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Productivity improvement in Korean rice
farming: parametric and non-parametric
analysis’

Oh Sang Kwon and Hyunok Lee*

The published empirical literature on frontier production functions is dominated
by two broadly defined estimation approaches — parametric and non-parametric.
Using panel data on Korean rice production, parametric and non-parametric pro-
duction frontiers are estimated and compared with estimated productivity. The non-
parametric approach employs two alternative measures based on the Malmquist
index and the Luenberger indicator, while the parametric approach is closely
related to the time-variant efficiency model. Productivity measures differ consider-
ably between these approaches. It is discovered that measures of efficiency change
are more sensitive to the choice of the model than are measures of technical
change. Both approaches reveal that the main sources of growth in Korean rice
farming have been technical change and productivity improvements in regions of
the country that have been associated with low efficiency.

1. Introduction

Since the pioneering work of Farrell (1957), a large amount of literature
has been published on the measurement of frontier production functions
and productive efficiency. Within the common concept of a frontier produc-
tion function, the empirical literature that focuses on frontier production
has used two broadly defined approaches — the non-parametric programming
approach, commonly referred to as data envelopment analysis (Charnes
et al. 1978); and the parametric stochastic approach (Aigner et al. 1977).
The two alternative approaches have different strengths and weaknesses. The
essential differences largely reflect the different maintained assumptions used
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324 O.S. Kwon and H. Lee

in estimating the frontiers. The main strength of the statistical approach
stems from the fact that the frontier is stochastic, and this allows the effects
of noise to be separated from the effects of inefficiency. However, the statisti-
cal approach is parametric — it requires the specification of a functional
form. This implies that structural restrictions are imposed, and the effects of
misspecification of functional form might be confounded with inefficiency.’
The reverse is true for the non-parametric approach. The non-parametric
approach is free from the misspecification of functional form and other re-
strictions, but it does not account for statistical noise and is therefore vulnerable
to outliers. Some progress has been achieved in overcoming the disadvantages
of each approach, but the essential differences largely remain, and the empir-
ical performance of each approach has continued to be of interest to the
users of the frontier framework (Ferrier and Lovell 1990; Sharma et al. 1997,
Fulginiti and Perrin 1998).

In the present paper, we use Korean rice panel data and both parametric
and non-parametric frontier methods to estimate productivity changes for
rice production in Korea. The application of the frontier framework to the
Korean situation is motivated by our personal observation of Korean rice
farms and evidence that farms might exhibit differences in their productiv-
ity.” Using panel data over the period of 1993-1997, we estimate parametric
and non-parametric production frontiers and compare the results on pro-
ductivity measures obtained from both approaches. More specifically, we
employ a parametric model that is closely related to Battese and Coelli’s
(1992) time-variant efficiency model. For non-parametric models we employ
two alternative measures based on the Malmquist index approach in the

' The underlying assumption of the statistical approach that the firm-specific level of
inefficiency is uncorrelated with input levels may be unwarranted. Furthermore, one of
difficulties with the statistical framework arises with the modelling of multi-output techno-
logy. While non-parametric methods easily accommodate multi-output technology, it is
not easy to model multi-output technology in the statistical framework (particularly, in the
primal approach).

% The fact that one even attempts to measure relative efficiency reflects a basic premise
that firms may operate at different efficiencies. That is, using the same input mix, two firms
produce different output levels or two firms use different input levels to produce the same
output. This raises an interesting point that is not addressed in the neoclassical theory of
the firm. The question becomes, why the optimizing behaviour of the firm does not lead to
output maximization given a set of inputs. Under the neoclassical framework, one obvious
explanation would be missing variables such as unobserved constraints or unmeasured
input quality (such as managerial ability). In light of this, inefficiency may be a measure of
our ignorance, that is, our inability to collect all the relevant information. In the present
study, the notion of ‘efficiency’ is based only on input—output relationships observed from
the data.
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spirit of Caves et al. (1982) and further developed by Fare et al. (1994)
and the Luenberger indicator approach recently developed by Chambers
(Chambers et al. 1996; Chambers 2002).

While the primary objective of the present paper is to compare empirical
performance of productivity outcomes between parametric and non-
parametric approaches, another important aim is to shed some light on
Korean rice productivity, an issue studied little in the past. Korea has long
been a significant importer of wheat and feed grains, and more recently, it
has become a growing market for beef and selected horticultural crops
(Sumner ez al. 1999). The exception, until recently, has been rice. The country’s
previous border policy inspired little research on rice productivity, par-
ticularly outside Korea. Research on Korean rice productivity contributes
in two ways. First, as border restrictions have been relaxed, there has been
growing interest in the Korean market among world market observers, and
productivity is an important element in understanding the outlook for the
Korean market. Second, until now, public policy in Korean agriculture has
been focused on boosting rural income with little attention to productivity.
Assessing the unexplored productivity potential is an important component
of evaluating the future path of productivity. The previous regime of autarky
and considerable government intervention helped marginal farmers remain
in business. A more open market would be expected to induce some marginal
farmers to retire from rice farming, which means that average current pro-
ductivity would be misleading as an assessment of the productivity potential.
This underscores the relevance of frontier methods.

The present paper is organised as follows. We first provide an analytical
framework for estimating various productivity measures. Then, to provide
context to our analysis, section three briefly describes rice farming in Korea
and discusses the data used. We then present estimation procedures in
section four. The estimated results are presented and discussed in section
five. Conclusions are drawn in the final section.

