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yield growth paths with an application to maize
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An alternative speci¢cation for the trend component of crop yield growth is
developed and applied to maize yield data for Zimbabwe's large-scale farming
sector. This accounts for permanent regime shifts as new technologies are
discovered but allows gradual absorption as adoption follows a di¡usion path.
Econometric methods are used to estimate the timing and importance of
innovations, as well as the length of the di¡usion path. Results from an application
to Zimbabwe commercial maize yields indicate two major regime shifts that can
be associated with the introduction of hybrid seed varieties, and a di¡usion path
that extends over a decade.

Crop yield time series are often modelled as the sum of two components ^
a trend process representing improvements in seed varieties, increased
fertiliser use, better management practices etc. and a stationary process
representing transitory deviations around trend caused primarily by
weather. Both components are of interest to economists and policy-makers.
The trend component can be interpreted broadly as improvements in
technology, so that modelling the trend characterises the rate of
technological advance. The stationary component accommodates much of
the short-term risk inherent in crop yield distributions, and so can be a
useful input into farm decision analysis, crop insurance rating and the
pricing of yield futures and options.
Early models of crop yield growth used deterministic trends in the form

of linear or higher-order polynomial functions of time (e.g. Thompson 1969;
Menz and Pardey 1983; Gallagher 1986). It soon became apparent, however,
that polynomial trends are not adequate for capturing trend yield growth.
Polynomial trends assume the trend component of yield grows at a very
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smooth (and often linear) rate which is completely predictable. In reality,
trend yield growth tends to be somewhat erratic and lumpy as new
technological innovations come on line at random intervals (Moss and
Shonkwiler 1993).
Stochastic shocks to trend yield growth rates can be captured using a

stochastic trend model (Harvey 1985; Stock and Watson 1988). In this case,
the trend component of yields increases by a ¢xed amount on average, but in
any given period the change in the trend deviates from the average by some
random unpredictable amount. Positive shocks indicate an above average level
of technological innovation while negative shocks indicate a below average
level. Stochastic trend models imply that future yield growth paths are much
more di¤cult to predict than in the deterministic trend case, and have been
used successfully by a number of researchers to characterise trend and
stationary components of US corn yields (Fackler 1989; Kaylen and Koroma
1991; Moss and Shonkwiler 1993). In particular, Moss and Shonkwiler (1993)
get a very good ¢t to historical US corn yields by incorporating a stochastic
trend and using an inverse hyperbolic sine transformation to model
nonnormality in the stationary deviations around trend.
A problem with modelling technological innovations in crop yield growth

paths with a standard stochastic trend approach is that the stochastic trend
does not account for well-known features of the way technological change
di¡uses through the farm sector. The e¡ect of shocks to a standard stochastic
trend are both immediate and permanent, implying that when a
technological innovation occurs it is immediately and simultaneously
adopted by all farms. It is well known, however, that technological
improvements are typically adopted slowly at ¢rst with a small number of
early innovators followed by a period of rapid adoption, and then ¢nal
adoption by a small group of laggards. This S-shaped di¡usion pattern
implies that, rather than having frequent technological innovations whose
permanent impacts are felt immediately, the trend component of crop yields
might be better characterised by less frequent but larger innovations
representing particular regime shifts in crop yield growth paths. These regime
shifts result from major technological innovations whose e¡ects are spread
over time as they di¡use through the farm sector.

The purpose of this article is to present an alternative speci¢cation for
the trend component of crop yield growth which accounts for regime shifts
and technology di¡usion. The speci¢cation is similar to that in Lippi and
Reichlin (1994) in that technological innovations have permanent e¡ects that
are absorbed gradually, and di¡usion follows an S-shaped pattern. However,
we allow for regime shifts which help identify the e¡ects of speci¢c
technological improvements, such as a package of management practices,
seed, and fertiliser use associated with the introduction of hybrid seed. The
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advantages of this regime shift-di¡usion model are that it allows the length
of the di¡usion path to be estimated from data, and it also provides
empirical results on the relative contribution of di¡erent technological
packages (regime shifts) to trend growth in crop yields. It also may lead to
quite di¡erent conclusions about the path of trend yield growth, and hence
the distribution of stationary deviations around trend, compared to those
obtained from the standard stochastic trend model.
The regime shift-di¡usion model is applied to time series data on maize

