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Abstract 

Effects on growth of environmental policy in a small open economy  

This paper examines the effect of environmental policy on economic growth 

in a small open economy in a neoclassical framework with pollution as an 

input. We show that environmental policy imposes a drag on long run growth 

in both the open and closed economy cases. The effect of environmental 

policy on growth is stronger in the open economy case relative to the closed 

economy model if the country has strong aversion to pollution and thus serves 

as a net exporter of capital in the international capital market. On the other 

hand, if the agents in the economy have low aversion to pollution and thus 

import capital, the effect of environmental care on growth is stronger in the 

closed economy relative to the open economy. Thus, from our set-up, 

environmental policy is harmful to growth but environmental sustainability 

need not be incompatible with continued economic growth.  

 

JEL Classification O40, O41, Q56 

 

Key words: Economic growth, Pollution tax, Capital-output ratio, Open  

      economy, Capital flight  
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Effects on growth of environmental policy in a small open economy  

 

 

1. Introduction 

The pollution haven hypothesis (PHH) is one of the most contentious and 

hotly debated predictions in all of international environmental economics. The 

central prediction of the PHH is that liberalized trade in goods will lead to the 

relocation of pollution intensive production from high income and stringent 

environmental regulation countries to low income and lax environmental 

regulation countries. 

 

The existing literature on the pollution haven hypothesis can be divided into 

two: theoretical and empirical studies on inter-country trade flows (Copeland 

and Taylor, 1994, 2003; Levinson and Taylor, 2008) and studies (mainly 

empirical) on plant and industrial location (foreign direct investment) 

decisions (Kalamova and Johnstone, 2011; Javorcik and Wei, 2004; List and 

Co, 2000). In the studies that focus on regulatory stringency and trade flows, 

the conclusions seem to back the existence of pollution haven effect. For 

instance Levinson and Taylor (2008), Copeland and Taylor (2004), 

Brunnermeier and Levinson (2004) and Ederington and Minier (2003) all 

found that environmental policy has a significant impact on trade flows that is 

consistent with the pollution haven hypothesis, after using slightly different 

methodologies. 

 

In this paper, we will theoretically analyze how environmental preferences 

influence the decision to invest abroad and at home, respectively. Thus, more 

relevant to the present paper is a strand within the PHH literature that focuses 

on the role of capital mobility, in the form of foreign direct investment. 

Millimet and List (2004) find that the impacts of environmental policy on 
                                                                 

 I thank Clas Eriksson (Associate Professor of Economics, Mälardalen University College) 

for very helpful comments and suggestions on earlier drafts of the paper. I also benefited from 

the comments from the participants of the 17
th

 Ulvon Conference (June 2010) Umeå, Sweden; 

4
th

 Atlantic Workshop on Environmental and Energy Economics, Vigo, Spain (July 2010) as 

well as seminar part icipants at the Department of Economics, SLU, Uppsala and 

Macroeconomics Group at the Department of Economics, Uppsala University. 


 Environmental and Resource Economics Unit, Department of Economics, Swedish 

University of Agricultural Sciences, P.O. Box 7013, SE-75007, Uppsala, Sweden  

Email: George.Adu@ekon.slu.se 
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industry location depend crucially on heterogeneity of location-specific 

attributes. List and Co (2000) suggest that stringer environmental regulation 

does influence negatively the location decisions of inward FDI in the US. 

Keller and Levinson (2002), however, find a less robust evidence of the 

pollution haven effect at the industry level. Xing and Kolstad (2002) find that 

US outbound flows move significantly to host countries with more lax 

environmental regulations in the heavily polluting industries; this result is not 

valid for less polluting industries. The industry- level evidence shows that 

environmental regulation can influence negatively the location decision of a 

specific industry, while having no effect on another polluting industry (e.g. 

Keller and Levinson (2007), Henderson and Millimet (2007), Waldkirch and 

Gopinath (2008)). 

 

There are only a few papers using FDI data to study pollution havens at the 

global level. Javorcik and Wei (2004) study the determinants of actual and 

planned investment by 534 major multinational firms in Central and Eastern 

Europe and in the former Soviet Union. They find no robust support for the 

pollution-haven hypothesis. The theoretical model of Eskeland and Harrison 

(2003) shows that, depending on possible complementarities between capital 

and pollution abatement, environmental regulation can lead to an increase or a 

decline in investment in both the host (developing) country and the originating 

(developed) country. In their empirical analysis they find some evidence that 

foreign investors are concentrated in sectors with high levels of air pollution in 

Mexico, Venezuela, Morocco and Ivory Coast, although the evidence is weak. 

In their recent study, Kalamova and Johnstone (2011) established two major 

results regarding the effect of stringent environmental policy and FDI flows. 

First, they show that a relatively lax policy in the host country has a positive 

(although small) effect on incoming FDI flows in both developed and 

developing countries. However, this effect tends to exhibit an inverse U-shape, 

and thus reverses below a certain level of environmental stringency in the 

sample of non-OECD host countries. Thus, once the environmental regime of 

a host country becomes too lax, this country loses its attractiveness as an FDI 

location. 
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To back the empirical literature linking environmental regulation to FDI 

flows, we undertake a cursory examination of the pattern of FDI flows in 2010 

against some measure of environmental regulatory standards for a cross 

section of 163 countries.  

 

Figure 1.  Ratio of Outward FDI Flows to GDP versus EPI Score  
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Figure 2. Ratio of Inward FDI Flows to GDP versus EPI Score 

30 40 50 60 70 80 90

0.0
0.1

0.2
0.3

0.4
0.5

EPI SCORE

RA
TI

O 
OF

 IN
W

AR
D 

FD
I F

LO
W

S 
TO

 G
DP

 



4 

 

Our main measure of environmental policy stringency is the environmental 

performance index (EPI)1 score. Our preliminary examinations of the data 

reveal the relationship presented in Figures 1 and 2 in which we plot the ratio 

of outward and inward FDI flows to GDP respectively against the EPI score. 

The revelation is that the EPI score is inversely related to inward FDI flows 

expressed as a ratio to GDP while the relationship is positive for outward 

flows also expressed as a ratio to GDP. The observed relationship in the data 

have the implication that inward (outward) FDI flows are higher in countries 

with lower (higher) EPI score and thus lends support to the pollution haven 

hypothesis. We do not push this far as this is only a pair of bivariate plots and 

the observed relationship may change as we allow for more contro ls, but 

together with the reviewed literature above it gives a reason enough for a 

theoretical investigation of the relation between preferred environmental 

policy and international capital flows.  

 

This paper complements the existing theoretical literature  on the PHH 

phenomenon. In particular, we extend the basic static multi-sector trade 

models in the previous literature (e.g. Copeland and Taylor 1994; 2003)  into a 

dynamic model. To do this in a simplified framework, we use a one-sector 

aggregated growth model with pollution, similar to Brock (1977)2, which 

allows for international capital flows.  In the previous literature, a higher 

demand for environmental quality forces (some of) the dirty production sector 

abroad. In this paper, a high demand for environmental quality directs savings 

away from polluting domestic production investments to investments on the 

“clean” (from the small country‟s perspective) international capital markets. 

The model contains only one physical kind of good, but foreigners can buy 

domestic output and domestic residents can buy foreign output. The function 

                                                                 
1
 The 2010 Environmental Performance Index (EPI) ranks 163 countries on 25 performance 

indicators tracked across ten policy categories covering both environmental public health and 

ecosystem vitality. These indicators provide a gauge at a national government scale of how 

close countries are to establish governmental policy goals. The EPI‟s proximity -to-target 

methodology facilitates cross -country comparisons as well as analysis of how the global 

community is doing collectively on each particular policy issue. Source: Yale Center for 

Environmental Law & Policy (http://epi.yale.edu/Countries)  
2
 See also Keeler, Spence and Zeckhauser, 1971; Forster, 1973; Gruver, 1976; Brock, 1977; 

Becker, 1982; Musu, 1989; Tahvonen and Kuuluvainen, 1993;  van der Ploeg and Withagen, 

1991; Selden and Song, 1995, for similar studies. However, none of these studies allows fo r 

international capital flows. 

http://epi.yale.edu/Countries
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of international (and inter-temporal) trade in our model is to allow domestic 

production to diverge from domestic expenditure on consumption and 

investment. Thus we consider the intertemporal aspects of international trade 

but neglect the implications for patterns of inter-sectoral specialization and 

comparative advantage in production. The latter case is well addressed in the 

previous literature (see for instance Copeland and Taylor, 2003; Levinson and 

Taylor, 2008). 

 

The objective of this paper is to examine the effect of optimal environmental 

pollution on economic growth in a small open economy in which pollution 

serves as an input. The idea of modelling pollution as serving as an input in 

the production function is not novel; see for instance Brock (1977) and Becker 

(1980). Copeland and Taylor (1994; 2003) suggest a formal motivation for this 

approach. The novelty of this paper is its extension of the basic model to a 

small open economy in which capital can flow across national borders and the 

complementary explanation of the pollution haven hypothesis that it offers. 