2. Theoretical framework

As a first step to the representation of productivity change, we begin with
the notion of total factor productivity (TFP). Let rice output y € R, be pro-
duced using an input vector x € R}. The rate of change in TFP represents
the rate of change in productivity and is measured using the following Divisia
index:

. dlny & dlnx
TFP = - 1
0 le o (1)
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where x, and s, are the quantity and cost share of the nz/ input, respectively.
Since the production data are collected for discrete years, the rate of productiv-
ity change is approximated with the following Tornqvist index:

N
TFP=Iny™ —Iny' =) %(s;” +s)(Inx"" —Inx!). (2)
n=1

If data on the quantities and prices of all inputs and outputs are available,
the rate of productivity change in equation (2) may be measured directly.
However, the index in equation (2) does not explain the sources of produc-
tivity change.

Caves et al. (1982) introduced an output-based Malmquist index of pro-
ductivity change as a measure of productivity growth. They defined the
Malmquist index of change in output productivity as the geometric mean
of two Malmquist indexes of output productivity:*

te t+l 1+ t+l o+l t+ 12
MI,H—l — Do(x ) y ) Do (x ) y ) (3)
D(I;(xt, yt) ng+l(xt’ yt)

In equation (3) the function D!(x', ') is the output distance function for
year ¢, which is defined as the ratio of observed output to the maximum
output producible with given technology and input vectors (Shephard
1970; Fire 1988).* The superscripts of the distance functions represent the
reference technology indexed by year. Thus, D!(x™, y""), for instance, is
the value of the output distance function evaluated at the input—output of
year ¢ + 1 using the technology of year ¢.

Fare et al. (1994) has suggested using a Malmquist index to decompose

productivity change between two years into technical and efficiency changes:

12
Mz,H—l _ D:)+1(xt+l’ yr+l) D;(.X'H], yr+l) D;(x’, yt) (4)
- Dt(xt yr) Dt+l(xt+1 yt+1) Dr+1(xt yr) :

In equation (4), the first ratio represents the change in technical efficiency
between the two years (TECy,,, while the bracketed term represents

* Caves et al. have identified several conditions under which the Malmquist index is iden-
tical to the Torngvist index.

* Following Shephard (1970) and Fiire (1988), the output distance function is defined at

tas D!(x', y")=1inf{6>0:(x', y'/0) € T'}, where T" is the production technology in the rth
year consisting of all feasible input/output vectors.
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technical change (TC,,;,,,) between the two years. That is, the expression in
equation (4) allows us to decompose productivity growth into changes in
technical efficiency over time (a measure of individuals catching up toward
the frontier) and changes in the reference technology (i.e., shifts in frontier
over time).

More recently, Chambers et al. (1996) and Chambers (2002) suggested an
alternative non-parametric technique of measuring the total productivity
change based on the directional distance function. The directional output
distance function is defined as:

Di(x',)';g)=supife R (x',y +Pg)eT'},geR,, g#0, (5)

where T' is the production technology in year ¢ consisting of all feasible
input and output vectors, and g represents the direction in which y is ex-
panded.’ The directional output distance function represents the maximal
translation of the output in the direction of g within 7. At g =y, the relation-
ship between the directional output distance function and the Shephard
output distance function is obvious (Chambers et al. 1996):

Di(x', y's ) = UD(x", ) ~ 1. (6)

Given that g can take other values, the Shephard output distance function
is a special case of the directional output distance function.

Following Chambers et al. (1996), the Luenberger productivity indicator
for periods ¢ and ¢ + 1 evaluated at g =y is defined as:

Lt,t+1 — %{ljf,*l(x', yt; yt) _ l_))([)‘f’l(xf‘l'l’ yr+1; yr+1) + D’(t)(xt, yt; yt) _ l‘)’;(xnl’ yt+1; yr+1)}’

(7)
where the cross-period directional distance function, for example, D’(x™, y';
3" is the maximal translation of output in the direction of "', using the

technology of year ¢. As was shown in Chambers et al. (1996), the Luen-
berger productivity indicator can be additively decomposed into a rate of
technical efficiency change (TEC, ,.,) and a rate of technical change (TC,,.,),

5 Note that directional distance functions are more general than expressed in equation
(5). A vector of output can easily replace our single output, and (x, y) both can be expanded
in the directions of (g,, g,). In the present paper, we consider the case of a directional output
distance function with g, = 0. (For more information and intuition, see Chambers et al. (1996)).
Furthermore, it is worth mentioning that an alternative formulation for the Luenberger
distance function can be provided using the Farrell proportional distance introduced by Briec
(1997). Briec provided the conditions under which the Farrell proportional distance is identical
to the directional distance introduced by Chambers et al. (1996).
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TEC,,,, = Dy(x', y'; y") — DJ(x™, y™; ™) ®)