yields in Zimbabwe's large-scale farming sector. Results provide an estimate
of the `depreciation rate' in maize yields (the rate at which trend yield
declines in the absence of major new technological innovations). Results also
provide an empirical estimate of trend yield response to two major regime
shifts associated with the introduction of hybrid seed varieties, and of the
speed at which these technological innovations have di¡used through the
large-scale farming sector.
The next section summarises standard stochastic trend models of crop

yield growth and highlights some of their advantages and disadvantages.
Then the regime shift-di¡usion model is introduced and applied to maize
yields in Zimbabwe's large-scale farming sector. The concluding section
assesses the potential usefulness of this new approach to modelling crop yield
growth paths.

1. Stochastic trend models

Let yt represent the logarithm of crop yield at time t and suppose that yt

can be decomposed into two components:

yt � tt � et �1�
where tt is a trend component and et represents stationary deviations around
trend. In the standard stochastic trend model tt is given by:

tt � ttÿ1 � Zt �2�
where m is the drift (average trend growth rate) and Zt is a serially
uncorrelated random shock to the trend satisfying E�Zt� � 0 and E�Z2

t � � s2
Z:

The trend component tt is presumably driven by technological innovations
such as improved seed varieties, better management practices, changes in
fertiliser use, etc. while the stationary component et is determined primarily
by weather £uctuations. It should be clear that tt depends on farmer
decisions regarding technology adoption and management practices, as well
as private and public investments in agricultural research, extension, and
marketing infrastructure.
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In the stochastic trend models of Kaylen and Koroma (1991), and Moss
and Shonkwiler (1993), the drift term m is also allowed to change according
to:

mt � mtÿ1 � xt �3�

where xt is a serially uncorrelated random shock satisfying E�xt� � 0 and
E�x2t � � s2

x. However, empirical estimates of s2
x tend to be very small,

indicating the assumption of s2
x � 0 is reasonable in most cases.1 Hence, we

focus on the standard stochastic trend model (1) and (2).
The stochastic trend model allows a linear deterministic trend as a special

case. To see this, let s2
Z � 0 so that repeated substitution of (2) into (1)

gives:

yt � t0 � mt� et �4�

The initial trend value t0 takes the role of a constant and the trend
component of yt increases by m every period, and is therefore completely
smooth and predictable. This has obvious limitations for modelling crop
yield growth.
In the more general case of s2

Z > 0 then tt increases by m on average but
the increase is also subject to a random shock Zt. We can think of Zt as a
shock to the rate of technological innovation. Large positive values of Zt

indicate an unusually high rate of yield growth while large negative values of
Zt indicate an unusually low rate. Notice, however, that m and the random
shock Zt both have immediate and permanent e¡ects on tt. Thus, techno-
logical innovations are implicitly assumed to be immediately and
simultaneously adopted by all farms. Furthermore, the trend growth rate Dtt

is assumed to be drawn from a ¢xed probability distribution with mean m
and variance s2

Z. Thus, there is no possibility of regime shifts ^ a small
number of major innovations which occur infrequently but shape yield
growth over subsequent decades.
The stochastic trend model can be estimated using Kalman ¢lter and

maximum likelihood methods (see Harvey 1985; and Moss and Shonkwiler
1993) and has been shown to be quite e¡ective in explaining crop yield
movements over time. However, the standard stochastic trend model does
not account for di¡usion of technological innovations over time, which is a
key component of the actual process of technological advancement in
agriculture.