The central question that this paper answers is: what determines whether a 

country imports capital (and thereby hosts considerable volumes of polluting 

production) or exports capital (leaving considerable part of polluting 

production to the rest of the world)? In addition to this, we examine how the 

preference for a clean environment (environmental policy) influences national 

income and its growth rate.  

 

To ensure that the economy‟s intertemporal budget constraint binds, we 

assume that the parameters are such that both the capital stock and aggregate 

consumption grow at rates lower than the world interest rate. This will ensure 

that there is no Ponzi game with respect to foreign debt. In order for our 

hypothetical economy to stay “small” as time runs, we assume that the growth 

rates of consumption and the capital stock are lower than the growth rate of 

the rest of the world. This assumption requires that our hypothetical economy 

has high preference for environmental quality relative to the rest of the world.  

 

Our analysis reveals the following conclusions. Within our framework we 

show that it is not changes in comparative advantage due to differences in 
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environmental policy per se that generates the pollution havens, but the fact 

that the environmental quality is a normal good. Environmental care imposes a 

drag on long run economic growth, by increasing the capital-output ratio and 

lowering the returns to capital. Furthermore, our analysis shows that the drag 

that the demand for environmental quality imposes on growth is larger in the 

open economy if and only if consumption grows faster than the capital stock. 

In the reverse case where the capital stock grows faster than consumption, the 

drag is smaller in the open economy case relative to the closed economy.  

 

Our analysis of the open economy case also reveals that whilst the growth 

rates of consumption, output, the capital stock and pollution are constant, there 

are three possible qualitative scenarios with respect to the debt depending on 

the relation between the growth rates of consumption and the capital stock. 

First, we considered a benchmark scenario in which consumption and capital 

grow at a common rate. Under this scenario, we show that the debt and capital 

stock grow at a common rate and hence the debt-capital ratio is constant at all 

points in time. The implication of this is that the history of the debt and the 

capital stock puts a constraint on the initial consumption level. We show that a 

country which has had a history of generous lending will benefit from it 

twofold. It can afford to choose a high consumption path and also have a 

considerable share of its income from the international capital market, which 

does not cause any negative pollution effect on this country. In the second case 

where consumption grows faster than the capital stock, we show that the small 

open economy eventually exports capital (negative debt) to the rest of the 

world by accumulating assets abroad over time. This process is faster if the 

elasticity of marginal disutility of pollution is high relative to the rest of the 

world so that it has higher drag on (production) growth. As a final scenario, 

we considered the opposite scenario where the capital stock grows faster than 

consumption. In this case we show that the economy imports capital due to the 

low aversion to pollution, and thus accumulate debt. To summarize, we show 

that a high demand for environmental quality in our small open economy is 

found to induce capital flight to countries with lower demand for 

environmental quality. This result offers an alternative restatement of the 

pollution haven hypothesis.  
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The remainder of this paper is organised as follows: Section 2 sets up the basic 

open economy growth model in which pollution augments the primary inputs 

(man-made capital and labour) in the production process. The model solution 

and its implication for long run growth are discussed in Section 3. Section 4 

modifies our basic model of Section 2 and Section 3 to a closed economy 

model with optimal policy and also compares the results in the open economy 

with the closed economy outcome. Section 5 concludes the paper. All the 

analyses in the paper are based on command optimal solution. The 

decentralized solution is presented in the appendix and the equivalence 

between command optimum and the decentralized solution is established 

therein. 

 

2.     The Basic Model 

Even though we will provide the solution to a central-planner problem, the 

model is here presented in a typical decentralized economy style. The purpose 

is that it will be useful for the brief description of the decentralized solution in 

the appendix. Besides, the decentralized expressions are easily transformed to 

the “planner expressions”, while it is more difficult to go the other way 

around. 

 

Our setup begins with an open economy neoclassical- type model with 

environmental concern. The role of government is limited to taxing polluting 

firms, and redistributing the proceeds to households as a way of internalizing 

(and compensating for) externalities generated through production. We thus 

abstract from government purchases; only households and firms interact at the 

market place. The behaviour of firms and households in this model economy 

are described below.   

 

2.1 Firms  

The firms produce goods with effective labour ( )LT , capital ( )K and 

pollution ( )Z , according to a Cobb-Douglas production function, which 
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exhibits constant returns to scale in its three arguments. The production 

function takes the form of equation (1).3 

  1( ) ( ), ( ), ( ) ( ) ( ) ( ) ( ( ) ( ))Y t K t Z t L t T t K t Z t L t T t     .              (1) 

Here Y(t) is the flow of output at time t, and all other variables are as defined 

already. The index of technological progress, T, is assumed to grow 

exogenously at the rate x. Raw labour, L, grows at the exogenous rate, n.  

 

Firms are atomistic and pay each input its marginal contribution to output. The 

problem facing a representative firm then is to maximize profits given by 

equation (2). We set up the maximization problem in terms of aggregate 

variables, which, given the representative firm, is without any loss of 

generality. Output price has been normalized at unity and the representative 

firm faces both competitive factor markets and product market. The profit 

function is: 

1( )K Z LT RK wL Z         ,                                                             (2) 

where R  is the rental price of capital services, w  is the real wage and   is the 

tax per unit of pollution.  

 

Profit maximization requires that the conditions given by equations (3)-(5) are 

fulfilled. 

( )
( )

( )

Y t
R t

K t
                   (3) 

( ) ( )
( ) ( )

( ) ( )

Y t Y t
t Z t

Z t t
  


                   (4) 

( )
(1 ) ( )

( )

Y t
w t

L t
                     (5) 

                                                                 
3 The idea behind this formulation is that “techniques of production are less costly in terms of capital inputs if more 
pollution is allowed”. To give the rational for augmenting the aggregate production function as an input in a more 
formal way, suppose that gross output is produce with capital and effective labour and takes the following general 

form ( , )Y F K LT .  Suppose further that pollution is proportional to gross output according to the relation 

( )Z f Y  .A constant fraction of the gross output  is used as input for abatement. This leaves a net out Put of 

(1 )Y Y  which is available for consumption, investment and export. Assume that  1/
( ) 1f


   , where 0 1  . 

This implies that   1/(1 ) ( , ) 1 ( , )Z F K LT Z F K LT
  

    .  This and the expression for net output gives 

 1( , )Y Z F K LT
 

 , which is constant returns in Z, K and L  and can conveniently be written in the form of (1) as 

above without loss of generality.
 
For a motivation of having Z as an input, see Chapter two of Copeland and Taylor 

(2003).   
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Equation (3) is the derivative of the profit function with respect to capital. This 

condition states that the firm‟s optimal choice of capital equates the value of 

the marginal product of capital to the rental rate of capital. Equation (4) is the 

optimality condition with respect to pollution: the firm sets the value of the 

marginal product of pollution equal to the tax rate. Since the marginal product 

of pollution is decreasing in the levels of emissions, a low tax rate will induce 

high pollution. Note that the pollution tax payment, /Z Y  , is a constant 

share of the produced value, irrespective of the tax rate,  .  The optimality 

condition with respect to labour input is given in (5): the firm sets the value of 

the marginal product of labour equal to the wage rate.  

 

We now follow some implications that will occur frequently in this paper. 

First, defining the capital-output ratio, /v K Y and using r R   , where r 

is the market interest rate4, equation (3) can be re written as  

r
v


   or 

1 r

v






                  (6) 

Note that the capital-output ratio is an inverse measure of the average 

productivity of capital. From equation (6), it is clear that the net rate of return 

on capital is inversely related to the capital-output ratio. This is as expected: 

an increase in the net rate of return to capital means high cost of capital and 

hence lowers demand for capital since capital exhibits diminishing marginal 

returns.  

 

From equation (1) we derive another implication that will be used frequently 

below, namely, the proportional growth rate of aggregate output is  

(1 )( )
Y K Z

n x
Y K Z

         .                (7)
 

Furthermore by the optimality condition in equation (4), the growth rate of 

pollution satisfies the expression in (8).     

                                                                 
4
 Here, r(t) is the net rate of return; R(t) is the gross return on capital and  is the rate of 

depreciation of capital. The reason why this relationship holds among these variables is that in 

the absence of uncertainty, capital and loans are perfect substitutes as stores of value and, as a 

result, they must deliver the same return in equilibrium (Barro and Sala-i-Martin, 2004). 
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Z Y

Z Y




                    (8) 

According to equation (8), the growth rate of pollution is the difference 

between the growth rates of two variables: aggregate output and the 

environmental tax rate. Pollution is constant if the growth rates of these two 

variables are equal. However, if output grows faster than the environmental 

tax rate, pollution will increase over time: because the higher Y raises the 

marginal product of pollution. On the contrary, an ambitious environmental 

policy that allows the tax rate to grow faster than production will make 

pollution decline over time. 

