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Does Farm Size and Specialization Matter for

Productive Efficiency? Results from Kansas

Amin W. Mugera and Michael R. Langemeier

In this article, we used bootstrap data envelopment analysis techniques to examine technical
and scale efficiency scores for a balanced panel of 564 farms in Kansas for the period 1993–
2007. The production technology is estimated under three different assumptions of returns to
scale and the results are compared. Technical and scale efficiency is disaggregated by farm
size and specialization. Our results suggest that farms are both scale and technically in-
efficient. On average, technical efficiency has deteriorated over the sample period. Technical
efficiency varies directly by farm size and the differences are significant. Differences across
farm specializations are not significant.
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Productivity analysis of U.S. farms has received

substantial attention in empirical research. Dif-

ferences in technical efficiency across farms

have been identified as one of the major factors

explaining differences in farm survival and

growth, and changes in farm industry structure.

The general trend across the United States is

a decline in the number of farms, an increase in

the average farm size, and a decrease in labor

use. Serious concerns have emerged about the

economic health of family farms as traditional

farming communities have experienced declines

in profitability and competitiveness. The increas-

ingly strong move toward larger farms is per-

ceived as a threat to the long-term economic

viability of the small family farm. Thus, there

has been political pressure to support farmers

while at the same time a desire by policy-makers

to increase production efficiency. The passage of

the Federal Agricultural Improvement and Re-

form (FAIR) Act in 1996 introduced decoupled

payments that created an opportunity to tran-

sition into a more market oriented agricultural

policy.

There is an emerging consensus that technical

efficiency and overall performance of farms are

influenced by farm size so that larger and more

diversified farms are more productive or efficient

than small farms1 (Byrnes et al., 1987; Chavas

and Aliber, 1993; Featherstone, Langemeier,

and Ismet, 1997; Kalaitzandonakes, Wu, and

Ma, 1992; Key, McBride, and Mosheim, 2008;

Olson and Vu, 2009; Serra, Zilberman, and Gil,

2008; Weersink, Turvey, and Godah, 1990; Wu,

Devadoss, and Lu, 2003). Byrnes et al. (1987)

investigated the relative technical performance
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1 Technical efficiency is only one component of
productivity. Other components include scale effi-
ciency and allocative efficiency. Productivity measures
over time include total factor productivity, technical
change, and efficiency change.
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of Illinois grain farms and observed that the

major source of inefficiency was scale in-

efficiency, particularly for the large farms in the

sample. Weersink, Turvey, and Godah (1990)

examined the relationship between farm size and

technical efficiency using data from Missouri

grain farms and found efficiency to be posi-

tively related to farm size. Kalaitzandonakes,

Wu, and Ma (1992), using both the parametric

and nonparametric methods, examined the re-

lationship between farm size and technical ef-

ficiency using data from Missouri grain farms.

The authors reported that farm efficiency was

positively related to farm size irrespective of

the estimation methods used. Chavas and Aliber

(1993) analyzed economic, scale, and scope ef-

ficiency of Wisconsin crop and livestock farmers.

The authors found that scale and scope effi-

ciency measures depend on the farm size and

financial structure. Featherstone, Langemeier,

and Ismet (1997) investigated technical, allo-

cative, and scale efficiency for a sample of

Kansas beef-cow farms and found that profit-

ability was positively correlated with overall

technical efficiency, and that inefficiency was

negatively related to herd size and positively

related to the degree of specialization. Wu,

Devadoss, and Lu (2003) computed technical

efficiency indices for Idaho sugarbeet farms and

decomposed these indices into pure technical

efficiency, scale efficiency, and congestion effi-

ciency using nonparametric procedures. Improper

scale of operation and input over-utilization

were found to be the major sources of ineffi-

ciency but technical efficiency was indepen-

dent of farm size. Key, McBride, and Mosheim

(2008) estimated total factor productivity growth

for U.S. hog enterprises for 12 years (1992–

2004). Productivity gains were found to be driven

by technical progress and improvements in scale

efficiency rather than by efficiency gains. Serra,

Zilberman, and Gil (2008) investigated the in-

fluence of the decoupling of government pay-

ments on production efficiencies of a sample of

Kansas farmers using a stochastic frontier model.

Results indicated that an increase in decoupling

will likely decrease technical efficiencies. Olson

and Vu (2009) estimated the technical, alloca-

tive, and scale efficiencies of farms in southern

Minnesota using bootstrap nonparametric output-

based data envelopment analysis. The authors

found that large farm sizes are consistently as-

sociated with higher technical efficiency.

Two competing methods are often used to

compute technical efficiency, the parametric

stochastic frontier analysis and the nonparamet-

ric data envelopment analysis (DEA). The DEA

method has several advantages over the sto-

chastic frontier analysis method: DEA is non-

parametric and does not require any parametric

assumptions on the structure of technology or

the inefficiency term. Another advantage is that

as long as inputs and outputs are measured in

the same unit of measurement, an assumption

about complete homogeneity of the economic

agents included in the analysis is not needed

(Henderson and Zelenyuk, 2007). However,

DEA also has some drawbacks: the traditional

DEA approach does not have a solid statistical

foundation behind it and is sensitive to outliers.

To overcome those problems, Simar and

Wilson (1998, 2000) and others have introduced

bootstrapping into the DEA framework. Their

method, based on statistical well-defined models,

allows for consistent estimation of the produc-

tion frontier, corresponding efficiency scores,

as well as standard errors and confidence in-

tervals. These advances have not been included

in many recent studies that have examined farm

level technical efficiency of U.S. agriculture.