TCpyen = %{5,’,”(x’, VLYY = D™,y y + DI, 5 ) = Dx', »'s D).
Note that this additive decomposition property is particularly useful in
our present study because the parametric model that follows also generates
additive decomposition results, and the consistent additive format makes
our comparison more relevant.®
In the estimation of distance functions required to generate Malmquist
indexes and Luenberger indicators, we impose constant returns to scale
(CRS). The empirical application does not necessitate the CRS assumption
(Fére et al. 1994; Fire et al. 2001).” However, in our estimation, the CRS
restriction guarantees that the values of cross-period distance functions, for
instance, D/(x, y""), are obtained for all individual observations.
Parametric methods have also been used to estimate productivity changes.
Nishimizu and Page (1982), Bauer (1990), and Kumbhakar and Lovell (2000)
have suggested several parametric ways to decompose productivity change.
As a necessary step, one must assume functional forms for the production
frontier and the distribution of disturbances. The ability to cope with sto-
chastic elements comes at the cost of restrictions on the shape of the frontier.
As an initial step in developing the parametric approach, represent the
production technology with the following function:

y=f(x, 1) exp (-u), ©)

where f(x, t) is a production frontier and exp(—u) is the value of the output
distance function, which is less than or equal to one. Thus, exp(—u) is often
represented as the efficiency score, that is, the efficiency of transforming in-
puts into output. If technical efficiency changes over time, then u is assumed
to be dependent on time. When a functional form for f(x, ¢) is specified, the
rate of change in y is represented by the following:

diny < df(x,t) x, dlnx, Jdlnf(x,t) du
dt =2 " Cdr

n=1 axn f(xv t) dt (9[ d[ (10)

% The Luenberger indicator was suggested by a reviewer who noted that it is particularly
useful in our context. In the present study the Luenberger distance function is estimated
using non-parametric methods. However, it is useful to note that various Luenberger
indexes can be also estimated within the parametric framework. For example, the quadratic
approximation of the Luenberger distance function is introduced by Chambers (2001).

7 Fare et al. (1994, 2001) show the calculation of the scale effect with no CRS restriction.
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Define €, = [df (x, t)/dx,]/[x,/f(x,1)] as the elasticity of output with respect
to the nth input. Then, the rate of productivity change is expressed as:

dlnx, Jlnf(x,0) du
dt ot dt’

TFP =Y (g,-s,) (11)

With the scale elasticity defined as € =Y ¢, the rate of productivity
change is then finally decomposed into (Kumbhakar and Lovell 2000):

n=1

N
TEP = (& —1)28 dInx, £y g_,,_Sn\dlnxn L OInsxn du
dt £ ) dt ot dt (12)

=SEC,. . + AEC,. +TC, + TEC

Para Para Para Para*

The first term (SEC,,,,) on the right-hand side of (12) represents the effect
of scale efficiency. It implies that if the production technology exhibits
increasing (decreasing) returns to scale, that is, €>1 (€< 1), an increase
(decrease) in input use contributes to productivity. The second term
(AEG,;,,,) represents the effect on productivity of a change in allocative effi-
ciency. The third term (TC,,,,) measures the effect on TFP of a shift in the
production frontier (i.e., the rate of technical change). The last term
(TEC,,,,) measures the effect on TFP of a change in technical efficiency.
The sum of these four components is the total change in productivity.
All four terms in equation (12) can be identified if a production frontier
f(x, 1) is estimated and the value of u is identified based on the estimation
results.®

3. Background and data
3.1 Background

As with many other Asian countries, rice is by far the most important crop
in Korea. It accounts for more than 40 per cent of the country’s cropland,

8 To be consistent with the discrete form of the data, the components of the TFP in
equation (12) are accordingly transformed into:

N —~
TFP = ' — (u™ - u)+(£—1)2 "(lnx’“ lnx,’z)+2[87"—§J(lnx’“ Inx!)
€

n=l1

wheref_’ =12{[d1n f(x, H)dty] + [d1n f(x, t + D)/Ity]}, &, =12} + ei*'), =3V &, and §,
1/2(s! + sih).
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generates about 50 per cent of total crop revenue (30% of total agricultural
gross domestic product), and is cultivated on about 80 per cent of crop
farms (Korean Ministry of Agriculture and Forestry 2002). With nine per
cent of the country’s total population still in farming, the importance of
rice in the country’s agriculture and economy is evident.

Such dominance of rice in crop agriculture in Korea had been main-
tained through the country’s strict trade policy.” However, the minimum
access provisions of the Uruguay Round Agriculture Agreement required
Korea to import rice, beginning with one per cent of base-period domestic
consumption in 1995 to four per cent in 2004. Minimum access quantities
and the way imports have been managed mean that there has not yet been
any measurable impact of market opening on the domestic market. But, it
is obvious to Korean farmers that the changing domestic and world policy
environment will in future require them to pay increasing attention to pro-
ductivity issues.

Over the last several decades, Korean rice productivity growth has been
sluggish, with year-to-year fluctuations. To provide an historical perspective
on Korean rice production, figure 1 depicts total factor productivity growth
over the last three-and-a-half decades (1966-2002) using the Térnqvist index
formulation (the supporting data are presented in appendix 1).'° The rates of
total factor productivity have been fluctuating around zero, with no distinct
growth path over time. We calculated cumulative productivity over this period
and found it to be 35 per cent, which translates into an average one per cent
annual growth rate.

3.2 Data

The models developed in the previous section are applied to panel data
spanning a S5-year period, 1993-1997. The data are obtained from the
special rice farmer survey administered by the Korean Ministry of Agriculture
and Forestry. The survey collects rice-specific production data from 1026

° Until 1995, Korea had maintained a strict ban on rice imports, except for emergencies
(in 1981, a severe drought year, Korea imported a substantial amount of rice). However, the
markets for other commodities such as corn, soybeans, or wheat have been relatively open.
For example, domestic production of wheat accounts for less than one per cent of total
consumption.

1 Data used for this calculation are aggregated time series data, with the same input
groups used in the rest of the present study (see the data section).
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Figure 1 Rate of change in total factor productivity (TFP; 1967-2002).

Data source: Various issues of Annual Report on the Farm Household Economy Survey, Ministry
of Agriculture and Forestry.

randomly selected farms over the 5-year period, 1993-1997, the maximum
period for which the Ministry continues the same panel.'!