 

Another useful implication from the firm side is obtained by substituting 

equation (8) into (7). The growth rate of aggregate output is then rewritten as 

equation (9). 

1
(1 )( )

1

Y K
n x

Y K


   

 

 
      

  
               (9) 

One can quickly see the effect of the growth in the environmental tax on 

economic growth from equation (9). The growth rate of the tax term enters the 

expression for the growth rate of aggregate production negatively. This 

suggests that the environmental tax exerts a drag on long run growth. We take 

up the detailed analysis of this in Sections 3 and 4 of this paper.  

 

A final useful implication from the firm side is obtained by taking the 

derivative of the log of equation (5). This gives: 

w y Y
n

w y Y
                  (10) 

According to equation (10), the wage and per capita income grow at the same 

rate, which is equal to the growth rate of GDP less the population growth rate. 

Equations (6), (8), (9) and (10) together with the optimality conditions (3)-(5) 

will play key role in the derivations in the rest of the paper and we shall 

frequently make references back to them. 
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2.2 Households 

We begin by considering an infinite-horizon economy and suppose that the 

economy admits a normative representative household with the instantaneous 

utility function 

1 1( / ) 1
( / , ) ,

1 1

C L Z
u C L Z

 


 

 
 

 
 0  , 0  , 0  .            (11) 

The utility function is additively separable in the level of consumption per 

person C/L and the level of pollution. The parameter is the weight of the 

disutility of pollution,   is the elasticity of marginal utility of consumption5 

and   is the elasticity of marginal disutility of pollution. The instantaneous 

utility function is twice continuously differentiable in both of its arguments 

and strictly concave in C/L and strictly convex in Z.  

 

Households are atomistic and take prices in both the output and factor markets 

as given. Each individual owns one unit of labour which he supplies 

inelastically at any wage rate. The household receives a lump-sum transfer 

( )t  from the government as a compensation for the deterioration in 

environmental quality, due to activities of firms in period t. There are negative 

externalities in the form of environmental pollution but the single household 

cannot influence that. Households use income that they do not consume to 

accumulate more assets according to the following dynamic equation 

( ) ( ) ( ) ( ) ( ) ( ) ( )A t r t A t w t L t t C t    .              (12) 

Here ( ) ( ) /A t dA t dt is the change in households‟ asset at time t, A(t) is the 

total households assets at time t, C(t) is the aggregate household consumption 

at time t. All other variables are as defined already. To develop equation (12), 

we first assume that the government balances the budget in each period so that 

the budget constraint is given by 

Z  ,                (13) 

 where Z is the total revenue from environmental taxation.   

We now take the economy‟s international affairs into account, by introducing, 

D for the international debt. The international debt corresponds to foreign 

                                                                 
5
  In this paper we assume 1  as these values of   has empirical support (see:  Hall, 1988; 

Hahm, 1998; Gali, 2008; Jones, 2009).  
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claims on the domestic economy. However, if households assets holdings 

exceeds the capital stock (a negative D), domestic residents have claims on the 

rest of the world and hence accumulate assets abroad. This means that the 

assets of this open economy are A=K-D, and thus A K D  . Equation (12) 

can therefore be rewritten as equation (14). 

K D rK wL Z rD C                    (14) 

Using now R r   , the optimality conditions in (3)-(5) and the 

government‟s budget constrain in  (13), equation (14) simplifies to  

K K Y D rD C     .               (15) 

Equation (15) is the constraint on aggregate resources in the open economy. 

The aggregate resource constraint in (15) can be disaggregated into two sub 

constraints: debt and capital accumulation constraints. The change in the 

foreign debt at any point in time is the difference between domestic absorption 

and domestic production (GDP). That is; 

D C I rD Y    .               (16) 

The debt grows if domestic absorption is higher than production in that period. 

The first constraint in (19) is the equation of motion for foreign debt. 

According to this constraint, the change in foreign debt at any point in time is 

the sum of consumption, investment and interest payments on debt less 

production in that period (change in the current account deficit). The world 

interest rate, r is taken as given by our small open economy.  

 

The constraint on capital accumulation satisfies: 

K I K  .                (17) 

According to equation (17), gross investment covers replacement investment 

and capital expansion. The capital stock grows over time if gross investment 

more than offset gross depreciation.  

 

A brief refresher in national income accounting identities and definitions may 

be useful at this point. The gross domestic product (GDP) is the total money 

value of all final goods and services produced in an economy over a period of 

time, usually one year. Mathematically, GDP= C+I+NX, where NX is net 

exports (exports- imports). GNP is the total money value of all final goods and 
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services produced with inputs owned by the citizens of a given economy, 

irrespective of the physical location of the inputs. We obtain the GNP by 

adding the current account balance (negative of the change in the foreign debt 

over time) to the GDP. In our case, the mathematical expression for GNP is; 

GNP=GDP-rD. We show later how the international capital market can be 

used to compensate for a decline in GDP due to environmental policy for a 

country that is a net lender in the international capital market.  

 

 

3.       The social planner’s problem 

In the growth literature, it has been established that the command optimal 

allocation and the decentralized equilibrium allocation are equivalent, if 

externalities are properly internalized. By assuming an optimal policy that 

fully internalized the pollution externality right away, we exploit this 

equivalence here and thus will only solve the command optimal allocations in 

both the open and closed versions of the model (See appendix A and B for the 

solution to the decentralized allocation).  

 

 

3.1 The problem and first-order conditions  

The problem facing a benevolent social planner is to maximize the discounted 

sum of utility of the representative household over all periods. Thus, the social 

planner maximizes 

1 1
( )

0

( / ) 1

1 1

n t C L Z
e dt

 
 

 

  
   

 
  

 ,              (18) 

subject to 0(0)D D , 0(0)K K  and; 

D C I rD Y     and K I K                 (19) 

Here;   is the subjective rate of time preference.  

 

The current value Hamiltonian for the command optimal allocation problem 

is: 

1 1( / )
( / , , , , , ) ( ) ( )

1 1

C L Z
H C L Z K D q C I rD Y q I K

 

   
 

 

       
 

(20) 
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The shadow prices (costate variables) on the equation of motion of the foreign 

debt and the capital accumulation equation in (19) are   and q  respectively. 

The shadow price of debt accumulation is expected to be negative as adding 

more debt reduces future utility. The planner‟s choice of consumption, 

investment and pollution that maximize the discounted sum of utility for the 

representative household satisfies the following optimality conditions.  

10
H

C L
C

  
   


               (21) 

0
H

q
I




   


               (22) 

0
H Y

Z
Z Z

 


   


               (23) 

( )n r




                  (24) 

/
q

n v
q

                     (25) 

( )lim ( ) ( ) 0n t

t t D t e   

                 (26) 

( )lim ( ) ( ) 0n t

t q t K t e  

                 (27) 

Equations (21)-(23) are the optimality conditions with respect to consumption, 

investment and pollution. The rates of change of the shadow prices satisfy 

equations (24) and (25). It is not hard to see that the shadow prices grow at the 

same rate. This is necessary for condition (22) to hold in all periods: the 

absolute values of the shadow prices are equal in all periods only if they have 

an equal growth rate. By (22), not only are the growth rates of the co-state 

variables equal, but also their initial (absolute) values; hence (0) (0)q  . 

Equations (26) and (27) are the transversality conditions for the debt and 

capital stock respectively. 

 

By (22) we have / /q q   . This, (24) and (25) imply the following steady 

state value for the capital-output ratio in the open economy model.  

*

1 r

v






                 (28) 

Recall that by the small open economy assumption, r is constant. Hence, the 

capital-output ratio goes to its steady state value instantly, due to the rapid 
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capital flows that equate the international and domestic interest rates. The 

steady state capital-output ratio decreases in the exogenous world interest rate 

and the rate of depreciation, but increases in the elasticity of output with 

respect to the capital stock. These results are quite plausible. A high world 

interest rate encourages investments abroad just as a high rate of depreciation 

will. This holds capital accumulation back and therefore the capital-output 

ratio falls. On the other hand, higher elasticity of output with respect to capital 

makes firms demand more capital for a given level of output.  

 

To develop some implications of the above conditions, we start by taking logs 

of equation (21), differentiating it with respect to time, and using the equation 

of motion for the costate variable in (24) and the steady state expression for 

the capital-output ratio in equation (28).  We then obtain the consumption 

Euler‟s equation.  

 
1C

r n
C




   .                 (29) 

Remarkably, the consumption growth rate is constant from time zero on, 

because the world interest rate is constant. The growth rate of aggregate 

consumption is positive if and only if r n   . Per capita consumption 

grows if and only if r  , as usual. We will assume this latter inequality 

holds from here onwards. As in the standard neoclassical model, the 

consumption growth rate increases with the world interest rate and population 

growth rate but decreases with the subjective rate of time preference and the 

elasticity of marginal utility of consumption.  