An exception is the Olson and Vu (2009) study

which estimated technical, allocative, and scale

efficiencies of farms in southern Minnesota us-

ing the bootstrap output-based DEA approach.

This paper used the Simar and Wilson (1998,

2000) smoothed bootstrap procedure to investi-

gate the bias, variance, and confidence intervals

for technical efficiency scores for the Kansas

farm sector. The study also investigates whether

both technical and scale efficiencies vary by farm

size and farm specialization. Results of this study

have policy implications pertaining to enhanc-

ing the competitiveness and long-term viability

of farms through expansion and diversification.

Methodology

This article follows the approach by Henderson

and Zelenyuk (2007) to define the underlying

production technology. For each farm i (i 5 1,
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2. . . n), the period-t input vector is xt
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i
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where Kt

i is physical capital and Lt
i is labor. Let

yt
i be a single output for farm i in period t. The

technology for converting inputs for each farm

i in each time period t can be characterized by

the technology set:
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jcan produceyt
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The same technology can be characterized by

the following input sets

(2) Ct
i yt
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� �
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i

� �
, xt

i 2 <2
1 .

We assume that the technology follows stan-

dard regularity assumptions under which the

Farrell input-oriented distance function2 can be

represented as:

(3)
TEt

i [ TEt
i xt

i, yt
ijCt

i yt
i

� �� �
5 supremum u > 0jxt

i

�
u 2 Ct

i yt
i

� �� �
8yt

i 2 <1
1.

A farm is considered to be technically efficient

when TEt
i 5 1 and technically inefficient when

0 < TEt
i < 1. The true technology and input sets

are unknown and thus, the individual value of

technical efficiency must be estimated using

either the nonparametric (data envelopment anal-

ysis) or parametric (stochastic frontier analysis)

techniques.

Given the production technology in Equation

(3), we use linear programming to estimate the

input distance function. The Farrell input-based

efficiency index for farm i at time t is defined as:

(4) e xt
i, yt

i

� �
5 min ujÆxt

i=u, yt
iæ 2 Tt

� �
.

In the above equation Y is output, K is capital,

and L is labor.3 The subscript i refers to an in-

dividual farm and the superscript t represents

the individual time period. The efficiency index

value for each farm is found using the following

linear program:

(5)

Minimize
u,z1,...,zj

ui

subject to

Yi £
P

k

zkYt
k

uKi ³
P

k

zkKt
k

uLi ³
P

k

zkLt
k

zk ³ 08k.

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

where ui is the efficiency measure to be cal-

culated for farm i at time t, and zk is the in-

tensity variable for farm i. One advantage of

the DEA approach is that it jointly calculates

the intensity variable and efficiency score in the

same programming problem. The above model

assumes constant return to scale (CRTS). Con-

stant returns to scale suggest that all firms operate

at an optimal scale. However, imperfect compe-

tition and financial constraints may cause farms to

operate below optimal scale. Adding
Pk

k 5 1

zk 5 1

to the constraints in the above model imposes

variable returns to scale (VRTS) while adding the

equation
Pk

k 5 1

zk < 1 imposes decreasing returns

to scale (DRTS).

Scale efficiency shows the degree of in-

efficiency that a unit is facing due to its scale of

operation. It is computed as a ratio of a farm’s

technical efficiency under CRTS to its techni-

cal efficiency under VRTS:

(6) SE1 5 TECRTS=TEVRTS.

Since TECRTS £ TEVRTS, SE1 £ 1. A farm

with SE1 5 1 is scale efficient in the sense that

the chosen input-output mix is optimal and

maximizes the average productivity. If SE1 < 1,

the input-output mix is not scale efficient and

the farm in question is operating either in a re-

gion of increasing returns (inefficient small

scale) to scale or decreasing returns to scale

(inefficient large scale).4

The smooth homogenous bootstrap DEA

approach introduced by Simar and Wilson (1998,

2 The input distance function determines where a farm
is located in the input space relative to the isoquant. It
aims at reducing the input amounts by as much as
possible while keeping at least the present output levels.

3 Working in smaller dimensions (in this case one
output and two inputs) tends to provide better esti-
mates of the frontier and helps overcome the ‘‘curse of
dimensionality’’ always present in nonparametric es-
timation (Daraio and Simar, 2007). Adding more
variables not only inflates DEA efficiency scores but
it may also conceal the actual magnitude of ineffi-
ciency (Hughes and Yaisawarng, 2004).

4 The ratio SE2 5 TECRTS/TENIRTS can be used to
indicate whether the scale inefficiency is due to a too small
scale or a too large scale. Increasing returns to scale is
inferred when SE2 5 1 given that SE1 < 1, and decreasing
returns to scale when SE2 < 1 given that SE1 < 1.
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2000) is used to allow for consistent estimation

of the production frontier, corresponding effi-

ciency scores, bias, bias corrected efficiency

scores, as well as standard errors and confi-

dence intervals. Bootstrapping investigates the

reliability of a data set by creating a pseudo-

replicate data set. Bootstrapping allows the

assessment of whether the distribution has been

influenced by stochastic effects and can be used

to build confidence intervals for point estimates

that cannot be derived analytically. Random

samples are obtained by sampling, assuming a

standard normal distribution, with replacement

from the original data set. This provides an esti-

mator of the parameter of interest. With DEA

bootstrapping, the data generation process (DGP)