1 s2
x > 0 would imply that yt has to be di¡erenced twice to induce stationarity.
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2. Regime shifts and technology diffusion

There is already considerable evidence available on technology di¡usion in
agriculture (Griliches 1957; Knudson 1991; Leathers and Smale 1991). While
the di¡usion path generally follows an S-shaped pattern, substantial
variation can exist in the length and shape of the process. Indeed, the shape
and duration of the di¡usion process can be viewed as a function of
numerous technological and institutional factors which interact in a complex
manner and are di¤cult to determine a priori (Johnson 1969). It is also
important to distinguish between technology generation and technology
adoption. Productivity growth occurs only after adoption takes place and
the length and shape of the di¡usion process are contingent on the
performance of input and output markets, extension systems and investments
in infrastructure, in addition to plant breeding (Antle 1983; Binswanger and
Pingali 1989; Evenson and Kramer 1988). Di¡usion of improved seed
varieties has often required increased use of other inputs, such as fertiliser,
chemicals, and water control, to be economically viable. Thus, it is an
oversimpli¢cation to equate technology di¡usion with the proportion of
farms using an improved seed variety.
The stochastic trend model can be generalised to account for two stylised

facts about crop yield growth, namely, technological change may be driven
by large infrequent innovations, leading to regime shifts in crop yield growth
paths, and di¡usion of technological innovations takes time and follows an
S-shaped pattern. To accomplish this, suppose we continue to think of crop
yields being comprised of the sum of trend and stationary components, but
now specify the trend component as:

tt � ttÿ1 � m� a�L �
Xn

i�1
bidit � Zt �5�

where the dit are indicator variables satisfying dit � 1 if technological
innovation i occurs at date t and dit � 0 otherwise; and a�L � is a polynomial
in the lag operator L representing the technology di¡usion path. The
di¡usion path satis¢es a�1� � 1 so that bi represents the total contribution of
innovation i to trend yield growth and a�L � determines how this total
contribution is spread over time. The trend is still subject to an underlying
average growth rate m in the absence of technological innovations dit, and to
random shocks Zt to that underlying growth rate. However, technological
innovations dit and their associated di¡usion path a�L � can now also
in£uence trend yield growth. As in Lippi and Reichlin (1994), this
speci¢cation of the trend component allows for autocorrelation in trend
growth rates which is presumably driven by technology di¡usion. However,
Lippi and Reichlin model this autocorrelation by allowing the e¡ects of
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random shocks Zt to di¡use over time (without regime shifts), while we
model it by allowing regime shifts that follow a di¡usion path.
The shape of the di¡usion path a�L � is critical to analysis of the regime

shift-di¡usion model. As pointed out by an anonymous reviewer, any a�L �
which is nonnegative and unimodal will generate an S-shaped di¡usion path.
Furthermore, data on crop yields alone are not going to be very informative
about the parameters in a�L � without additional restrictions. The number of
lags in a�L � may be quite large for long di¡usion processes, making it di¤cult
to estimate an unrestricted lag structure. Furthermore, if di¡erent regime
shifts were allowed to have di¡erent di¡usion paths, then the model would
become essentially unidenti¢able as regime shifts and di¡usion rates could
not be separated.
To overcome these problems we impose restrictions on the di¡usion path.

First, we assume each regime shift has the same di¡usion path, so that there
is only one a�L � to be estimated. Second, we assume that a�L � takes the
form:

a�L � � a
Xmÿ1
j�0
�1� 5j�L j=�1ÿ dL � �6�

where 0 � d < 1 and m > 1. The restriction a�1� � 1 then requires that:

a�m� 5m�mÿ 1�=2�=�1ÿ d� � 1 �7�
Each a�L � coe¤cient aj represents the fraction of bi which is absorbed at
t� j. Thus, the path of cumulative increases in trend crop yield (the di¡usion
path) is found by summing the a�L � coe¤cients from zero through to j. This
di¡usion path follows the speci¢cation in Lippi and Reichlin (1994).
There are several points to notice about the Lippi and Reichlin di¡usion