 

Another useful implication of the necessary conditions concerns pollution. The 

time derivative of (23) combined with (24) yields the optimal growth rate of 

pollution as 

1

1

Z Y
n r

Z Y




 
    

  
.               (30) 

This expression says that the socially optimal growth rate of pollution 

increases with the growth rate of the shadow cost of the debt and the growth 

rate of aggregate production but decreases in the elasticity of marginal 
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disutility of pollution. This is quite intuitive: as the growth rate of the shadow 

cost of the debt increases, the planner increases domestic production to reduce 

the imports of consumables. A high growth rate of production will require 

more of every input including pollution. On the other hand, a higher elasticity 

of marginal disutility of pollution raises the social cost of pollution and thus 

causes a reduction in the socially optimal emissions growth rate.  

 

Turning to the transversality conditions, we first integrate equations (24) and 

(25) to obtain the following time paths for the shadow cost of the debt and the 

shadow price of capital respectively: 

 ( )( ) (0) n r tt e                  and              ( )( ) (0) n r tq t q e   .                       (31) 

Combining equation (31) with the transversality conditions in (26) and (27), 

we obtain the following conditions that hold along an optimal path.  

lim (0) ( ) 0rt

t e D t 

           and            lim (0) ( ) 0rt

t q e K t

              (32) 

The expressions in (32) imply the following asymptotic conditions on the 

growth rates of the debt and the capital stock: /D D r  and /K K r . That 

is the socially optimal steady state growth rates of the debt and the capital 

stock should be lower than the world interest rate asymptotically. This implies 

that they do not grow in present value terms, asymptotically.  

 

3.2 Solving the model 

We now derive the socially optimal long-run growth rates of aggregate 

domestic production, the capital stock, pollution, consumption and the debt.  

We find that the growth rates of K, Y, C and Z are constant from time zero and 

remain so. For D and /C K  , however, growth may be non-constant (if for 

instance income and consumption grow at different rates), but we must 

examine whether such paths are consistent with the transversality conditions 

and the small country assumption. We present the cases of constant growth 

rates in Section 3.2.1 while the differential equations for the consumption-

capital ratio ( /C K  ) and the debt (D) are presented in Section 3.2.2. 

3.2.1 The growth rates of the capital stock and pollution 
We begin by combining equation (30) with the expression for the growth rate 

of aggregate production in (7). This and the steady state condition that 
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/ /Y Y K K , combined with equation (24), give the following expression for 

the steady state growth rate of the capital stock and domestic production.  

( ) ( )

(1 )(1 )
Y K

K n x n r
g g n x

K

 


  

   
    

  
             (33) 

Before we analyse the effect of environmental care on economic growth, it is 

important to impose a condition on the interest rate using the transversality 

condition. Equation (33) and the transversality condition impose this 

restriction on the world interest rate: 

 ( )(1 )

(1 )(1 )

n x n
r n x

 


 

   
  

 
. 

Substitution of (33) into (30) and some algebraic simplifications yield the 

following expression for the socially optimal steady state rate of change of 

emissions in the open economy model.  

(1 )( ) ( ) (1 )

(1 )(1 )

Z r n x x

Z

   

  

     
 

  
             (34) 

Note that pollution is a direct policy variable here, since we are analyzing the 

central-planner problem and therefore do not include any taxes. Hence 

equation (34) defines the steady state optimal policy rule. As can be seen from 

(33) and (34), the growth rates of Y, K and Z are all independent of the 

elasticity of the marginal utility of consumption,  . 

 

The sign of the growth rate of pollution over time depends on the sign of the 

numerator term since the denominator is known to be positive. The sign of the 

numerator term in (34) is ambiguous. If (1 )( ) ( ) (1 )r n x x         , 

then the overall term in the numerator is unambiguously negative and the 

socially optimal growth rate of pollution will decrease over time. On the other 

hand, if (1 )( ) ( ) (1 )r n x x         , then sign of the numerator is 

positive and the socially optimal growth rate of pollution increases over time. 

Thus the steady state growth rate of emissions in the open economy hinges on 

the following condition;       

(1 )( ) ( ) ( )(1 ) / ( )0r n x x Z Z             . 

The steady state growth rate of pollution is a decreasing function of the world 

interest rate, and the rate of population growth. A higher elasticity of marginal 
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disutility of pollution lowers the absolute rate of change Z, irrespective of 

whether it is positive or negative. However, the growth rate of pollution 

increases in the subjective rate of time preference and the rate of technological 

progress. The higher the elasticity of output with respects to effective labour, 

the stronger the latter effect.  

 

We now turn to the examination of the effect of environmental care on 

economic growth. The numerator in the final term in (33) is unambiguously 

negative since r  . By the constant returns to scale assumption, denominator 

in the final term in (33) can be shown to be positive. This makes the final term 

in (33) negative and thus makes the growth rate obtained here lower than what 

the standard model predicts (which would be n + x). Hence environmental 

protection imposes a drag on steady state growth rates. The magnitude of this 

negative effect depends among other things on the elasticity of output with 

respect to pollution and the elasticity of marginal disutility of pollution.  

 

The effect of the elasticity of marginal disutility of pollution on the common 

growth rate of the capital stock and output is ambiguous. To show this we 

compute the derivative of the equation (33) with respect to  . This gives the 

following results. 

 
2

(1 )( ) ( ) (1 )

(1 )(1 )

Yg r n x x   

   

      


   
             (35) 

The sign of the above derivative depends on the sign o f the numerator term as 

the denominator is known to be positive. The first two terms in the numerator 

is positive whilst the final term is negative. However, the sign of the overall 

term in the numerator is ambiguous. However a negative sign of the derivat ive 

in (35) would not be totally unreasonable, because the higher elasticity of 

marginal disutility of pollution will at least lead to a lower level of pollution 

according to (23). The elasticity of output with respect to pollution has much 

role to play here. If this elasticity is high, then the numerator will more likely 

be positive. Thus with higher elasticity of output with respect to pollution, the 

first two terms in the numerator could dominate the final term. Thus, it is 
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possible for a higher   to increase the growth rate of the economy. A higher 

value of   will increase (lower) the growth rate of the economy if and only if  

(1 ) ( )(1 )( ) ( )x r n x          . 

Thus, the effect on growth of the elasticity of marginal disutility of pollution is 

positive if and only if the growth rate of pollution is negative, an indication of 

a high demand for environmental quality (see equation (34)).  

 

3.2.2 Dynamics of the time path of consumption and the debt 
We turn now to the steady state socially optimal growth rate of the 

consumption-capital ratio. By the definition of the consumption-capital 

ratio, /C K  , its growth rate is / / /C C K K    . 

This, (30) and (33) gives the following steady state growth rate of the 

consumption-capital ratio 

1 ( ) ( )
( )

(1 )(1 )

n x n r
g r x

  
 

    

   
    

  
.             (36) 

Since the right-hand side is constant, the expression in (36) can be integrated 

to: 

( ) (0)
g t

t e   .               (37) 

Clearly, g can be positive, negative or zero, depending on the values of the 

parameters. The growth rate of the consumption-capital ratio is positive 

(negative) if consumption growth rate is greater (less than) than the growth 

rate of the capital stock. If the growth rates of consumption and capital are 

equal, then the growth rate of the consumption-capital ratio is zero. Any of 

these cases is possible in an open economy. We discuss this in detail in 

Section 3.3 under two scenarios and their implications for the asset position of 

the economy in the international capital markets.  

 

For this we also need the time path of debt. Starting with the derivation of the 

dynamic equation of the debt-capital ratio we first divide through equation 

(15) by K to obtain 

 
K D Y C D

r
K K K K K

     .              (38) 

Now define /d D K , which implies that  
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/ / / / ( / )d d D D K K D K d d K K     . This and (38) combines to give 

the following expression.  

 ( (1 ) ) / (0)
g t

K Kd g r e g r d                                           (39) 

The solution to this differential equation is  

( )(0)
K

g t g r t

K

d B e e
r g g





   
 

,              (40) 

where 

(0)
(0)

K

d B
r g g


   

 
,  and  

(1 )( ) 1
K

K

r
B r g

r g

 



  
     

. 

The expression for may be positive or negative, while B is positive because 

of the transversality condition.  

 

To describe the development of the debt in absolute terms, we recall that 

/d D K , where (0) Kg tK K e . Thus (40) can be rewritten as  

(0) (0)
( ) (0) (0)CK g tg t rt

K

K
D t K Be e K e

r g g


  

 
.              (41) 

Since the growth rate of the final term is r, the transversality condition cannot 

be satisfied unless (0)  is chosen by the social planner such that 0  .  This 

gives the following expressions for (0) and (0)C  respectively; 

  (0) (0)Kr g g B d      and    (0) (0) (0) (0) (0)KC K r g g B d K     , 

The final solution thus is  

 ( ) (0) (0) (0) CK g tg t
D t K Be B d K e   .              (42) 

It is assumed that  (0) 0B d  ; otherwise the economy is so heavily 

indebted from the start that it has to choose negative consumption. This is 

counterfactual.  