is repeatedly simulated by resampling the sample

data and applying the original estimator to each

simulated sample. It is expected that the boot-

strap distribution will mimic the original un-

known sampling distribution of the estimators

of interest (using a nonparametric estimate of

their densities). Hence, a bootstrap procedure

can simulate the DGP by using Monte Carlo

approximation and may provide a reasonable es-

timator of the true unknown DGP. The bootstrap

estimates are biased by construction and the em-

pirical bootstrap distribution is used to estimate

the bias. An estimate of the bias is defined as the

difference between the empirical mean of the

bootstrap distribution and the original efficiency

point estimates. The bias-corrected estimator is

obtained by subtracting the bias from the origi-

nal efficiency estimates. Details of the DEA

bootstrapping process are well documented in

Simar and Wilson (1998, 2000).

Bootstrapping enables the investigation of

the sensitivity of efficiency scores to sampling var-

iations. However, this comes at a cost because the

ranking of original efficiencies may change if com-

pared with the bias-corrected efficiencies. The

main drawback of using bootstrapping in DEA

used to be computation time in running the repli-

cations; this is no longer a problem with the com-

putation power of the new generation of computers.

Data Description

Data for this study comes from the Kansas

Farm Management Association (Langemeier,

2010). We use a balanced panel of 564 farm

households for the period 1993–2007. The esti-

mated model includes one output, gross farm

income (GFI), and two inputs, capital and labor.

Gross farm income is an aggregation of crop and

livestock income while capital is an aggregation

of asset charges and purchased inputs.5

The nominal GFI is deflated by the Personal

Consumption Expenditure Index, with 2007 as

the base year. Real capital is calculated in the

following manner: first, total capital is calcu-

lated as the sum of asset charges and purchased

inputs. Second, a deflator is constructed using

the price indices for purchased inputs (Purinp)

and asset charges (Capp) by farm and year,

with 2007 as the base year, and weighted with

total capital:6

(7)

deflator 5
Purchased Inputs

Total Capital

� �
� Purinp

1
Asset Charges

Total Capital

� �
�Capp

Third, estimates of real capital by farm and

year are computed by dividing the nominal

capital by the deflator:

(8)

Real Capital 5
Assets Charges 1 Purchased Inputs

deflator

5
Nominal Capital

deflator

Labor is measured as the number of farm

workers per farm per year. To obtain this value,

we deflate the total annual cost of labor (in-

cludes hired and unpaid labor) by a labor price

index with 2007 as the base year. This value is

5 Two outputs and three inputs were aggregated
into one output and two inputs in computing technical
efficiencies because this study was a preliminary
analysis of a major study that investigated the dynam-
ics of labor productivity growth in the farm sector.
Asset charges include repairs, rental charges for land
and machinery, auto and conservation expense, cash
interest, real estate and property taxes, general farm
insurance, depreciation, and opportunity interest
charged on owned equity. Purchased inputs include
fuel and oil, seed, fertilizer and lime, chemicals, feed,
utilities, and crop insurance.

6 The deflator is a sum of the ratio of the relative
prices of purchased inputs and assets charges (with
2007 as base year), multiplied by the value shares of
each input. The weights (value shares) reflect the
importance of each input in the production process.
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then divided by the average annual salary of

a farm worker. No attempt is made to account

for quality differences in inputs because of lack

of such information in the database. However,

scatter plots are used in conjunction with box

plots to identify and eliminate outliers leaving

only 564 farms from the original 583 farms.7

The descriptive statistics of the data are pre-

sented in Table 1. In general, the series indicates

an upward trend for both real GFI and real capital,

although real GFI exhibits more fluctuations than

real capital possibly due to weather pattern fluc-

tuations. Average GFI increased from $196,099 in

1993 to $384,593 by 2007. Real capital increased

from $237,324 to $368,311. However, labor input

decreased from 1.56 workers to 1.38 workers

during the same time period, respectively.

The farms are grouped according to farm

size and specialization. Farm size is defined by

gross farm income levels: very small farms

(GFI < $100,000); (2) small farms ($100,000 <

GFI < $250,000; medium farms ($250,000 < GFI <

$500,000); and large farms (GFI > $500,000).

Specialization is defined by percentage of time

(T) devoted to crop production: livestock farms

(T < 50%), crop farms (T 5 100%), and diversified

farms (50% < T < 100%). The justification for

this segregation is that the farm categories may

face different constraints, which could sub-

sequently impact efficiency measures.

Empirical Results

Bootstrapping DEA Efficiency Estimates

The input oriented framework was used to esti-

mate technical efficiency. The orientation aims

at reducing the input amount by as much as

possible while keeping at least the present out-

put levels. For all the estimates, 2000 bootstrap

iterations (i.e., B 5 2000) were employed and

the models were estimated using the FEAR

package that is linked to the statistical package

R (Wilson, 2008). Tables 2 and 3 present the

mean technical efficiency scores of the 564 farms

under two assumptions of the technological set:

variable returns to scale, and non-increasing

returns to scale (NIRTS).8 For each table, the

Table 1. Mean and Standard Deviation of Output and Inputs

Year

Real Gross Farm

Income (in $10,000)

Real Capital

(in $10,000)

Labor Inputs

(in Persons/Farm)

1993 19.610 (15.057) 23.732 (17.365) 1.560 (1.010)

1994 19.566 (14.842) 25.162 (18.841) 1.560 (0.970)