Our data set contains observations on one output and six input variables.
The output of rice is unhusked rice measured in kilograms. The input data
are aggregated into six categories: (i) land, (ii) labour, (iii) capital, (iv) fer-
tiliser, (v) pesticide and (vi) other inputs. The data collected on inputs are
largely in value terms rather than quantities, except for land and labour.
Land includes the area planted to rice, and labour measured in hours
includes own and hired labour. The remaining inputs are measured in value
terms. In particular, the capital input includes the average estimated
replacement cost of structures, machinery depreciation, repairs, and leased
farm equipment, and the other input category includes expenditures on
seed, water, electricity and fuel. The capital, fertiliser and pesticide expenditure
data are deflated using respective input-specific purchasing price indices, and
the other input category is deflated using overall purchasing price indices of
farm households.? Use of expenditure input data is a concern. When input
prices vary systematically (changing in real terms), our data in value terms
would systematically bias the estimation results. That is, prices lower than

" We have a relatively short time period for our panel data. However, to our knowledge,
few frontier production studies in agriculture have been conducted using such a large sample.
An exception is Huang and Kalirajan (1997). Using a stochastic varying parameter frontier
approach, Huang and Kalirajan, in their study of Chinese grain production, used annual
household survey data of 1000 grain farmers covering the years 1993-1995.

2 We used national level input-specific deflators; unfortunately less aggregated (at the
regional level) deflators were not available.
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Table 1 Descriptive statistics of output and inputs’

Rice Land Labor Capital Fertiliser Pesticides Others

) (xa) (X0 (xc) (x) (xp) (x0)
Mean value per farm household
1993 7775 097 314 500 190 274 91
1994 8704 1.15 295 539 229 251 101
1995 8366 1.20 281 544 222 260 98
1996 9541 1.24 266 557 230 286 107
1997 9887 1.29 255 562 221 321 109
Kyounggi 10698  1.51 261 737 267 319 108
Kangwon 7658 1.14 335 466 345 231 114
North Chungchong 7549 097 273 440 207 223 98
South Chungchong 11442 1.50 341 608 247 351 116
North Choolla 11416 145 328 743 224 405 109
South Choolla 7238 0.86 269 466 169 262 106
North Kyoungsang 7348 0.85 242 435 152 200 91
South Kyoungsang 5691 0.83 197 319 131 179 61
All year/province mean 8855  1.17 282 540 218 278 101
Standard deviation 7339 L.75 210 449 404 251 111
Input use per unit of output
1993 1000 kg 0.125 40.4 64.3 24.4 35.2 11.7
1994 1000kg 0.132 339 61.9 26.3 28.8 11.6
1995 1000 kg 0.143  33.6 65.0 26.5 31.1 11.7
1996 1000 kg 0.13 27.9 58.4 24.1 30.0 11.2
1997 1000 kg 0.13 25.8 56.8 22.4 325 11.0
Kyounggi 1000 kg 0.141 24.4 63.9 25.0 29.8 10.1
Kangwon 1000 kg 0.149 437 60.9 45.1 30.2 14.9
North Chungchong 1000 kg 0.128  36.2 58.3 27.4 29.5 13.0
South Chungchong 1000 kg 0.131  29.8 53.1 21.6 30.7 10.1
North Choolla 1000 kg 0.127  28.7 65.1 19.6 35.5 9.5
South Choolla 1000kg 0.119 372 64.4 23.3 36.2 14.6
North Kyoungsang 1000 kg 0.116 329 59.2 20.7 27.2 12.4
South Kyoungsang 1000 kg 0.146  34.6 56.1 23.0 31.5 10.7

fUnits are kilogram for rice, hectare for land, hour for labour and 1000 won for the rest of the inputs.

national prices result in the overestimation of efficiency. However, given that
only material inputs are measured in value terms (excluding inputs such as
labour and land that might exhibit significant regional differences) and
input specific price trends are removed, we believe that the magnitude of
estimation bias would be small.

The descriptive statistics for inputs and output are summarised in
table 1. We present mean values per farm household by year as well as by
province (regional unit used in our results section). Consistent with our
output distance function approach, table 1 also provides input values per
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unit of output (1000 kg). These figures indicate that, except for labour, for
this 5-year period input use per unit of output did not change much. Labor
use per unit of output declined and this happened with no increase in cap-
ital or material input use.

Finally, our data also confirm that rice farms in Korea are small, with
the average land holding of slightly over one hectare per household for the
sample. Of the total farms, 93% had a land holding of less than 2 hectares,
and another 5% had a land holding of between 2 and 3 hectares. One
empirical implication of this characteristic relates to the CRS restriction on
the non-parametric productivity calculations. One rationalisation for the
CRS assumption in empirical estimation is that technology that is recover-
able from the data involves only the local technology. The fact that farms
in our sample can be characterised with a similar scale of operation (i.e., all
are small) means we are less concerned about our CRS assumption. Simply
put, over the range of the great majority of our observations the finding of
a small and economically unimportant scale effect might not be surprising,
as scale does not vary much over the observations.