 

3.3 Two scenarios 

The dynamics of the open economy model is now given by the four equations, 

(29), (33), (34) and (42). The first three give constant growth rates for C, K, Y 

and Z. There are however two possible, and qualitative different, scenarios 

with respect to D, depending on the relation between Cg  and Kg .  One 

possibility is of course that K, C and D all grow at the same rate, but it is quite 
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unlikely that the parameters are related in such a way. We will therefore also 

examine another possibility where consumption and capital grow at different 

rates. 

 

In relation to this, there are two important conditions that must be fulfilled: the 

TVC and that the economy stays „small‟ as time runs. To ensure this we 

impose the following assumption. 

 

Assumption 1 

i. 
Cg r  and 

Kg r  so that the long run value of /D D  is always lower 

than the international interest rate. 

ii. For some 0  , the growth rate of the rest of the world is 
Wg n x    ; 

moreover, 
C Wg g and 

K Wg g  

iii. Our representative economy has a strong aversion to pollution. Also 

 and   are sufficiently large so that the drag on growth of 

environmental policy is large relative to the rest of the world. 

 

3.3.1 The benchmark case: K Cg g  

We now assume that the parameters in equation (36) are such that 

K Y Cg g g  implying that 0g  at all points in time. That is6 

1[1 (1 ) (1 ) ]( ) [(1 ) ]r x n                            (43) 

The bracket on the left hand side is clearly positive. It is reasonable to assume 

that (1 ) 0x n      , because only then can we have 0r   which is 

necessary for growth in per capita consumption.  

 

Some central expressions now take specific values. Solving for r  in (43) 

and substituting this into (29) we obtain the growth rate of consumption as:  

1

1

(1 )( ) (1 ) (1 )

[1 (1 ) (1 ) ]
C

x n n
g

    

   





     


   
,            (44) 

                                                                 
6
 One way to get this, is to assume that r   and 0n x  , which is what Blanchard and 

Fischer (1989) do. There are however other parameter constellations that will make 0g   

in (37), and we can allow for these possibilities as well.  
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which of course also is the growth rate of K and Y. The growth rate is clearly 

positive. Next substituting for r   in equation (34) and simplifying the 

resulting expression, we have: 

1

1

(1 )[1 (1 ) ][(1 ) ]

[(1 )(1 ) ][1 (1 ) (1 ) ]

Z x n

Z

      

      





      


      
            (45) 

Because 
K Cg g , (42) boils down to  

( ) (0) Kg tD t D e  

This implies that (0)d d at all points in time. This further pin down the 

initial consumption to  

 
(1 )( )

(0) (0) (0) (0) ( )C

r
C K K D r g

 



  
    

 
. 

In this case it is very obvious how the history of debt and capital puts 

constraint on the initial consumption level. There is no room for deciding how 

large a debt-capital ratio to have; it is given by history. An economy which has 

had a history of generous lending ( (0) 0d  ) will benefit from it twofold. 

First, it can afford to choose a high consumption path. Second, it will have a 

considerable share of its income from the international capital market, which 

does not cause any negative pollution effects on this country. Note however, 

that this share of income is not a result of optimal current choice, but it is 

given by history. 

 

The value of the elasticity of marginal utility of consumption plays an 

important role in the above discussions. To understand the importance of this 

parameter, we set 1   as a starting point. Then, Z is constant and the growth 

rate in (44) collapses to 

(1 )( )

1
C

x n
g x n

 



  
  


. 

When Z is constant, the remaining production factors in the production 

function, K, and L experience diminishing returns to scale. This creates drag 

on growth7. 

                                                                 
7
 If 0  , then Cg x n  , which is the growth rate in the standard model without 

environmental protection. Thus if pollution is useless (has zero partial elasticity) then 

environmental policy does not create drag on growth. 
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In order to examine the influence of the preference parameters here, we 

examine the derivatives of (44) and (45), given that equation (43) continues to 

hold. We begin these investigations by first considering the effect of changes 

in   on the growth rate of consumption (equation 44) and the growth rate of 

pollution (equation 45).  Taking the partial derivatives of (44) and (45) with 

respect to   and some amount of algebraic simplifications, we obtain their 

respective derivative expressions as (a) and (b); 

1

1 2

(1 ) [ (1 ) ]

[1 (1 ) (1 ) ]

Cg n x    

    





    


    
               (a) 

 

1 1

1

( / ) (1 (1 ) )( (1 ) )[ (1 ) ]

[1 (1 ) (1 ) ]

Z Z n x         

    

 



        


     
,           (b) 

 

where 1[(1 )(1 ) ][1 (1 ) (1 ) ]               .The numerator in the 

above derivative expression  in (a) is negative since (1 )x n      by 

assumption while the denominator is guaranteed to be positive. It is not hard to 

see that the denominator of the derivative expression (b) above is positive 

since the term in bracket has the same sign as  . By our assumption that per 

capita consumption grows, the numerator in (b) may very well be negative. 

Hence, the sign on the derivative expressions in (a) and (b) are both negative. 

Thus, an increase in the elasticity of marginal utility of consumption makes 

the growth rates of both consumption and pollution lower. That is, pollution 

falls more rapidly and consumption grows slower as   becomes larger. The 

reason here is not farfetched: an increase in   reduces the growth rate of 

consumption and hence output growth, which necessarily requires reduction in 

the growth rate of inputs used in production if the production process is to 

remain technically efficient.  

  

To see the impact of the elasticity of marginal disutility of pollution on the 

growth rate of consumption and pollution respectively, we take the partial 

derivative of equations (44) and (45) with respect to . After some amount of 

algebra, we obtain the respective derivative expressions in (c) and (d).  
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2

1 2

(1 ) (1 )[ (1 ) ]

[1 (1 ) (1 ) ]

Cg n x     

    





     


    
               (c) 

2 2

2

( / ) (1 )(1 ) [ (1 ) ] (1 )Z Z n x       



        


 
              (d) 

As before, the denominators of both equations (c) and (d) are known to be 

positive. Clearly, the numerator on the derivative expression in (c) is 

nonnegative while the sign on the numerator in (d) is not straight forward to 

see. Further investigations however show that the numerator is non-negative. 

Thus, both derivative expressions are positively signed. This implies that a 

higher value of   makes the growth rates of both consumption and pollution 

higher, other things equal. This means that agents require a greater increase in 

consumption to compensate them from the disutility of pollution. The fact that 

a higher   increases pollution growth rate is hard to discern since a stronger 

aversion to pollution is expected to make the pollution growth lower. 

However, looking at (23), if the initial pollution level is extremely low, for a 

given marginal utility, this makes pollution lower to some extent.  

 

3.3.2 Deviations from the benchmark case 

We now consider two possible deviations from the benchmark case discussed 

above. Specifically, we consider cases in which the growth rates of 

consumption and the capital stock differ (i.e. K Cg g ), starting with the case 

where consumption grows faster than the capital stock.   

  

Consumption grows faster than capital ( K Cg g ) 

Consider now a growth path where the growth rate of consumption is higher 

than the growth rate of the capital stock ( K Cg g ). Since the exponential 

expression of the final term in (42) then grows faster, D will sooner or later 

turn negative and decline. In this case, history does not matter much: a country 

that has had debt in the past can repay all and invest abroad over time. This 

process will be faster if for instance the elasticity of marginal disutility of 

pollution ( ) is large (cf. (34)) which implies a strong aversion to pollution.  
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In the first case where consumption grows faster than the capital stock, the 

economy increasingly makes use of the international capital market to 

generate income, and eventually the share of capital in assets is negligible. 

However, this does not need to make the economy a large player in the 

international capital market, which would violate the small open economy 

assumption and make the exogenous- interest-rate assumption irrelevant.  To 

see this, suppose the rest of the world does not control emissions to the same 

extent as “our” country. Then a situation with 
K Cg g n x      is possible, 

which would make /D D lower than the international growth rate. This 

country‟s claim on the rest of the world would not grow compared to the rest 

of the world, and thereby it remains a small player in the international capital 

market. 

 

It is interesting to investigate now, the behaviour of the optimal pollution 

growth path under this scenario. With consumption growing faster than the 

capital stock ( K Cg g ), the growth rate of the consumption-capital ratio must 

be positive (i.e. 0g  ). By (37) a sufficient condition for a positive growth 

rate of the consumption-capital ratio is 

 
1 1

(1 )

(1 ) ( 1)(1 )

x n
r

  


     

  
 

     

,    1  .  