1995 19.764 (16.513) 25.416 (19.324) 1.570 (1.040)

1996 25.351 (21.216) 26.245 (20.161) 1.560 (1.000)

1997 27.171 (21.106) 28.244 (20.847) 1.590 (1.100)

1998 20.885 (16.521) 28.395 (20.919) 1.590 (1.080)

1999 23.325 (18.936) 29.115 (22.245) 1.550 (1.020)

2000 23.926 (19.419) 29.476 (22.473) 1.490 (0.920)

2001 24.274 (20.576) 30.458 (23.803) 1.500 (1.050)

2002 22.487 (19.300) 29.878 (23.118) 1.480 (1.000)

2003 26.508 (22.600) 30.590 (23.745) 1.470 (0.980)

2004 29.337 (26.572) 31.682 (25.137) 1.460 (0.960)

2005 29.730 (26.705) 33.557 (26.294) 1.440 (0.950)

2006 30.532 (26.273) 34.265 (26.831) 1.420 (0.920)

2007 38.459 (34.821) 36.831 (29.188) 1.380 (0.970)

Mean 25.395 (22.527) 29.536 (23.149) 1.510 (1.000)

7 Outliers are observations that appear to be in-
consistent with the remainder of the data. For this
study, those are abnormally high or low capital inputs
relative to gross farm incomes in real values.

8 Results for technical efficiency under CRTS are
not presented. Each of those three technological sets is
necessary in identifying the nature of returns to scale.
It is important to note that efficiency scores are relative
measures, in this case, relative to best practice pro-
ducers in Kansas.
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second through seventh columns represent the

mean of the DEA-estimates, the bias corrected

DEA estimates, the estimated bias, the esti-

mated standard errors, and the 95% confidence

lower and upper bounds, respectively. The

confidence intervals are based on the bias cor-

rected efficiency scores. Daraio and Simar

(2007) note that when the bias is larger than the

Table 2. Input Oriented Technical Efficiency Scores with Variable Returns to Scale (VRTS) Model
for Kansas Farms

Year

Efficiency

Score

Bias Corrected

Efficiency Bias

Standard

Error

Lower

Bound

Upper

Bound

1993 0.6250 0.5870 0.0379 2.3959 0.5691 0.6200

1994 0.6242 0.5871 0.0370 2.3480 0.5686 0.6182

1995 0.5770 0.5329 0.0440 1.7584 0.5161 0.5705

1996 0.6096 0.5693 0.0403 2.2858 0.5515 0.6027

1997 0.6223 0.5884 0.0338 1.9060 0.5675 0.6175

1998 0.6122 0.5746 0.0376 2.5520 0.5580 0.6070

1999 0.5628 0.5195 0.0433 1.6573 0.4997 0.5564

2000 0.6386 0.6007 0.0378 2.7297 0.5838 0.6329

2001 0.6447 0.6048 0.0398 2.5808 0.5865 0.6387

2002 0.5768 0.5268 0.0500 1.4289 0.5095 0.5696

2003 0.5297 0.4769 0.0528 0.6964 0.4577 0.5215

2004 0.6232 0.5854 0.0378 1.9847 0.5668 0.6172

2005 0.5159 0.4584 0.0575 0.5532 0.4411 0.5061

2006 0.5563 0.5081 0.0481 1.5576 0.4912 0.5492

2007 0.5699 0.5291 0.0407 2.1151 0.5150 0.5591

Mean 0.5925 0.5499 0.0426 1.9033 0.5321 0.5858

The above table reports mean technical efficiency scores bootstrapped with 2000 iterations. The total number of farms for each

year is 564. The equality of means test for the standard and bias corrected efficiency scores is rejected at 1% level of

significance.

Table 3. Input Oriented Technical Efficiency Scores with Non-Increasing Returns to Scale
(NIRTS) Model for Kansas Farms

Year

Efficiency

Score

Efficiency Bias

Corrected Bias

Standard

Error

Lower

Bound

Upper

Bound

1993 0.6151 0.5861 0.0289 2.8142 0.5654 0.6105

1994 0.6072 0.5755 0.0316 2.6167 0.5552 0.6015

1995 0.5627 0.5299 0.0328 2.0051 0.5091 0.5576

1996 0.5790 0.5439 0.0351 1.8244 0.5234 0.5728

1997 0.6119 0.5867 0.0251 2.2664 0.5670 0.6083

1998 0.6022 0.5756 0.0266 2.8741 0.5560 0.5983

1999 0.5344 0.4977 0.0367 1.4940 0.4760 0.5291

2000 0.6243 0.5950 0.0292 3.1120 0.5758 0.6191

2001 0.6167 0.5815 0.0351 2.1617 0.5614 0.6107

2002 0.5529 0.5143 0.0386 1.4117 0.4928 0.5475

2003 0.5154 0.4702 0.0452 0.8092 0.4483 0.5089

2004 0.5956 0.5648 0.0308 2.1771 0.5453 0.5899

2005 0.4993 0.4501 0.0491 0.7552 0.4307 0.4907

2006 0.5307 0.4921 0.0386 1.8583 0.4713 0.5249

2007 0.5434 0.5159 0.0274 2.0740 0.4986 0.5399

Mean 0.5727 0.5386 0.0340 2.0169 0.5184 0.5673

The above table reports mean technical efficiency scores bootstrapped with 2000 iterations. The total number of farms for each year

is 564. The equality of means test for the standard and bias corrected efficiency scores is rejected at 1% level of significance.
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standard deviation, the bias corrected estimates

are preferred to the original estimates. In this

case, the original estimates are preferred because

the standard deviation is larger than the bias.