path given in (6) and (7). First, the speci¢ed lag structure is nonnegative and
unimodal so it imposes an S-shaped di¡usion path. Second, while the shape
of the di¡usion path is determined completely by the assumed form for a�L �,
the length of the path is £exible and determined by the values of m and d.
Thus, we are imposing a particular shape on the di¡usion path but allowing
the data to determine its length. Other possible speci¢cations for a�L � could
have been investigated (e.g. inverted-V, triangular, gamma distributed lag, or
exponential lag). However, the Lippi and Reichlin lag structure is simple,
parsimonious, and imposes a di¡usion path shape that is consistent with
prior knowledge about the way technological innovations di¡use through the
agricultural sector. It also has the advantage that the length of the di¡usion
process does not need to be speci¢ed a priori, and so can be inferred from the
data. For these reasons, the Lippi and Reichlin speci¢cation is used
throughout the remainder of the analysis. It should be remembered,
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however, that imposing the Lippi and Reichlin lag structure (or any other
lag structure) is really a form of identi¢cation restriction which makes the
interpretation of the regime shift e¡ects conditional on that particular
speci¢cation for the shape of the di¡usion path.
The regime shift di¡usion model given by (5) through (7) represents a clear

generalisation of existing crop yield growth models. Each indicator variable
models a regime shift in the crop yield growth path. When regime shift i

occurs �dit � 1� a part of its permanent contribution bi is felt immediately
but the remainder is spread out over time, with the length and pattern of the
di¡usion determined by a�L �. If bi � 0 for all i then there are no regime shifts
and the model reverts to a standard stochastic trend model (1) and (2). If,
in addition to bi � 0 for all i, the shock to the trend has zero variance,
s2
Z � 0, then the model reverts to the standard linear trend model (4). It is

also possible that regime shifts occur, bi > 0 for some i, but that the shock to
the trend still has zero variance s2

Z � 0. In this case the trend component is
determined completely by the constant growth rate m and regime shifts dit

(i.e. yields are stationary around a linear trend with regime shifts).
The average growth rate m has an interesting interpretation in the regime

shift-di¡usion model. If m < 0 this would indicate a constant `depreciation
rate' caused by lost resistance to pests and diseases, reductions in soil quality
under continuous cropping and movement onto marginal lands, etc., in the
absence of major new technological innovations. If m > 0 this would indicate
a constant `appreciation rate' caused by continual small improvements to
existing technologies and practices in the absence of major new technological
innovations.

3. Estimation

Estimation of the regime shift-di¡usion model depends critically on the value
of s2

Z. As stated earlier, if s2
Z � 0 then crop yields yt are stationary around a

linear trend with regime shifts, and the trend component of crop yields can
be viewed as deterministic for estimation purposes. In this case, repeated
substitution of (5) into (1) gives:

yt � t0 � mt� a�L �
Xn

i�1
bixit � et �8�

where xit �
Pt

j�1 dij is the accumulated history of di values up until date t.
Equation (8) is similar to Perron's (1989) `crash model' which allows for a
single exogenous shock to the intercept in a linear trend model. Here,
however, we allow for multiple shocks and include a di¡usion path to
determine how the e¡ects of the shocks are spread over time.
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Assuming s2
Z � 0, and that the indicator variables dit representing

technological innovations are known exogenous events, equation (8) is easy
to estimate using maximum likelihood methods. The estimation equation is
nonlinear in the parameters of a�L � but estimation is still straightforward
once a suitable distributional assumption has been made on et. If et is
autocorrelated, then we can use an ARMA speci¢cation to model that
autocorrelation and proceed with maximum likelihood estimation.
If the number and timing of the technological innovations dit are not

known a priori then a grid search procedure could be used to infer from the
data the most likely dates that regime shifts occurred. Suppose initially that
we know the number of regime shifts (major technological innovations) but
not when they occurred. Then we could undertake a discrete likelihood
search over all possible combinations of dates over which the regime shifts
could have occurred, and pick the combination of dates which generate the
highest likelihood value for the equation (8). This would provide the most
likely dates for a given prespeci¢ed number of regime shifts to have occurred.
To infer the actual number of regime shifts from the data we repeat this grid
search procedure for every one of i � 1; 2; . . . ; n regime shifts where the
maximum possible number n is chosen based on data considerations, as well
as knowledge of the technology adoption process for the particular
application under study. Then, having chosen the most likely dates for i� 1
regime shifts, this model could be tested against the most likely dates for i

regime shifts using a likelihood ratio test. This process could then be
repeated sequentially testing for a smaller number of regime shifts until a
¢nal model is chosen and both the number and timing of regime shifts have
been inferred from the data. Clearly, there are bounds on the maximum
number n of regime shifts that can be accommodated in this grid search
procedure because the number of nonlinear models that must be estimated
expands rapidly as the sample size increases and the number of regime shifts
allowed is raised. However, prior information on the technology innovation
and adoption process for a particular empirical application may be used to
reduce the size of the search by eliminating highly unlikely dates and
combinations from the grid on a priori grounds.
If s2