The denominator term in the above condition is positive. The sign of the 

numerator in the second term on the right hand side of the inequality sign is 

ambiguous. Thus, if consumption grows faster, than the capital stock, the 

socially optimal growth rate of emissions will decrease over time if 

(1 )x n     , so that the above condition will always be met.  

 

Consumption grows slower than Capital ( K Cg g ) 

We turn now to the opposite deviation from the benchmark case where 

consumption grows slower than capital. This is highly possible in a country 

with low aversion to pollution. Then by (42), D will be growing in the long 

run, but not too fast to violate the TVC or the smallness criterion. Due to the 

low aversions to pollution, the country accepts to „produce for others‟ ( 0D  ) 
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and live with the extra pollution that this implies. The increase in the domestic 

capital stock makes the domestic income large but a greater share of it is used 

for servicing debt. 

 

In this case, the small economy becomes a net importer of capital and thus 

accumulates debt over time. The economy will then act as net exporter of 

goods, but its pollution as well as debt grows over time. However, given that 

the transversality condition is satisfied, our small open economy does not 

become overly indebted as time runs (which would mean that it could no more 

borrow from the international capital markets). Note also that the implication 

for the consumption-capital ratio along this growth path is that is growth rate 

will be negative. What does this imply for the optimal growth path of 

pollution? By (37), a negative growth rate of the consumption-capital ratio 

requires that 

1 1

(1 )

(1 ) ( 1)(1 )

x n
r

  


     

  
 

     

. 

This will be consistent with our earlier conditions on the interest rate if 

(1 )n x     , since r  . What is the implied direction of optimal 

pollution path under this scenario? Whether pollution grows (declines) over 

time depends on whether the wedge between (1 )x    and n  is lager 

(less) than (1 )( )r   . Sufficient for this condition to hold is that 

(1 )(1 )      which is never satisfied under constant returns to scale. 

While we cannot tell the direction of the growth rate of emissions, the 

possibility of positive growth cannot be ruled out. The reason is that high rate 

of capital accumulation will lead to increase in the scale of domestic 

production which may lead to a greater use of pollution (because the marginal 

product of this factor is pulled upward).  

These findings reecho the environmental Kuznets curve (EKC) hypothesis and 

the pollution haven hypothesis. At the initial levels of development countries 

depend much on domestic production to finance its consumption and 

investments. Over time however, it can afford to invest in the international 

capital markets and thus cut down on the accumulation of domestic capital and 

hence production. This is possible if and only if consumption grows faster 
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than the capital stock, though. Other things equal, this implies an inverted-U 

time path for emissions.  

 

4. Command optimum in the closed economy model 

We now turn to the closed economy case. The analysis in this section, in 

principle can be found elsewhere in the earlier literature. However, since we 

do not know any paper that has exactly the same formulation as the present 

one, the analysis in this section is necessary for comparison between the open 

and the closed cases. In the closed economy, A K and 0D D  . Thus, in 

the closed economy, the debt accumulation constraint disappears from the 

planner‟s optimization problem, hence we have 0  . By recalling that in the 

closed economy without government purchases, I Y C  , the optimality 

conditions in (21)-(27) are modified to the following set of conditions.  

10
H

C qL
C

  
  


               (46) 

0
H Y

Z q
Z Z

 


  


               (47) 

  /
q

n v
q

                      (48) 

  ( )lim ( ) ( ) 0n t

t q t K t e  

                (49) 

In the closed economy, the capital-output ratio v, is not a constant, and hence 

the growth rate of the shadow price of capital will also vary over time. This 

follows from the fact that in the closed economy the interest rate is not 

constant. 

  

As in the case of the open economy, to develop some implications of the 

above conditions, we start by taking logs of both sides of equation (46) and 

differentiating with respect to time. Using the condition in equation (48), we 

obtain the consumption Euler‟s equation for the planner‟s optimization 

problem as equation (50). 

(1 )
C q

n
C q

            
1

(1/ ) ( )
C

v n
C

   


                 (50) 
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Similar to the results obtained in the open economy case, the growth rate of 

aggregate consumption depends on the parameters in the utility and the 

production functions.  

 

Yet another useful implication concerns pollution. Taking logs of the 

optimality condition with respect to pollution in (47) and differentiating the 

results with respect to time, we obtain the social optimal pollution control rule 

as 

1

1

Z q Y

Z q Y

 
  

  
               (51)  

The above expression says that emissions grow in constant proportion with the 

sum of the growth rates of the shadow price of capital and real GDP. An 

increase in the shadow price of capital makes the planner substitute capital for 

pollution whilst high GDP growth rate requires using more productive factors 

including emissions. 

 

4.1.  Dynamic systems 

In this section we develop a two dimensional dynamic system in consumption-

capital ratio and capital-output ratio space. To begin with, we substitute 

I Y C   into (17) and divide the results by K to obtain the growth rate of the 

capital stock as 

1K

K v
    .               (52) 

Combining equations (50) and (52) and some algebraic simplifications give 

the growth rate of the consumption-capital ratio as: 

 
1 1

( 1)n
v

  
    

  

 
      

 
              (53) 

To close the system, we derive the equation of motion for the capital-output 

ratio for the command optimal allocation as in equation (54). To derive (54) 

we combine equations (9), (48) and (52) together with equation (6). After a 

fair amount of algebra, we obtain the differential equation in (54).  
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  

(1 )(1 )
(1 )

1

1
(1 ) /(1 ) ( ) (1 )( )

1

v v

n n x v

  
 

 


      

 

  
  

 


        

 

             (54) 

Equations (53) and (54) constitute our dynamic system. In the appendix C to 

this paper, a condition that ensures that the dynamic system above is saddle 

path stable is derived. Here, we establish the existence of unique steady state 

by studying the iso-clines of the dynamic systems along which 0v   . We 

do this by analyzing the derivatives of (53) and (54) along the 0   and 

0v   loci in a v   plane. When 0  , the differential equation in (53) 

simplifies to  
1 1

(1 ) n
v

 
    

 


     . The first and second 

derivative with respect to v are   2( ) / / v     and 

  32 ( ) / / v   respectively. Since the elasticity of marginal utility of 

consumption is higher than the elasticity of output with respect to capital, the 

first derivative is negative and the second, positive. Hence the 0   iso-cline 

is monotonically decreasing, but at an increasing rate in v.   

 

Turning to the differential equation in (54), 0v   implies that  

(1 )(1 ) 1 1
(1 ) ( ) (1 )( )

(1 )(1 ) (1 )(1 ) 1
n n x

v

    
     

      

     
          

        

. This then means that the 0v   locus is monotonically decreasing in v.  The 

absolute slope of the 0v   iso-cline is greater than the slope of the 0   iso-

cline if (1 )(1 ) ( 1) 0        , which is always satisfied.   

 

By setting 0v    in equations (53) and (54) and solving the resulting static 

two-equation systems we obtain the steady state values for the capital-output 

ratio and the consumption-capital ratio respectively as in equations (55) and 

(56) respectively.  

 

 

  
*

( 1) (1 )(1 )

( 1) (1 )(1 ) ( ) (1 )(1 ) (1 )
v

x n

    

            

   


          
      (55) 
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Note that from equation (55), the planner‟s steady state choice of capital-

output ratio decreases in the elasticity of marginal disutility of pollution and 

hence rate of growth of pollution. This makes sense if we assume that capital 

intensive modes of production are dirty. The strength of the pollution growth 

effect on capital-output ratio depends on three parameters in our model, the 

elasticities of marginal utility of consumption, output with respect to capital 

and output with respect to pollution. High values of elasticity of marginal 

utility and elasticity of output with respect to pollution amplify the negative 

effect of pollution growth on the capital-output ratio. 

   

 

* (1 )

( )(1 )(1 ) (1 ) ( 1) (1 )(1 )

( 1) (1 )(1 )

x n

  




             

    

 


             
   

.   (56) 

As seen from equation (56), the consumption-capital ratio under the command 

allocation increases in the subjective rate of time preference and the rate of 

depreciation. However, the effect of the elasticity of marginal disutility of 

pollution on the consumption-capital ratio is ambiguous. As before, the 

strength of this negative effect of pollution growth on consumption-capital 

ratio depends on the size of elasticities of marginal utility of consumption, 

output with respect to capital, labour and pollution. 

 

Now that the steady state equilibrium of the dynamic system given by 

equations (53) and (54), has been identified, it is important to examine if the 

solution is stable when subjected to a slight perturbations to the s teady state: 

does the system diverge from the equilibrium or return to it when perturbed?  