Table 2 presents the mean technical effi-

ciency, across years, under VRTS. The efficiency

score varied from a minimum of 52% (2005) to

a maximum of 65% (2001). For the bias cor-

rected technical efficiency score, the minimum

was 46% (2005) and the maximum was 60%

(2001). The lower bound ranged from 44% to

59% while the upper bound ranged from 51%

to 64%. The mean difference between the lower

and upper bounds throughout the study period

is 5.4%, with the highest value being 6.5%

(2005) and the lowest value being 4.4% (2007).

Results for the mean technical efficiency,

across years, under NIRTS are presented in

Table 3. The average efficiency score varied

from a minimum of 50% (2005) to a maximum

of 62% (2000). For the bias corrected technical

efficiency score, the minimum was 45% (2005)

and the maximum was 60% (2000). The lower

bound ranged from 43% to 58% while the up-

per bound ranged from 49% to 62%. The mean

difference between the lower and upper effi-

ciency interval throughout the study period is

4.9%, with the highest value being 6.1% (2003)

and the lowest value being 4.1% (1997).

The mean technical efficiency, across years,

under CRTS varied from a maximum of 60%

(2001) to a minimum of 47% (2005). For the

bias corrected technical efficiency score, the

minimum was 42% (2005) and the maximum

was 58% (2000). The lower bound ranged from

40% to 56% while the upper bound ranged

from 46% to 60%. The mean difference be-

tween the lower and upper efficiency interval

throughout the study period is 4.8%, the highest

value is 7.2% (2003) and the lowest value is

3.6% (1993).

In general, the mean technical efficiency

scores of all farms for the entire sample period

were 55, 57, and 59% for the CRTS, NIRTS,

and VRTS technology sets, respectively. These

results are consistent with production eco-

nomics theory because VRTS technology set is

the least restrictive and the CRTS technology

set is the most restrictive, whereas the NIRTS

technology set lies in between. The estimated

mean confidence intervals for CRTS are nar-

rower (4.8%) than for NIRTS (5.0%) and VRTS

(5.4%) because of the greater curvature of the

production frontier for the VRTS case. Like-

wise, the CRTS technology set displays smaller

bias (2.8%) compared with NIRTS (3.4%) and

VRTS (4.3%), where larger bias indicates a

larger degree of noise.

The mean, standard deviation, and co-

efficient of variation for the original technical

efficiency scores under VRTS and the bias cor-

rected efficiency scores are presented in Table 4.

The original scores are higher than the bias

corrected scores, which have lower standard

deviations and coefficients of variation. Ranking

of original efficiency scores changed compared

with the ranking of bias corrected efficiency

scores. Farms that seemed to be perfectly effi-

cient are ranked at a lower level when the bias

corrected efficiency scores are considered, sug-

gesting that data for those farms could have been

measured with a larger degree of noise. Only

15% of the farms ranked as perfectly efficient

under original efficiency scores retain a domi-

nant position with the bias corrected efficiency

ranking. Likewise, some farms that were not on

the frontier are ranked at higher levels relative

to other farms across the years. Indeed, all

farms that had perfect original efficiency scores

end up with bias corrected efficiency scores of

less than unity. These results are not inconsistent

but rather an outcome of the theory behind the

construction of the homogenous smooth boot-

strap procedure as outlined in Simar and Wilson

(1998, 2000).

Table 5 presents the estimated farm-specific

technical efficiency measures (VRTS) in the

form of frequency distribution within a decile

range. The results reveal that, in general, Kansas

farms have not been successful in employing

best-practice production methods and achiev-

ing the maximum possible output from new

and existing technologies. The majority of the

farms had an efficiency score between 40%

and 70% throughout the sample period. The

estimated results reveal that the number of

farms that operate at an efficiency level less

than 50% are increasing while those operating

above the 50% efficiency level are decreasing.

The empirical results suggest that Kansas farms
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are technically inefficient and have been facing

efficiency deterioration over time with low

performers getting relatively worse over time. On

average, the relative technical efficiency scores

under the three technological sets have been de-

clining over the sample period. We do not know

if this is solely because the frontier is shifting

over time, if the producers are falling further

behind a static frontier, or a combination of

both factors.

The reported results are consistent with

what has been reported in literature. Bravo-

Ureta et al. (2007) in a meta-regression analysis

study of farm level technical efficiency scores

found that efficiency scores in North America

range from 45.9% to 100%. The authors

Table 4. Summary Statistics of Original and Bootstrapped Technical Efficiency Scores under
VRTS Model

