections in response to changing constraints (e.g., see the dynamic
selection work of Drechsler 2005). Faith et al. (2003, p. 13) argued:
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In spite of a decade or more of work on reserve selection methods, no
complete set of areas produced by such computer algorithms, to our
knowledge, has been implemented anywhere in real-world regional
biodiversity planning. Yet much effort now is going into computational
algorithms (e.g. Rodrigues and Gaston 2002) to incorporate additional
constraints and to better estimate sets of  areas corresponding to a
“global optimum”. . . . Alternative directions for research and applications
may link complementarity values to economic instruments, through
(1) scenarios analyses that focus more on the fate of individual areas
than whole-sets, or (2) what we will call “policy-based” algorithms, that
do address strategies for selecting whole-sets of areas, but over the life
of a government conservation policy.

The consideration of biodiversity complementarity (where the value of a
place depends on what else is selected) suggests that this will remain a
challenging area for future research.

8. Conclusion

It can be concluded that many large environmental programs could deliver
improved outcomes while meeting budget constraints merely by using
improved optimisation algorithms in project selection. The reasons for the
use of suboptimal project selection procedures might include the difficulty of
explaining advanced algorithms to project proponents and a failure to frame
the purchasing strategy as an optimisation problem. The consequences are
lower levels of environmental services than could otherwise be attained. This
suggests that future research is needed to develop means by which complex
optimisation algorithms can be more easily accessed and understood by
decision-makers and stakeholders.

The implication for policy makers who design and implement environmental
programs based on competitive tendering for conservation contracts is that
the initial proper structuring of the decision problem is essential. By structuring
the decision task as an optimisation problem, subject to financial and non-
financial constraints, and applying appropriate algorithms it is more likely
that a greater return on public environmental investment will occur. This is
particularly important in a policy arena where funds can be limiting.
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