 

We focus on the question of whether the steady state is saddle point stable and 

thus sensitive to slight perturbations of the capital-output ratio or the 

consumption-capital ratio or not. We do this by examining the eigenvalues or 

characteristic roots of the Jacobian of the dynamic system given in (50) and 

(51). Since our focus is on saddle point stability, we require the determinant of 

the Jacobian to be negative. That is | | 0J  . The condition that ensures this is  

1[( 1) ] ( 1) ( 1)
( 1) ( )Y C Kg g g n

     
   

 

     
       
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(See appendix C for detailed mathematical derivations on local stability 

analysis). The first term on the right hand side of the above inequality 

expression may very well be positive; the second term cannot be signed a 

priori. However, stability requires that the growth rate of the economy should 

be higher than a certain threshold which is expected to be positive.  

 

4.2 Steady state growth rates 

We have already mentioned that pollution is a choice variable in the planner‟s 

maximization problem. The interesting question then is how does the 

planner‟s choice of pollution path affects long run growth? By equation (9) 

and the steady state condition that / /Y Y K K , we obtain the growth rate of 

aggregate output as 

1
(1 )( )

1

Y Z
n x

Y Z
  



 
     

  
              (57) 

From the expression above, a policy that aims to decrease the level of 

pollution over time ( / 0Z Z  ), will have negative effect on long run growth. 

Ambitious environmental care can however allow for growth in our setting 

provided that Z does not decline too fast.  

 

At the steady state aggregate production, consumption and the capital stock all 

grow at the same constant rate of * */ / / 1/Y Y C C K K v       . 

Substituting the steady state values for *v and * into the above expression and 

simplifying, we obtain the following solution for the socially optimal growth 

rate of aggregate variables at the steady state. 

( ) (1 )

( 1) (1 )(1 )
C Y K

x n
g g g n x

  

   

  
    

   
             (58) 

Now the similarity between the growth rate in the closed and open economy 

cases are obvious; in both cases, the growth rate is lower than in the standard 

model without pollution.  An important difference however is that the growth 

rate is influence by the size of the elasticity of marginal utility of consumption. 

As was found in the open economy case, the elasticity of output with respect 

to pollution and the elasticity of marginal disutility of pollution play 
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significant role on the size of the drag that environmental policy imposes on 

growth.  

 

It is now interesting to investigate whether the drag imposed on growth by 

environmental care is larger or smaller in the open economy rela tive to the 

closed economy case. It can be shown that the size of the drag depends on the 

relationship between the growth rates of consumption and the capital stock in 

the open economy case. If consumption grows faster than the capital stock, the 

drag is always larger in the open economy case. Comparing (58) with (33), we 

show that the drag is larger in the open economy case if;  

1 1

(1 )

( 1)(1 ) 1

x n
r

  


     

  
 

     

. 

This is the same condition that we derived in the open economy case where 

consumption is assumed to be growing faster than the capital stock. Thus the 

possibility of satisfying part of the domestic consumption through imports 

amplifies the negative effect of demand for environmental quality on growth.  

The opposite holds when the capital stock grows faster than consumption. This 

becomes obvious when one reverses the inequality in the previous condition.  

 

We finally turn to the steady state optimal pollution growth in the closed 

economy. We obtain this by substituting equations (57) and (58) into (51). 

This with some algebra yields the results in (56).  

(1 )
( 1)

( 1) (1 )(1 )

Z n x

Z

  


   

  
 

   
              (59) 

Recalling that 1  , the growth rate of pollution is negative if and only if 

(1 )n x     . This is in sharp contrast to the condition obtained in the 

open economy case. This becomes obvious if one compares equation (59) with 

(35). Recall that in the open economy, pollution growth at the steady state is 

negative if and only if  

 (1 ) (1 )r x n          . 

This inequality is somehow reversed in the closed economy case where 

negative growth rate of pollution requires that (1 ) 0x n      . Thus 

given the elasticity of output with respect to effective labour and pollution, the 
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direction of the growth rate of optimal emissions is driven by the relative 

strength of the rates of population growth and technological progress. Note 

however, that in the open economy the wedge between the world interest rate 

and the rate of time preference play a role in this. In the closed economy, the 

growth rate in pollution increases in the rate of population growth but 

decreases in the rate of technological progress. Remember that this is slightly 

the opposite of the open economy case. The reason why pollution increases 

with the rate of population growth is not hard to discern: more labour makes 

the marginal product of pollution higher and therefore reduce the optimal 

reduction in pollution. Also higher population implies higher consumption 

which can only be satisfied with increased production in a closed economy 

which may require more pollution for a given technology. Similarly, 

technological progress allows the economy to have faster improvements in 

instantaneous utility: it can afford to increase the utility of consumption and 

decrease the disutility of pollution at higher rates. In other words, 

technological progress improves the trade-off between consumption and 

pollution in favour of consumption.  

 

5. Conclusion 

The paper examined the effect on growth of the demand for environmental 

quality in a small open economy. Our analysis reveals the following 

conclusions. Environmental care imposes a drag on long run economic 

growth, by increasing the capital-output ratio and lowering the returns to 

capital. This result becomes less severe when the economy is closed and trade 

in goods and assets across national borders are not allowed.   

 

Our analysis of the open economy case also reveals that whilst the growth 

rates of consumption, output, the capital stock and pollution are constant, there 

are three possible qualitative scenarios with respect to the debt. First, we 

considered a benchmark scenario in which consumption and capital grow at a 

common rate. Under this scenario, we show that the debt and capital stock 

grow at a common rate and hence the debt-capital ratio is constant at all points 

in time. The implication of this is that the history of the debt and the capital 

stock puts a constraint on the initial consumption level. We show that a 
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country which has had a history of generous lending will benefit from it 

twofold. It can afford to choose a high consumption path and also have a 

considerable share of its income from the international capital market, which 

does not cause any negative pollution effect on this country. In the second case 

where consumption grows faster than the capital stock, we show that the small 

open economy eventually exports capital (negative debt) to the rest of the 

world by accumulating assets abroad over time. This process is faster if the 

elasticity of marginal disutility of pollution is high relative to the rest of the 

world so that it has higher drag on (production) growth. As a final scenario, 

we considered the opposite scenario where the capital stock grows faster than 

consumption. In this case we show that the economy imports capital due to the 

low aversion to pollution, and thus accumulate debt.  A high demand for 

environmental quality is found to induce capital flight from high income 

countries to poor countries with lower demand for environmental quality. This 

result offers an alternative restatement of the pollution haven hypothesis. 

Furthermore, our analysis shows that the drag that the demand for 

environmental quality imposes on growth is larger in the open economy if and 

only if consumption grows faster than the capita l stock. In the reverse case 

where the capital stock grows faster than consumption, the drag is smaller in 

the open economy case relative to the closed economy.  
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Appendix A:  Decentralized solution 

Then the objective of the household is to maximize 

1 1
( ) ( )

0 0

( / ) 1
( / , )

1 1

n t n tC L Z
u u C L Z e dt e dt

 
 

 

   
    

   
  

             (A1) 

with respect to C,  subject to  

A wL rA C    ,              (A2) 

The current value Hamiltonian for the above dynamic optimization problem is:  

 
1 1( / )

( / , , , )
1 1

C L Z
H C L Z K wL rA C

 

   
 

 

     
 

           (A3) 

Note that the household cannot influence Z. It is therefore not a choice 

variable here. The associated optimality conditions for the representative 

household are: 

1 10 0
H

C L C L
C

       
     


            (A4) 
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           


              
      (A5) 

  ( )lim ( ) ( ) 0n t

t t A t e   

               (A6)  

Note the (6) has been used in equation (A5). It can conveniently be rewritten 

as  

/n v


  

                  (A7) 

Taking logs of equation (A4), differentiating both sides with respect to time 

and using condition (A7), we obtain the familiar consumption Euler equation.  

 
1

( / ) ( )
C

v n
C

   


                  (A8) 

Now we define the consumption as a ratio to the capital stock as /C K  . It 

follows that: 

C K

C K




                 (A9) 

From equation (62), / (1/ )K K v     . Using this and (A8) in (A9): 

 
1 1

( (1 ) )n
v

  
    

  

 
      

 
          (A10) 
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This is the first of two differential equations in   and v, describing the 

dynamics of the model. 

Derivation of the equation of motion for the COR in a decentralized Ramsey 

Closed economy model 

v K Y

v K Y
               (A11) 

According to equation (7) 

(1 )( )
Y K Z

n x
Y K Z

                    (A12) 

Equation (8) is repeated here as equation (A13) 

Z Y

Z Y




               (A13) 

Substituting equation (A13) into (A12) we obtain equation (A14) 

(1 )( )
Y K Y

n x
Y K Y


    


                 (A14) 

(1 ) (1 )( )
Y K

n x
Y K


    


        

Collecting terms in (A14) and simplifying gives the expression in (A15) 

(1 )
( )

1 1 1

Y K
n x

Y K

    

   

 
   

  
          (A15) 

Substituting equations (17) and (A15) into (A11), we obtain the equation of 

motion for the capital-output ratio in a decentralized Ramsey economy as in 

(A16) below. 