Original Technical Efficiency Bootstrapped Technical Efficiency

Year Mean

Standard

Deviation

Coefficient

of Variation Mean

Standard

Deviation

Coefficient

of Variation

1993 0.6250 0.1553 0.2484 0.5870 0.1362 0.2321

1994 0.6242 0.1499 0.2402 0.5871 0.1340 0.2282

1995 0.5770 0.1712 0.2967 0.5329 0.1534 0.2879

1996 0.6096 0.1639 0.2689 0.5693 0.1457 0.2559

1997 0.6223 0.1438 0.2311 0.5884 0.1338 0.2275

1998 0.6122 0.1596 0.2607 0.5746 0.1492 0.2597

1999 0.5628 0.1591 0.2827 0.5195 0.1355 0.2609

2000 0.6386 0.1533 0.2400 0.6007 0.1369 0.2279

2001 0.6447 0.1500 0.2326 0.6048 0.1322 0.2186

2002 0.5768 0.1571 0.2724 0.5268 0.1366 0.2594

2003 0.5297 0.1555 0.2935 0.4769 0.1319 0.2766

2004 0.6232 0.1595 0.2558 0.5854 0.1400 0.2391

2005 0.5159 0.1639 0.3178 0.4584 0.1390 0.3032

2006 0.5563 0.1609 0.2893 0.5081 0.1438 0.2830

2007 0.5699 0.1783 0.3129 0.5291 0.1647 0.3113

Mean 0.5925 0.1635 0.2759 0.5499 0.1479 0.2689

The mean, variance, and coefficient of variation in the second to fourth columns represent the variations within the sample of

original efficiency scores. The fifth to seventh columns represent the variations within the bootstrapped efficiency estimates with

2000 replications.

Table 5. Frequency Distribution of Input Efficiency Scores with VRTS Model

TE (%) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

<20 1 1 8 3 1 0 2 1 0 3 3 2 6 5 9

20–30 6 3 18 11 6 9 18 4 2 18 26 7 38 28 33

30–40 24 32 55 39 22 42 61 26 26 42 92 32 106 59 59

40–50 86 76 94 82 69 95 121 70 59 114 133 79 114 114 95

50–60 142 151 154 148 149 121 148 135 135 150 141 119 138 140 127

60–70 152 146 112 130 170 137 109 144 147 121 92 168 90 123 117

70–80 82 79 65 77 90 99 60 107 112 76 49 83 51 58 71

80–90 40 52 34 42 35 31 27 46 50 20 17 37 8 21 26

90–99 11 11 11 14 13 18 9 15 18 11 5 18 5 6 17

100 20 13 13 18 9 12 9 16 15 9 6 19 9 10 10

The original VRTS efficiency scores are used to indicate the number of farms that defined the best-practice frontier over the

sample period.
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observed that a number of factors influence

technical efficiency scores, including the num-

ber of variables in the model, number of fixed

and variable inputs, and for parametric models,

the functional form used to estimate the model.

Technical Efficiency Estimates by Farm Size and

Specialization

Estimates of technical efficiency under VRTS

technology set by farm size and specialization

are presented in Tables 6 and 7. The VRTS

technology set is used to report the remaining

results because it is less restrictive than the

NIRTS and CRTS technology sets. Technical

efficiency is found to vary by farm size with

large farms being more efficient (80%) com-

pared with medium-sized farms (67%), small

farms (56%), and very small farms (49%). The

ranking of efficiency scores by farm size does

not change when the bias corrected efficiency

scores are used (i.e., 70%, 63%, 54%, and 42%,

respectively). These results are consistent with

the findings of Weersink, Turvey, and Godah

(1990) and Paul et al. (2004) that technical

efficiency is positively related to farm size.

There was not much variation in technical

efficiency scores by farm specialization al-

though crop farms are slightly more efficient

(61%) than diversified farms (59%) and live-

stock farms (59%). Mean technical efficiency

decreased over time within each farm size and

farm specialization group, as well as over the

entire sample. This provides evidence for the

presence of efficiency degradation within each

farm size group and farm specialization group,

between the groups, and over the entire farm

sample.

To statistically test technical efficiency dif-

ferences by farm size and farm specialization,

the nonparametric Kruskal-Wallis (KW) test

was conducted for all the VRTS efficiency

measures.9 The null hypothesis is that the rank

of technical efficiency scores, based on the

means, is the same across the different farm

sizes and farm specialization groups. Using the

KW test, the null hypothesis for farm sizes is

rejected at the 1% significance level. However,

the null hypothesis for farm specialization

groups is not rejected even at 10% significance

level. This provides evidence that farm size

does matter when comparing farm technical

efficiency but specialization does not.

Scale Efficiency

Results for scale efficiency are presented in

Table 8. The mean scale efficiency over the

sample period was 93%, with the highest scale

efficiency attained in 1998 (96%) and the

lowest in 1999 (89%). Scale efficiency was

consistently high in comparison with technical

efficiency. On average, small farms are more

scale efficient (97%) compared with medium-

sized farms (93%), very small farms (89%),

and large farms (84%). However, analysis over

time indicates that large and medium-sized

Table 6. Technical Efficiency Scores by Farm Size

Farm Size

Efficiency

Score

Efficiency Bias

Corrected Bias

Standard

Error

Lower

Bound

Upper

Bound

Very Small 0.4872 0.4214 0.0657 2.0021 0.4194 0.4773

Small 0.5631 0.5414 0.0217 2.8421 0.5233 0.5595

Medium 0.6678 0.6245 0.0432 0.7622 0.5977 0.6610

Large 0.7983 0.6958 0.1025 0.0032 0.6677 0.7814

Average 0.5925 0.5499 0.0426 1.9033 0.5321 0.5858

The equality of means test for the standard and bias corrected efficiency scores for each farm size category is rejected at 1% level

of significance.