Z > 0 then crop yields yt are nonstationary with regime shifts dit in
the rate of drift, and the trend component of crop yields must be viewed as
stochastic for estimation purposes. In this case, taking ¢rst di¡erences of (1)
and substituting (5) gives:

Dyt � m� a�L �
Xn

i�1
bidit � mt �9�

where Dyt � yt ÿ ytÿ1 and mt � Zt � Det. If Zt and et are independent (a
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reasonable assumption for crop yields), and et is serially uncorrelated, then
mt has a nonzero ¢rst-order autocorrelation and all other autocorrelations
equal to zero. Hence, mt has a representation mt � et � yetÿ1 for a serially
uncorrelated sequence et satisfying E�et� � 0 and E�e2t � � s2

e . If et is
autocorrelated (but still independent from Zt) then mt would be a higher order
stationary ARMA process whose representation depends on the autocorrela-
tion structure of et.
The ¢rst di¡erence equation (9) is also nonlinear in the parameters because

of the di¡usion process a�L � and the possible ARMA model for mt. However,
the model can be estimated easily using maximum likelihood methods after
making a suitable distributional assumption on mt. If the indicator variables
dit are known exogenous events then estimation proceeds in the usual way. If
the number and timing of technological innovations are unknown a priori
then a grid search procedure similar to that conducted under the stationary
model could be undertaken. That is, a speci¢c number of technological
innovations is assumed and a grid search procedure undertaken over the
likelihood function to determine the most likely dates for that number of
innovations to have occurred. This process is then repeated allowing for
i � 1; 2; . . . ; n innovations, and the ¢nal number of innovations is chosen
based on results from sequential likelihood ratio tests. This allows the
number and timing of technological innovations to be inferred from the data
in much the same way as under the stationary model. Prior knowledge of
the technology innovation and adoption process may again be used to rule
out particular combinations of dates in order to reduce the dimensionality of
this grid search procedure.

4. Application

The regime shift-di¡usion model is illustrated by applying it to the growth
of maize yields in Zimbabwe's large-scale farming sector. Data on the
logarithm of maize yields in the large-scale farming sector of Zimbabwe
between 1928 and 1995 are shown in ¢gure 1.2 Visual inspection indicates
that yield growth appears to have gone through three main phases. The ¢rst
phase, from 1928 through to the early 1950s, is characterised by zero growth,
or perhaps a slow decline in trend yields. Then in the early 1950s there
appears to have been a major shift to a high growth regime. This lasted until
the mid-1970s, at which time the earlier zero growth or slow decline regime
seems to have become re-established. The challenge is to develop a model

2Data are from Ministry of Agriculture in Zimbabwe. We thank Joseph Rusike for
supplying us with them.
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which can explain these data as the outcome of a regime shift-di¡usion
process.
The increase in yields during the 1950s coincides with the release in

1949 of the ¢rst double hybrid, named SR1, bred in Zimbabwe for local
conditions. Another important innovation was the release in 1960 of the
single hybrid, SR52, which made Zimbabwe the ¢rst country in the world
to use a single hybrid commercially (Tatters¢eld and Havazvidi 1994).
SR52 continues to be grown on many of Zimbabwe's commercial farms
more than 30 years after its initial release (Mashingaidze 1994). There
was also a ¢ve-fold increase in fertiliser use between 1950 and 1965,
along with an expansion of the land base used in maize production.
These developments suggest at least one major regime shift in maize yield
growth during the early 1950s, and perhaps a second shift occurring
around 1960.
The ¢rst task in estimation is to determine whether yields should be