1 (1 )
( )

1 1 1

v K
n x

v v K

    
 

   

  
       

   
 

1 1 (1 )
( )

1 1 1

v
n x

v v v

    
   

   

  
         

   
 

1 1 1 1
( ) ( )

1 1 1 1

v
n x

v v

       
 

    

     
     

   
 

 
1 1 1

1 1 1

v
n x

v v

     
 

   

   
     

  
 

 
1 1

(1 )
1 1

v n x v
  

    
  

   
        

   
         (A16) 
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Appendix B: Computation of the steady state values of  and v in the 

decentralized Ramsey economy 

At the steady state; 

0v   .               (B1) 

Invoking the steady state condition on equation (A10) and (A16), we obtain 

equations (B2) and (B3). 

 
1 1

0 (1 ) n
v

 
     

 


                   (B2) 

 
1

0 ,
1

v n x
v

 
   

  
       

 
           (B3) 

Combine equations (B2) and (B3) to eliminate  . We do this by equating 

(B2) and (B3). 

   
1 1 1

(1 )n x n
v v

  
     
  


                     (B4) 

   
1 1

1 (1 )n x n
v

  
     

  

 
         

 
  

  

   
1 1

(1 )n x n
v

 
     

  
         

   
1 1

(1 )n x n
v

 
     

  

 
        

 
            (B5)

  

Equation (B5) implies; 

   

1

1
(1 )

v

n x n
 

     
  

 
   

         
   

 .           (B6)

  

Substituting (B5) into (B3) gives the steady state value of the consumption to 

capital ratio as 

   
1

(1 )n x n
  

      
  

   
        

 
            (B7) 
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Appendix C: Local stability analysis 

Consider the following first order non- linear homogeneous dynamic system. 

( , )f v                 (C1) 

( , )v g v                (C2) 

Making Taylor approximation around the steady state and indicating steady 

state values with a star, we have the following: 

* * * * * *( , )( ) ( , )( )vf v f v v v                    (C3) 

* * * * * *( , )( ) ( , )( )vv g v g v v v                    (C4) 

These expressions can be rewritten as: 

 * * * * * * * * * *( , ) ( , ) ( , ) ( , )v vf v f v v f v f v v                      (C3‟) 

 * * * * * * * * * *( , ) ( , ) ( , ) ( , )v vv g v g v v g v g v v                   (C-4‟) 

Note that the right hand sides of the last two equations are constants. Dropping 

these constants, we have the following reduced dynamic system in matrix 

form. 

* * * *

* * * *

( , ) ( , ) 0

( , ) ( , ) 0

v

v

J

f v f v

g v g vv v





  

 

      
        

      
            (C5) 

* * * *

* * * *

( , ) ( , )

( , ) ( , )

vv

vv

f ff v f v
J

g gg v g v





 

 

   
     

  

            (C6) 

0J rI   

v

v

f r f
J rI

g g r





 
   

 
              (C7) 

 

2

det

0

( ) 0v v v

trJ J

J rI

r f f r f g g f  

 

       

2 ( ) det 0r trJ r J    

2( ) 4det

2 2
i

trJ JtrJ
r


  ,    1,2i               (C8) 

 

In our case we have the following first order nonlinear dynamic systems of 

differential equations. 
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 2 0
v

  
  




                                                                    (C9)

    

 
1 1 1

1 ( )
1 1 1

v n x v
    

     
   

    
           

           (C10) 

 

Rewrite the last two expressions in terms of   and v  as; 

 2( , )f v
v

  
   




                (C9‟) 

 
1 1 1

( , ) 1 ( )
1 1 1

v g v v n x v
    

     
   

     
             

        (C10‟) 

where   1(1 ) n          . 

Before computing the derivatives, it is useful to obtain the „steady state‟ 

conditions which follow from putting 0v   : 

 20
v

  
 




               (C11) 

 
1 1 1

0 1 ( )
1 1 1

v n x v
    

    
   

     
            

           (C12) 

Equation (C11) implies; 

 2

v

  
 




   

* 1

v

 
 




              (C13) 

Equation (C12) implies; 

 
1

1 1 ( )
1

v n x v


    
  

 
          

  

   

1
( )

1
n x

v

 
 

  
    

 
           (C14) 

 

The partial derivatives of the above system in (C9‟) and (C10‟) are:  

* * *

*

1
( , ) 2f v

v


 
  




    



40 

 

Using * 1

v

 
 




   

* * *

*

1
( , ) 2f v

v


 

 
  





    

* *

* * *

1 1

( , ) 0

v v

f v

   
   

 

 

 
     

 

 

 

  * *
* *

* 2 * 2
( , )

( ) ( )
vf v

v v

     


 

 
    

* *
* *

*

( )
( , )vf v

v

  



  

* * *1
( , )

1
g v v

 




 
 


 

 * * *1
( , ) 1 ( )

1
vg v n x


     

 

 
          

 

Using 
1

( )
1

n x
v

 
 

  
    

 
, this derivative simplifies to 

* *

*

1 1
( , ) 0

1
vg v

v

 




 
  


 

 

The Jacobian is given as: 

* *
*

*

*

*

( )

1 1 1

1 1

v
J

v
v

  


   

 

 
 
 

    
    

           (C15) 

 

Computing the trace of the Jacobian (trJ) 

*

*

1 1

1
trJ

v

 




 
 


 

To determine the sign of this, it is instructive to substitute the steady state 

values for the CCR and COR (See appendix B1) 

   (1 )n x n
   

      
  

   
        

 
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   *

1 1
(1 )n x n

v

 
     

  

   
          
   

 

   

   

(1 )

1 1
(1 )

1

trJ n x n

n x n

   
     

  

   
     

   

  
        

 

      
                

 

   

   

1

1

1 1
(1 ) (1 )

1

trJ n x n x

n n

      
   

    

   
       

   

        
                   

    
         

   

 

   
1 1 1

(1 )
1 1

trJ n x n
         

     
       

        
             

     
 

      
1 1

1 ( 1)(1 ) (1 )
1 (1 )

trJ n x n


          
   

 
             

  

   

Given that the final expressions in each term are positive, 1   is sufficient 

condition for positive trace of the Jacobian in (C15).  

 

Determinant of the Jacobian 

*
* *

*

1 1
| | ( )

1 1
J

v

    
  

 

   
   

 
 

* * *

*

1 ( )
| |

1 1
J

v

     



   
  

  
 

* * *

*

1 ( )
| |

1 1
J

v

     



   
  

  
 

* * * *

*

1 ( )
| |

1

v
J

v

     



    
  

  
 

* *
*

*

1 ( ) 1
| |

1

v
J

v

   




    
  

  
 

 

There is an interesting relationship among the characteristic roots, the trace of 

the Jacobian and the determinant of Jacobian. We explore that relationship 

here. It holds that  1 2r r trJ   and 1 2 | |r r J . For saddle point stability, the 



42 

 

determinant must be negative which means that one of the two roots is 

negative and the other positive. 

 

Condition for saddle point stability 

We have saddle point path if the determinant of the Jacobian is negative, 

implying that the two roots of the characteristic equation of the Jacobian have 

reverse signs.  

| | 0J   

* *
*

*

1 ( ) 1
| |

1

v
J

v

   




    
  

  
 

* *
*

*

1 ( ) 1
| | 0 0

1

v
J

v

   




    
   

  
 

* *( ) 1 0v      

* *( ) 1v     

*

*

1

v
    

     

   

1
(1 ) (1 )

1
(1 )

n x n n

n x n

   
         

   

 
     
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Using the optimal tax rule (see appendix D1 below), we can restate the 

stability condition in terms of the planner‟s solution as follows  
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Note that the left hand side of the above expression is the common growth rate 

that we obtained in (58). Hence the stability condition for the differential 

equation system in (53) and (54) is stated here as  
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Appendix D: Optimal tax rule 

From the optimality condition in (4), we obtain the following relationship 

among the growth rates of pollution tax, aggregate production and aggregate 

emissions as follows. 

Y Z
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
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Imposing the planners steady state growth rate of aggrega te production and 

pollution into the above condition for the growth rate of the pollution tax, we 

derived the socially optimal growth rate of the tax as follows.  
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Appendix D2: Steady state values for v and  under optimal policy 
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Appendix D3: Steady state growth rates of aggregate and per capita variables 

in decentralized Ramsey economy 

From equation (58) aggregate output grows at the rate; 
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The optimal tax rule satisfies, 
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Substituting this into the expression for the growth rate of aggregate 

production, we obtain the steady state growth rate as follows: 
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Note that we have the same results as the one obtained under command 

allocation. 

According to equation (59) in the main text, per capita variables grow at the 

rate of  

y
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in a decentralized equilibrium. This implies that; 
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Again, we have the same expression for the growth rate for per capita 

variables as in the command optimal allocation. Thus, we can conclude that 

with the Pigouvian tax optimally set, the command allocation and 

decentralized allocation are equivalent.  
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