9 The Kruskal Wallis test is a nonparametric test for
the situation where the analysis of variance (ANOVA)
normality assumption may not apply. This test was
used instead of ANOVA because normality of effi-
ciency scores in the entire sample was rejected using
the Shapiro-Wilk, Shapiro-Francia, and Skewness-
Kurtosis tests. However, both the KW and ANOVA
gave identical results for this case.
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farms are becoming more scale efficient while

small and very small farms are becoming scale

inefficient.10 These results are contrary to the

results by Paul et al. (2004) who found small

family farms to be less efficient in terms of both

their scale of operation and technical aspects of

production than large farms. The mean differ-

ence in scale efficiency by farm specialization

was not statistically significant: crop farms

(93%), diversified farms (94%), and livestock

farms (92%).

Analysis of Returns to Scale

One can ascertain the returns to scale properties

of a farm by comparing the technical efficiency

levels with reference to CRTS, VRTS, and

NIRTS frontiers. Returns to scale expresses the

relationship between a proportional change in

inputs and the resulting proportional change in

output. Constant returns to scale implies that an

n percent rise in all inputs produces an n per-

cent increase in output. When output rises by

a larger percentage than inputs, there are in-

creasing returns to scale (IRTS). Decreasing

returns to scale holds when output rises by a

smaller percentage than inputs.

A variable returns to scale frontier exhibits

CRTS, DRTS, and IRTS. When the NIRTS and

CRTS measures are equal but differ from the

VRTS measure, increasing returns to scale

(IRTS) holds (i.e., TENIRS 5 TECRTS < TEVRTS).

When VRTS and NIRTS measures are equal

but differ from the CRTS measure, DRTS holds

(i.e., TEVRTS 5 TENIRTS < TECRTS). The three

measures are equal only at the most productive

scale size (MPSS). The MPSS constitutes two

groups of farms, those that are both technically

and scale efficient and those that are technically

inefficient but scale efficient. For the purpose

of this analysis, the former group is considered

to be operating under CRTS (i.e., TENIRTS 5

TECRTS 5 TEVRTS 5 SE 5 1) and the latter

under MPSS (i.e., TENIRTS 5 TECRTS 5

TEVRTS < 1 and SE 5 1).

Table 9 presents the results of the overall

number of farms operating under optimal scale

(CRTS), sub-optimal scale (IRTS), supra-optimal

scale (DRTS), and most productive scale size

over the sample period. The data show that the

number of farms that operated under supra-

optimal scale increased while those that operated

at sub-optimal scales decreased. This implies

that, on average, farms gradually grew larger

beyond their optimal scale of operation, hence

became scale inefficient. The overall returns to

scale results indicate that only 8% of the farms

in the sample operated under CRTS and MPSS,

39% of the farms operated under sub-optimal

returns to scale, and 53% operated under supra-

optimal returns to scale. The optimal level of

output under CRTS represented a point in the

following years: 1994, 1995, 1996, 1998, 1999,

2001, 2004, 2005, and 2006. In the other years,

the optimal level of output for CRTS represented

a range. On average, the percentage of farms that

operate under DRTS is as follows: large farms

(6%), medium farms (20%), small farms (61%),

and very small farms (92%). In contrast, the per-

centage of farms operating under IRTS is as fol-

lows: large farms (88%), medium farms (70%),

Table 7. Technical Efficiency Scores by Specialization

Farm

Specialization

Efficiency

Score

Efficiency Bias

Corrected Bias

Standard

Error

Lower

Bound

Upper

Bound

Livestock 0.5866 0.5449 0.0417 2.0027 0.5263 0.5802

Mixed 0.5864 0.5480 0.0383 1.9937 0.5294 0.5808

Crops 0.6060 0.5559 0.0501 1.6988 0.5398 0.5984

Average 0.5926 0.5499 0.0426 1.9033 0.5321 0.5858

The equality of means test for the standard and bias corrected efficiency scores for each farm specialization category is rejected

at 1% level of significance.

10 There are significant adjustment costs to chang-
ing scale and many farms may be simply locked in.
The high adjustment cost may make it difficult for
small farms to change the size of their operation,
suggesting that new frontier shifting technology may
be favoring large-scale farms.
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small farms (29%), and very small farms (4%).

This lends support to the view that competitive

forces are reducing the number of small com-

mercial farms and shifting production to larger

farms.

Analysis of Efficiency Distributions

Nonparametric kernel density estimation tech-

niques have become common in graphically

illustrating various results in nonparametric

production efficiency analysis (Henderson and

Zelenyuk, 2007; Simar and Zelenyuk, 2006).

Compared with histograms, kernel densities

have the advantage of providing smoother

density estimates and do not depend on the

width and number of bins (Wand and Jones,

1995). This method is useful in this study be-

cause no distributional assumptions were im-

posed on the efficiency scores across farms.

When using kernel density estimation, Simar

and Zelenyuk (2006) note that one has to take

care of at least three things: the random vari-

able whose density is to be estimated must have

a bounded support, only the consistent estimate

of the efficiency scores are used, and there is no

violation of the continuity assumption needed

to ensure consistency of the density estimation.

In this paper, the Silverman reflection method

is used to correct for the bounded support,

bootstrap DEA is used to compute the consis-

tent efficiency scores, and a Gaussian kernel

density is estimated using the bias corrected

efficiency scores. The Silverman (1986) rule of

thumb is used for bandwidth selection.