modelled as stationary around a linear trend with regime shifts (equation
(8)) or as di¡erence stationary with a drift term that is subject to regime
shifts (equation (9)). If the incorrect equation is used, then potentially serious
errors in inference can occur (Stock and Watson 1988). Perron (1989),
Perron and Vogelsang (1992) and Banerjee, Lumsdaine and Stock (1992),
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Figure 1 Commercial maize yields in Zimbabwe
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have developed tests for the null hypothesis of di¡erence stationarity, with
a drift term that is subject to a single regime shift, against the alternative of
stationarity around a linear trend with a break point. However, these tests
cannot be used here for two reasons. First, these tests require only a single
regime shift and our model allows for multiple regime shifts. Second, these
tests do not allow for a di¡usion path which is a critical feature of the model
used here.
Because there are no formal hypothesis tests available for testing equation

(9) against equation (8), we proceed by comparing the two equations
informally. We begin by estimating the stationary equation (8) using
maximum likelihood. If the nonstationary equation (9) actually generated
these data then the residuals fv̂tg T

t
� 1 from estimation of the stationary

model should be nonstationary. Thus, following Perron (1989) we then
estimate models of the form:

Dv̂t � rv̂tÿ1 �
Xk

j�1
fjDv̂tÿj � wt �10�

where k is chosen to eliminate autocorrelation, and examine the t-statistic
on the null hypothesis of nonstationarity, r � 0, versus the stationary
alternative r < 0. We would like to conduct a formal hypothesis test but,
unfortunately, the distribution of the resulting test statistic depends on the
regime shift and di¡usion path parameters and is currently unknown. Thus,
while this approach follows the spirit of standard Dickey-Fuller tests for
nonstationarity, the t-value on r can only be viewed as suggestive and must
be interpreted with care.
Another informal approach to examining the stationarity versus

nonstationarity hypothesis is to take the same residuals fv̂tg T

t
� 1 from the

estimated stationary model and use them to calculate the Kwiatkowski,
Phillips, Schmidt and Shin (1992) LM statistic for testing the null of
stationarity against the alternative of nonstationarity. This test is useful
because it has been found that results from tests for nonstationarity can be
quite sensitive to which hypothesis (stationarity or nonstationarity) is used as
the null. Once again, however, the distribution of this statistic when regime
shifts and di¡usion paths are included is currently unknown. Thus, the
results must be viewed as suggestive rather than as a formal hypothesis
test.
The ¢nal informal approach is to take the residuals fv̂tg T

t
� 1 and

simply examine their autocorrelation function. If the autocorrelation
function is typical of a stationary, as opposed to a nonstationary series,
then this would be further informal evidence in favour of the stationary
model.
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Results from implementing these procedures are shown in table 1. The
procedures were applied to both a single regime shift model, with the shift
occurring in 1950, and a two regime shift model with shifts in 1950 and
1961. In both cases the results are very similar. The estimated r value is
much closer to minus one than to zero and the t-statistic for the null that
r � 0 is much larger than the 1 per cent critical values cited by Perron and
Vogelsang (1992), and Banerjee, Lumsdaine and Stock (1992), for the case of
a single regime shift with no di¡usion path. While this does not constitute a
formal hypothesis test, the result is consistent with the view that the
stationary model is appropriate. The calculated Kwiatkowski et al. (1992)
statistics are much lower than even the 10 per cent critical values provided in
Kwiatkowski et al. (1992) for testing the null of stationarity. Again, this does
not constitute a formal hypothesis test but is consistent with stationarity.
Finally, the estimated autocorrelations of the residuals from the stationary
model are much more consistent with a white noise representation than a
unit root process. None of the autocorrelations appear to be signi¢cantly
di¡erent from zero. These results support the view that the regime shift-
di¡usion model can be speci¢ed and estimated in the stationary form (8),

Table 1 Statistics for choosing between the stationary and nonstationary versions of the regime shift-
diffusion model

Statistic Single regime shift model Two regime shifts model

r-value ÿ 1.095 ÿ 1.134
t-statistic ÿ 8.952 ÿ 9.336
1% critical value ÿ 5.58 ÿ 5.58