4. Estimation procedures and stochastic frontier function estimation
4.1 Procedures for non-parametric estimation

The first step in non-parametric estimation is to estimate the relevant out-
put distance functions. The inverse of the Shepard output distance function
with respect to the izh firm’s input and output bundle (x*, y"*), referenced
to the year ¢ technology, can be calculated using the following linear
program:

[D!(x", ") = maxt

J
s.t. Ty <Yz

J=1
x> Zz/-x,{’t n=1...,N
=1
z,€R, j=1,...,J. (13)
The maximised value of the objective function in the above problem
measures the output-based technical efficiency of the itk firm at year ¢. The

linear program used to calculate the directional output distance function can
be similarly formulated following the definition provided in equation (5):
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l‘)’(r)(xi,t’ yi,t; yi,t) — max,B

J
st (L+ By <z,
J=1

J
it B
X, = szxn n=1..,N
Jj=1

z,€R, j=L..J (14)
Note that the optimised value of the directional output distance function,
B, equals 7— 1 (see equation 6). Values of the distance function and dir-
ectional distance function associated with period ¢ + 1 are calculated using
the linear programming problems (13) and (14) above, but with ¢ being
replaced by ¢ + 1. The cross-period output distance functions are computed
in a similar way with a slight modification of the above programs. We do
not provide the programs here, but for example, D!(x**!, y**!) or D!(x"*"*,
i+l yi1) can be computed by replacing (x*, y*') with (x**!, »***!) in the
above problems, and finally the computation of D' (x™, y*') or D (x™, y*; y*')
can be carried out by solving for D!(x**!, y*!) or D!(x**, y+1; yi#l) with
the ¢ and ¢ + 1 superscripts being transposed. Our study uses a GAMS pro-
gram (version 2.50A) to calculate distance function values.

4.2 Procedures for parametric estimation

To obtain the parametric decomposition of productivity change as in equa-
tion (12), a functional form for the stochastic production frontier has to
be chosen. Ideally, the functional form should be flexible and computationally
straightforward. For these properties, we have chosen the translog function
that has been adopted widely in frontier studies (Kumbhakar 1994; Grosskopf
et al. 1997; Fuentes et al. 2001) with time-varying technical efficiency:"

_ _ 1 _ _
it it it it
Iny" =a,+ E o,Inx; +Oc,t+52 E B, InxInx’,
n n on

£ B Inxr+ %ﬁ,,zz SV (15)

13 Pitt and Lee (1981) and Battese and Coelli (1995) have suggested a time-invariant random
effect panel model of a stochastic frontier, where technical efficiency u' is constant over time.
However, because a time-invariant model cannot identify the contribution of efficiency change
to productivity change, we did not adopt their model in our present study.
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where B, = B, V"' is the two-sided noise component following an iid normal
distribution with zero mean and variance o>, and u* represents the technical
(in)efficiency of the ith producer in year ¢.

Allowing u"' to vary over both producers and time periods, Battese and

Coelli (1992) proposed the following specification of u"":

u"' = {exp[-n(t - 5)u’ (16)

where the u' are assumed to be independent and identically distributed non-
negative truncations of the N(u, ¢%) distribution suggested by Stevenson (1980).
Therefore u"' decreases, remains constant or increases over time if 77> 0,
n=0, or n<0. If producers improve their level of technical efficiency, then
n is positive. The advantage of the Battese and Coelli (1992) model in equa-
tion (16) is that it allows technical efficiency to change over time by adding just
one more parameter, 7, to be estimated. A shortcoming of the model is that
it restricts technical efficiency to be monotonically increasing or decreasing
over time. Cornwell ez al. (1990), Kumbhakar (1990), and Lee and Schmidt
(1993) have suggested several models where technical efficiency does not
necessarily change monotonically over time. However, those more general
models contain more parameters to be estimated than the model suggested in
equation (16). Given the relatively short time span of our data, a more general
model is not considered in our present study.'* The maximum likelihood
estimation of model (15) with the specification in (16) provides estimators
for the o/s and f's and the variance parameters ¢ and y(= 6%/(c. + 6?)).
The estimation was conducted using the program STATA (8.0).

4.3 Estimated stochastic frontier function

Parametric productivity measures are based on the estimated parameters of
the stochastic frontier function (15), and so a brief discussion of these esti-
mates and their statistical properties precedes our comparative analysis of
productivity indices that follows in the next section. The parameter esti-
mates are presented in table 2 and several observations stand out. First, the
variance parameters, o° and 7, are significantly different from zero. This
provides statistical confirmation of our presumption that there are differ-
ences in technical efficiency among farmers. Moreover, the share of this
one-sided error in total variance () is approximately 57 per cent. Second,
U, the mode of the truncated normal distribution, is significantly different
from zero, providing statistical evidence that the distribution of the random

4 Some of those more flexible models have never been estimated empirically.
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Table 2 Parameter estimates of the stochastic frontier’

Parameter Estimate t-value Parameter Estimate t-value
o, 3.955 17.89 Ber -0.020 -2.73
a, 0.247 3.92 Ber -0.016 -1.32
o, 0.415 5.17 Beo -0.011 -0.95
o 0.176 2.77 Brr 0.005 1.40
o 0.043 1.31 Bre -0.008 -1.19
op 0.014 0.24 Bor 0.008 1.48
o -0.003 -0.05 Bee 0.098 7.06
o 0.150 7.19 Bro 0.0004 0.04
Baa —0.025 -2.41 Boo -0.024 -2.16
BaL 0.044 272 B -0.021 -5.24
Brc -0.040 -3.11 B, 0.025 5.33
Bar 0.010 1.75 Be -0.014 -3.72
Bar -0.013 -1.10 Br, -0.002 -0.60
Bro 0.022 1.89 B -0.010 —2.45
B -0.092 -3.53 Bo 0.006 1.83
Bic 0.020 1.19 B -0.007 -2.58
Bir 0.008 1.02 o 0.056 14.00
Bue -0.036 243 y 0.573 19.10
Bio 0.042 3.40 u 0.217 6.91
Bec 0.057 4.26 n 0.075 6.33

iy=06(02+ 0?), In L =1287.579.

variable, u/, has a non-zero mean and is truncated below zero. Third, and
most importantly, 1 is significant and positive. This implies that technical
efficiency is time-varying and improves over time. The statistical signific-
ance of all of the parameters, o”, yand 7, reinforces the view that technical
efficiency affects productivity.