Figure 1 reports the kernel destiny estimates

of the technical efficiency scores under VRTS

Figure 1. Distributions of Input Efficiency Scores, 1993 and 2007

Table 9. Overall Number of Farms Operating
under Optimal Scale (CRTS), Sub-optimal
Scale (IRTS), and Supra-optimal Scale (DRTS),
and Most Productive Scale Size (MPSS)

CRTS IRTS DRTS MPSS Total

1993 6 295 148 115 564

1994 4 224 325 11 564

1995 3 212 291 58 564

1996 5 256 273 30 564

1997 2 336 224 2 564

1998 4 261 298 1 564

1999 2 230 287 45 564

2000 4 307 197 56 564

2001 3 193 324 44 564

2002 3 101 453 7 564

2003 2 186 323 53 564

2004 5 155 362 42 564

2005 3 289 113 159 564

2006 2 188 373 1 564

2007 2 98 457 7 564

The values above report the actual number of farms operating

under each of the four technological sets. MPSS are farms that

are scale efficient (SE 5 1), but technically inefficient (TE <

1). Optimal scale farms operate under CRTS, sub-optimal

scale farms operate under IRTS, and supra-optimal scale

farms operate under DRTS.
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for 1993 (solid line) and 2007 (dashed line).

The figure shows a shift of the entire distribu-

tion of efficiency scores for 2007 toward the

left, indicating that on average Kansas farms

did not move closer to the frontier over the

sample period. The shift is more prominent in

the left tail, an indication that farms that had low

efficiency scores in 1993 moved further away

from the frontier relative to farms that had high

efficiency scores (i.e., farms are getting left be-

hind). The densities exhibit a single peak sug-

gesting that the distribution of efficiency has

remained unimodal over the sample period.

Concluding Remarks

This article introduced recent advances in

bootstrapping and data envelopment analysis to

investigate technical and scale efficiency in-

dices of the Kansas farm sector using three

different technology sets: constant returns to

scale (CRTS), variable returns to scale (VRTS),

and non-increasing returns to scale (NIRTS).

The data consisted of a balanced panel of 564

farms for the sample period 1993–2007. The

input oriented approach was used to compute

technical efficiency scores, bias corrected effi-

ciency scores, and the 95% confidence interval.

Further, the sample was separated into farm size

and farm specialization categories. Kernel esti-

mation methods were used to investigate the

distribution of efficiency scores in 1993 and 2007.

The following conclusions may be drawn

from the analysis. First, the study reveals that

there is substantial room for improvement in

technical efficiency in the sample of farms

analyzed. The mean annual technical efficiency

scores over the sample period, assuming VRTS

technology, was 59%, with a minimum of 52%

and a maximum of 65%. More farms operated

under VRTS rather than CRTS. Second, tech-

nical efficiency scores differ by farm size, but

not by specialization. Larger farms are more

technically efficient than smaller farms. Third,

scale efficiency analysis reveals that farms are

more scale efficient than technically efficient,

indicating that inefficiency primarily emanates

from poor managerial practices rather than scale

of operation. The analyzed farms are, on aver-

age, scale inefficient (93%). Small farms (97%)

and medium-sized farms (93%) are more scale

efficient compared with very small farms (88%)

and large farms (84%). However, large and

medium-sized farms are becoming more scale

efficient over time while small and very small

farms are becoming scale inefficient. The dif-

ference in scale efficiency by specialization is

not significant. Fourth, the study finds no evi-

dence of improvement in technical efficiency

(catching-up) over the sample period. Farms that

had lower efficiency scores in 1993 moved fur-

ther away from the frontier by 2007 compared

with farms that initially had high efficiency

scores. Our results are consistent with the ob-

servation by Serra, Zilberman, and Gil (2008)

that an increase in decoupled payments would

increase farms’ technical inefficiencies in Kansas.

Decoupled payments are not linked to produc-

tion or yield; hence, higher production yields

are not receiving any premiums. Therefore, pro-

ducers may not have the incentive to produce the

maximum attainable output and may respond to

a decline in price supports by reducing the ef-

ficiency with which they operate.

In general, the results indicate deteriora-

tion in technical efficiency implying that most

farms in the sample have either not been able to

uptake new technologies adopted by the techno-

logical leaders in the sector or become inefficient

in their managerial operations, or a combination

of both factors. Smaller farms are becoming both

technically and scale inefficient compared with

larger farms that are becoming less inefficient

over time. From a policy viewpoint, the results

indicate that any policy to address inefficiency

in the farm sector should take into account the

relationship between farm size and efficiency.

Farms that get both technically and scale effi-

cient by increasing in size should be encour-

aged to grow larger while those that become

both technically and scale inefficient by getting

smaller should be allowed to exit. Policies

designed to increase technical efficiency could

include education, training, and extension pro-

grams. Intensification of extension programs is

of particular importance because it influences

managerial decisions at the farm level. As a

policy incentive, the state government could

increase the level of assistance to producers by

expanding farm lending programs to provide
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incentives to adopt new technologies. Eliminat-

ing all technical inefficiencies would increase

the average gross farm income from $229,972

to $308,438 without a change in input usage.

Alternatively, producers can achieve the cur-

rent average output levels with less input usage;

real capital can be reduced from $269,406 to

$170,045 and labor from 1.40 to 0.86 persons.

A key question for farm policy makers is

whether the increasing relative inefficiency

means that the educational systems in Kansas

are failing to disseminate appropriate information

to producers, whether the rate of technological

adoption differs across groups of producers, or

a combination of both factors. Therefore, a log-

ical extension of this study would be to identify

the determinants of efficiency, especially how

the input-output configuration and different man-

agerial practices affect efficiency. Further analy-

sis is also needed to evaluate how the frontier is

changing using mixed period distance functions.

[Received March 2010; Accepted May 2011.]
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