KPSS statistic 0.049 0.037
10% critical value 0.119 0.119

Autocorrelations
Lag 1 ÿ 0.093 ÿ 0.132
Lag 2 ÿ 0.115 ÿ 0.149
Lag 3 0.053 0.031
Lag 4 0.079 0.071
Lag 5 0.179 0.182

Std. Error 0.130 0.12

Note: r-value is the estimated value of r from equation (10), using zero lagged di¡erences, and t-value
is its associated t-statistic. The 1 per cent critical value provided is from Perron and Vogelsang (1992)
and should not be interpreted as a formal critical value for t-value under multiple regime shifts and
di¡usion. KPSS-value is the Kwiatkowski et al. (1992) statistic computed from residuals from the
stationary regime shift-di¡usion model. The 10 per cent critical value is from Kwiatkowski et al. (1992)
and should not be interpreted as a formal critical value for KPSS-value under multiple regime shifts
and di¡usion.

296 R.J. Myers and T. Jayne

# Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishers Ltd 1997



rather than the ¢rst di¡erence form (9), and the remainder of the analysis
proceeds under the stationary speci¢cation.
The stationary model was estimated initially assuming a single regime

shift, no autocorrelation in et, and et normally distributed. The likelihood
function is maximised when the regime shift occurs at 1950 and estimation
results are provided in the ¢rst column of table 2. The lag length for the
numerator polynomial of the di¡usion path was set at m � 5 because this
gave the best ¢t to the data. Results are not sensitive to the value used for
m.
Because the data are in logarithms (multiplied by 100), the estimate of

b̂1 � 171 per cent from table 2 can be interpreted as the total long-run
percentage contribution of the 1950 regime shift to maize yield growth.
Furthermore, the estimate of m̂ � ÿ0:83 per cent suggests that, in the

Table 2 Estimation results for the regime shift-diffusion models

Parameter Shift regime shift model Two regime shifts model

t0 29.72 29.02
(8.81) (8.19)

m ÿ 0.83 ÿ 0.80
(0.54) (0.49)

b1 171.31 108.72
(27.68) (27.55)

b2 ö 55.08
(20.00)

d 0.91 0.81
(0.16) (0.07)

s2
e 576.85 554.46

(98.94) (95.09)

Log Likelihood ÿ 312.65 ÿ 311.30

Q-statistics
ÿLag 1 0.600 1.202

(0.439) (0.273)

ÿLag 2 1.491 2.714
(0.475) (0.257)

ÿLag 5 4.160 5.250
(0.527) (0.386)

Note: Numbers in parenthesis under the coe¤cients are asymptotic standard errors while numbers in
parentheses under Q-statistics are p-values for the null hypothesis of no autocorrelation in the residuals
from the model.
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absence of new technological innovations, there is a constant `depreciation
rate' in maize yield growth of slightly less from 1 per cent per year. As stated
earlier, this could be due to decreased resistance to pests and diseases,
increased use of marginal lands, etc. However, this depreciation rate is not
statistically di¡erent from zero at standard signi¢cance levels, and so we can
conclude that there is no growth (or decline) in trend yield in the absence
of regime shifts.
The estimated trend yield path under a single regime shift is shown in

¢gure 2. The constant depreciation rate prior to 1950 is clearly visible, as is
the 1950 regime shift. Trend yield increases slowly at ¢rst but then more
rapidly. By the 1980s the period of rapid trend growth appears to have
subsided. The di¡usion path itself is isolated and shown in ¢gure 3. The
estimate of d̂ � 0:91 generates a very long and £at di¡usion path, which
suggests it takes almost 20 years for 80 per cent of the total e¡ect of a regime
shift to be incorporated into trend yields.
It is interesting that the estimated date of 1950 for when the single

regime shift occurred corresponds with the initial introduction of hybrid
seed into the large-scale maize sector of Zimbabwe. Indeed, the single
regime shift in this model might be interpreted as the impact of a
technological package which includes improved hybrid seed varieties,
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expanded use of commercial fertiliser, improved management practices,
etc. which began around 1950.
Next the model was estimated allowing for two regime shifts, continuing