5. Comparison of parametric and non-parametric productivity measures

Given that our procedures generate large sets of results (obtained from
each of 5130 observations over 5 years), it is necessary to summarise the
results to facilitate the presentation. To this end, we sort the estimates by
time period and by geographical area, and present the mean values. Our
regional aggregation corresponds to the provinces of the Korean peninsula
(figure 2). These provinces are administrative units, but each province also
tends to have its own characteristic of rice terrain. Although investigating
regional patterns of productivity is not our main goal, the investigation at
a less aggregated, regional level enables us to explore what might have been
unobserved in the national numbers in our comparison analysis. Below, we
begin with the analysis of technical efficiency, and then proceed to discuss
productivity and decomposition results.
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N. Kyoungsang

S. Kyoungsang

Figure 2 Provinces in South Korea.

5.1 Comparison of technical efficiency scores

Solving the linear program (13) yields Farrell’s technical efficiency scores, a
component of the productivity index calculation. The equivalent parametric
scores are obtained by estimating exp(—u«). Our estimates of the parametric
efficiency scores are obtained using Battese and Coelli’s (1992) formula for
deriving the expected value of the efficiency scores. Table 3 presents mean
efficiency scores by province and by year, which can be interpreted as the
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Table 3 Mean technical efficiency scores

Year
Province 1993 1994 1995 1996 1997 All years
Kyounggi (148)f Non-parametric  0.84 0.79 0.69 0.75 0.76 0.77
Parametric 0.79 080 081 083 0.84 0.81
Kangwon (105) Non-parametric 0.52  0.70 0.60 0.68 0.70 0.64
Parametric 0.61 063 0.65 0.67 0.69 0.65
North Chungchong (120) Non-parametric 0.74 0.74 0.70 0.72  0.69 0.72
Parametric 071 072 074 0.75 0.77 0.74
South Chungchong (156) Non-parametric 0.80 0.77 0.68 0.75 0.78 0.76
Parametric 077 079 080 0.81 0.82 0.80
North Choolla (138) Non-parametric 0.84 0.77 0.69 0.66 0.64 0.72
Parametric 075 077 0.78 0.80 0.81 0.78
South Choolla (118) Non-parametric  0.65 0.66 0.61 0.67 0.64 0.65
Parametric 0.66 068 070 0.71 0.73 0.70
North Kyoungsang (124) Non-parametric 0.62 0.79 0.74 0.76  0.77 0.74
Parametric 071 073 075 0.76 0.78 0.75
South Kyoungsang (117) Non-parametric 0.67 0.77 0.74 0.75 0.72 0.73
Parametric 073 074 076 0.77 0.79 0.76
All regions (1026) Non-parametric 0.72  0.75 0.68 0.72 0.71 0.72
Parametric 072 074 075 0.77 0.78 0.75

"Numbers in parentheses are observation numbers.

average performance of each province relative to the national frontier in a
given period.

Compared to the non-parametric approach, parametric estimation tends
to produce higher efficiency scores. This is not surprising given that the
non-parametric method attributes any deviation from the frontier to ineffi-
ciency, whereas the parametric method recognises the stochastic component
in constructing the frontier. Furthermore, this tendency is more pronounced
in the later years, and this is likely the consequence of the specification of
the time variant one-sided error term, which in our case suggests increasing
technical efficiency with time (the positive value of 7). Year-to-year non-
parametric fluctuations indicate that 1995 was an unusual year, experiencing
a dip in the country’s average efficiency score, which coincides with the report
of crop damage by floods in that year. Even though non-parametric efficiency
scores fluctuate from year to year, the overall means for each province from
both approaches (last column of table 3) indicate that Kangwon, well
known for its mountainous terrain, is consistently one of the least efficient
regions, and Kyounggi, known for high quality rice, is found to be the most
efficient region.

Given the fact that the non-parametric method does not allow stochastic
terms and imposes less structural restrictions, non-parametric efficiency
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scores are expected to show fewer systematic patterns over the years than
parametric scores. We now ask a related question: is there any relationship
between the level of variation and the level of efficiency? In other words,
would a more efficient individual show less variation in efficiency ranking
over years? To investigate this issue, we examined the five-year efficiency
scores of the selected individuals from three groups labelled as high, aver-
age and low efficiency."” For each individual, we calculated the coefficient of
variation (CV) using the individual’s 5-year scores to investigate the level of
variation over 5 years. The mean CV of the groups, each consisting of 50
observations, were 0.21 for the low efficiency group, 0.16 for the mid effi-
ciency group and 0.08 for the high efficiency group, indicating that efficient
farmers tend to stay efficient over time. This cursory examination suggests
a potentially important possibility — an individual’s efficiency extends to an
ability to cope with exogenous shocks such as weather.

One last inquiry regarding efficiency scores deals with the cross-sectional
distribution of efficiency. Figure 3 plots the distributions of efficiency scores
for three selected years. We constructed these distributions using the kernel
method.' For all 3 years, parametric efficiency distributions seem to conform
to a certain distributional pattern with the distribution shifting to the right
with time (positive 17). Non-parametric efficiency distributions show no con-
formity in distributional patterns. These distributions, in general, have wide
spreads and have relatively high density clusters near the efficiency score of
one. It is also interesting to note that these high densities form another mode
in the distribution.

5.2 Comparison of productivity indexes and decomposition

We present three sets of productivity indexes in table 4, two non-parametric
indexes, the Malmquist index and the Luenberger indicator, and one para-
metric productivity index. A Malmquist index of less than 1.0 indicates a
decline in performance over time and a value greater than 1.0 indicates an
improvement. Correspondingly, a positive or negative Luenberger indicator
indicates improvement or decline. Comparing the two non-parametric

15 The sample observations are ranked by the individual’s 5-year average efficiency score.
We then select 5 per cent of the sample (50 observations) from each of the top, middle and
bottom of the ranking. The 5-year average scores range from 0.397 to 0.532 for the low-
efficiency group (ranks 1 through 50), from 0.709 to 0.721 for the mid-efficiency group
(ranks 489 through 538), and from 0.912 to 1 for the high-efficiency group (ranks 977
through 1026).

1 We used the Epanechnikov kernel and the Silverman’s (1986) optimal widow width for
kernel density estimation.
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Figure 3 Distributions of efficiency scores for selected years.

productivity indexes, we notice that productivity growth at the annual and
regional levels have been positive, with the exception of the Luenberger
indicator for the period 1994-1995. Decomposition results for this period
provide some insight on this conflicting result concerning net growth. Both
Malmquist and Luenberger decompositions indicate that this period was
characterised by productivity changes in both directions, an increase
caused by the shift of the frontier and a decline as a result of decreased
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Table 4 Non-parametric and parametric productivity indices and decomposition

Non-parametric approach Parametric approach
Malmquist index Luenberger indicator
Decomposition Decomposition Decomposition
Malmquist Luenberger ——m—— Rate of

index TECyum  TChaim indicator TEC, ., TCpn productivity AEC;,,, TEGC,,., TCp,.

Year mean for all provinces

1993-1994 1.24 1.107 1.116 0.265 0.125  0.14 0.084 0.0009 0.025 0.058
1994-1995 1.017 0.924 1.102 —-0.014 -0.152  0.139 0.074 0.0021 0.023 0.049
1995-1996 1.166 1.079 1.08 0.195 0.09 0.105 0.089 0.027 0.021 0.04
1996-1997 1.031 1.002 1.031 0.018 -0.025  0.043 0.068 0.017 0.02 0.03
Provincial mean for all years

Kyounggi 1.077 0.992 1.086 0.064 -0.038  0.102 0.059 0.011 0.016 0.038
Kangwon 1.253 1.156 1.083 0.307 0.1839  0.118 0.101 0.013 0.034 0.054
North Chungchong 1.096 1.005 1.087 0.086 -0.023 0.109 0.089 0.014 0.024 0.051
South Chungchong 1.095 1.011 1.082 0.089 -0.013  0.103 0.076 0.018 0.018 0.04
North Choolla 1.024 0.946 1.085 0.016 -0.097  0.113 0.061 0.007 0.019 0.034
South Choolla 1.09 1.008 1.083 0.106 -0.018 0.123 0.084 0.008 0.028 0.048
North Kyoungsang 1.189 1.1 1.077 0.194 0.098  0.096 0.086 0.012 0.023 0.052
South Kyoungsang 1.126 1.044 1.074 0.122 0.032  0.09 0.084 0.012 0.022 0.05
All province & 1.114 1.028 1.082 0.116 0.009 0.107 0.079 0.012 0.022 0.044

all year mean
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technical efficiency. and the difference in the magnitude of these changes re-
sults in opposite net growth. Overall decomposition results indicate that growth
as a result of technical change (TC) is always positive for both Malmquist
and Luenberger indexes, but results on technical efficiency change (TEC)
show mixed signs. Despite these obvious differences, the two non-parametric
approaches yield consistent productivity rankings over provinces, and both
confirm that technical change is the major growth component.

Parametric productivity rates are also presented in table 4. Overall, para-
metric rates tend to show less variation over the years and across provinces
— a result directly linked to what we observed for efficiency scores. Note that
the parametric decomposition has two additional efficiency components,
allocative efficiency and scale efficiency. The rates of scale efficiency are all
very small (all are below |0.001|) and are not reported in table 4."” The rates
of change in allocative efficiency are modest. Judging from the all-province
mean in the bottom row, allocative efficiency contributes approximately
15 per cent to overall growth in the country for the period analysed.

The comparison of parametric results with the Luenberger non-parametric
results is particularly relevant given that Luenberger and parametric decom-
positions are both in additive form. Substantial differences exist between
the parametric and Luenberger rates. These differences, however, seem more
pronounced with the results by year than the results by region, which is attri-
butable in part to the parametric restriction of the monotonic 1. Using the
rates provided in table 4, we calculated the cumulative productivity rates,
0.517 for the Luenberger rate and 0.354 for the parametric rate. These values
are clearly high for productivity growth realised over only 5 years. However,
it is important to bear in mind that these rates are based on productivity
in 1993, a year marked by unusually low productivity (figure 1)."

Decomposition results also differ substantially. Even though considera-
ble differences in magnitude exist, both parametric and non-parametric
approaches indicate that technical change plays a substantial role in overall
growth."” From the all-year averages, the shares of technical change in total
growth are 92 per cent and 56 per cent for the Luenberger and parametric
methods, respectively. The shares for technical efficiency change are 8 per
cent and 28 per cent.