to assume normally distributed and serially uncorrelated et. A grid search
was implemented allowing the ¢rst shift to occur between 1945 and 1955 and
the second between 1957 and 1965. The likelihood function was maximised
for an initial shift in 1950 and a second in 1963. However, all results were
virtually identical irrespective of whether the second shift occurs in 1961,
1962, or 1963. Hence, we report results for 1961 because this is the year
immediately following the release of a major new hybrid, SR52. As before,
we estimated the models assuming m � 5 and results are not sensitive to this
choice.
Results for the model with two regime shifts are given in the second

column of table 2. The estimated depreciation rate remains at slightly under
1 per cent �m̂ � ÿ0:8� but, again, this rate is not statistically di¡erent from
zero at conventional signi¢cance levels. With two regime shifts the estimated
total long-run contribution of the 1950 regime shift falls to b̂1 � 109 per cent
as opposed to 171 per cent in the single regime shift model. However, the
second regime shift in 1961 contributes an additional b̂2 � 55 per cent to
trend yield growth, providing a total contribution of 164 per cent from both
regime shifts.
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The estimated trend yield path for the two regime shift model is shown
in ¢gure 4 with the corresponding di¡usion path in ¢gure 5. The two
innovations in 1950 and 1961, along with their associated di¡usion paths, are
clearly visible. Comparing ¢gures 5 and 3 we see that the di¡usion path
under two regime shifts is much shorter and steeper than under the single
regime shift, with 80 per cent of the e¡ect now coming after 10 years, as
opposed to 20 years in the single regime shift model.
The single regime shift model is nested in the two regime shift model and

so a test of b2 � 0 allows the models to be compared. An asymptotic t-test
on b2 � 0 generates a p-value of 0.003 while the likelihood ratio statistic for
testing the same hypothesis is 2.7 with a p-value of 0.10. Clearly, the Wald
and likelihood ratio tests give con£icting results in this application. However,
given results of the t-test, the additional £exibility provided by the two
regime shift model, and the fact that the length of the di¡usion path in the
two regime shift model is more consistent with prior information on the
speed of technology di¡usion in agriculture, we conclude that the model with
two regime shifts is the preferred model. Models with three regime shifts
were also investigated but these led to little additional explanatory power
over the two regime shift model. As a ¢nal check on model speci¢cation Q,
tests for ¢rst, second, and ¢fth degree autocorrelation in the error terms were
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conducted. The results given in table 2 indicate that the null hypothesis of
no autocorrelation is strongly supported in both models at all lags.

5. Concluding comments

This article introduces an alternative model of crop yield growth paths which
allows for large infrequent innovations, or regime shifts, whose impacts
follow a di¡usion path. The shape of the di¡usion path is speci¢ed a priori
and used to identify the timing and e¡ect of regime shifts. It is argued that
the regime shift-di¡usion model is more consistent with what we know about
the actual process of technological innovation and di¡usion in agriculture
than are the more common polynomial or stochastic trend models of crop
yield growth. Estimation of the regime shift-di¡usion model only requires
data on crop yields and allows the contribution of speci¢c innovations in
trend yield growth to be estimated, along with an estimate of the length of
the corresponding di¡usion path.
In an application to maize yields in Zimbabwe's large-scale farming sector

the regime shift-di¡usion model provided a good ¢t to the data. Results
suggest that technological packages associated with the introduction of
hybrid seed varieties have provided a major impetus to trend yield growth.
Results also suggest that the di¡usion path is quite long with at least 10 years
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required to absorb 80 per cent of the total contribution of a regime shift in
crop yield growth, and 20 years required to absorb 95 per cent. It is also
interesting to note that the results suggest that the major e¡ect of
technological innovations associated with the introduction of existing hybrid
seeds has already been felt. Thus, without major new technological
innovations, trend yield growth for large-scale maize in Zimbabwe is
predicted to be entering a period of stagnation or slow decline.
Variation in the length and shape of technology di¡usion paths can be

interpreted as the lag between generation of new technology and its
widespread adoption by farmers. Increases in yield can therefore be achieved
either by development of new technologies and/or speeding up the rate of
di¡usion. Future research will focus on endogenising the di¡usion path by
identifying the contribution of underlying causal factors to the length and
shape of the estimated di¡usion paths.
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