17 Note that because of the CRS assumption, our non-parametric models have no com-
ponent for scale efficiency (i.e., the change in scale efficiency is zero).

'8 We are indebted to a reviewer on this point.
' The existence of technical change can be parametrically investigated by testing

dlnf(x,0)/dt=0, that is, o, =f,,=p,=0 in equation (15). We tested these parametric
restrictions, and strongly rejected no technical change (P-value = 0.0004).
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Despite these differences, some very similar results emerge from an
examination of provincial rates. Kangwon, one of the least efficient pro-
vinces, experienced the fastest rate of productivity growth, while Kyounggi
and North Choolla, two of the relatively efficient provinces, showed the
lowest rates of productivity growth. Interestingly, these provinces identified
with the fastest and slowest rates are both related to unusually high and
low rates of technical efficiency change.

6. Conclusions

In the present research we applied non-parametric and parametric models
to a sample of panel data of Korean rice production for the period of
1993-1997. We estimated productivity growth using the Malmquist index,
Luenberger productivity indicator and parametric approaches. Our produc-
tivity measures are decomposed into several sources of growth including
efficiency change (the portion attributable to individuals’ ‘catching up’ with
the frontier) and technical change (the portion attributable to the shift in
the frontier). Various measures of productivity growth and decomposition
results are compared and some implications about the models and results
are drawn.

There are differences in our empirical results between the parametric and
non-parametric models. First, the non-parametric results tend to fluctuate
widely in both longitudinal and cross-sectional dimensions. This is clearly
the consequence of the assumption on the stochastic component, some-
thing which may be intensified for agricultural data. Second, even though
considerable differences in results exist between the two approaches, the
longitudinal results (year means) seem to be farther apart than the cross-
sectional results (provincial means). This tendency is clearly observed in
table 4. We attribute this tendency to the monotonic property of the one-
side error term in the parametric model. That is, the magnitude and sign of
the parameter 11 determine the changes in the efficiency scores over time.
Even though we found 7 to be positive and statistically significant, the
assumption of technical efficiency improving over time for all individuals is
indeed restrictive.”” Third, examining the components relating to the shift
in the frontier (TC) and efficiency change (TEC), technical change turned
out to be a more important source of growth in the non-parametric models.
Nevertheless, some similar patterns in the parametric and non-parametric

» Note that the specification of our parametric model is relatively less restrictive given
our model uses a flexible function form (compared to the Cobb-Douglas model that is
more commonly used), and it is also common to assume a time-invariant 7 in many panel
data studies.
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results are observed for the technical change component, whereas no such
patterns seem to exist for the efficiency change component. This may indi-
cate that the difference in TFP results between the two approaches is
because of the efficiency change term. More generally, the measure of effi-
ciency change may be more sensitive to the choice of the model than the
measure of technical change.

Needless to say, empirical results are always dictated by the data used. It
is vital to understand the data in interpreting the results. As suggested ear-
lier, our data tended to fluctuate considerably, beginning and ending with
historic low and high productivity years (measured by the Térnqvist total
factor productivity index). This implies that our productivity measures are
based on a low productivity year and our results must be interpreted in this
context. A 5-year period of panel data is relatively short to draw any con-
vincing results on productivity growth. It is unlikely that high productivity
growth calculated in the present study can be sustained — rather, it is con-
fined to our specific data period.

Despite the caution required in interpreting the results, we can draw
some general conclusions about Korean rice productivity for the period
examined. Both approaches find the shift in the frontier plays an important
role as a source of productivity growth, suggesting that technological adop-
tion may be a vitally important source for overall productivity growth.
The provincial growth rates also indicate that the least efficient province
(Kangwon) experienced the highest rate of productivity growth and North
Choolla and Kyounggi, two of the most efficient provinces, exhibited the
lowest rate of productivity growth. These all suggest that, for the period
under analysis, the shift in the Korean rice production frontier has been a
steadier source of productivity growth than the improvement in catching up
with the frontier. Moreover, this growth has been achieved through produc-
tivity improvements in regions of the country that had been associated with
low efficiency.
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Appendix 1
Tornqvist total factor productivity (1967-2002)
Rate of change Rate of change
Year in TFP TFP? Year in TFP TFP!
1967 —-0.055 0.945 1985 —-0.051 1.155
1968 —-0.059 0.889 1986 0.010 1.166
1969 0.084 0.964 1987 —0.041 1.119
1970 —-0.087 0.880 1988 0.121 1.255
1971 0.125 0.990 1989 —-0.071 1.166
1972 —-0.078 0.913 1990 —-0.028 1.134
1973 0.050 0.959 1991 0.021 1.158
1974 0.165 1.117 1992 0.074 1.244
1975 —-0.076 1.032 1993 —-0.148 1.060
1976 0.144 1.181 1994 0.132 1.200
1977 0.110 1.311 1995 —-0.003 1.197
1978 —-0.144 1.122 1996 0.135 1.359
1979 —-0.006 1.115 1997 0.032 1.402
1980 —0.334 0.743 1998 —0.048 1.335
1981 0.321 0.981 1999 0.032 1.377
1982 0.097 1.076 2000 0.014 1.396
1983 0.092 1.176 2001 0.045 1.459
1984 0.035 1.217 2002 —-0.071 1.355

"The total factor productivity values (TFP) are based on 1966 (1966 = 1).
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