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Mitigating Cotton Revenue Risk Through
Irrigation, Insurance, and Hedging

E. Hart Bise Barham, John R.C. Robinson, James W. Richardson,

and M. Edward Rister

This study focuses on managing cotton production and marketing risks using combinations of
irrigation levels, put options (as price insurance), and crop insurance. Stochastic cotton yields
and prices are used to simulate a whole-farm financial statement for a 1,000 acre furrow-
irrigated cotton farm in the Texas Lower Rio Grande Valley under 16 combinations of risk
management strategies. Analyses for risk-averse decision makers indicate that multiple irri-
gations are preferred. The benefits to purchasing put options increase with yields, as they are
more beneficial when higher yields are expected from applying more irrigation applications.
Crop insurance is strongly preferred at lower irrigation levels.
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Cotton is the top cash crop for Texas, with a
statewide economic impact of $4 billion (Hudgins,
2003; Robinson and McCorkle, 2006). Despite the
large economic impact, cotton farming in Texas is
subject to considerable risk. For example, a 2002
drought in Texas caused statewide cotton losses
of $95 million in farm gate value (Hudgins,
2003). In general, the dry Texas climate implies
that water availability, through either irrigation or
rainfall, is a major source of production risk.
For some irrigated Texas regions, even the
supply of irrigation water can be risky. For
example, the Texas Lower Rio Grande Valley
(hereafter, LRGV) crop production is dependent
on variable water supplies in reservoirs along the
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Rio Grande River (Stubbs et al., 2003). With
sufficient irrigation, LRGV cotton can yield up to
1,500 Ibs/acre and the yield is more stable than
non-irrigated cotton. As a result, irrigated cotton
usually receives more cost effective crop insur-
ance coverage than dryland cotton (Zuniga,
Coble, and Heifner, 2001).

Cotton producers also face variable prices
from uncertainty of aggregate supplies, uncertain
foreign demand, and government trade policies.
There are several alternatives available to pro-
ducers for managing price variability risks,
including farm programs, marketing or coopera-
tive pools, forward contracting, and hedging
(Robinson et al., 2006). The specific location of
a farming operation can also influence price
variability. A natural hedge occurs in areas that
produce large enough cotton supplies to affect
the national price, creating a negative correla-
tion between price and yield. For example, the
Texas Southern High Plains (an extensive cotton
growing region) would have a much stronger
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price/yield correlation than a smaller production
region like the LRGV." Areas like the LRGV
with a weaker natural hedge may find forward
contracting or hedging useful for reducing price
risk, however (Harwood et al., 1999).

This paper examines the risk efficiency of
alternative combinations of risk management
tools over a range of risk aversion levels for a
representative LRGV cotton farming operation.
The research extends the literature on farm risk
management by considering the risk mitigating
aspects of irrigation in combination with crop
insurance, hedging, and farm programs. Previous
research has demonstrated that crop insurance
and irrigation are partial substitutes, while for-
ward pricing has been shown to complement crop
yield insurance (Coble et al., 2002; Coble, Heifner,
and Zuniga, 2000; Dalton, 2004). Zuniga, Coble,
and Heifner (2001) is an example of further com-
bining yield insurance, hedging, and government
programs. The research considered in the present
paper adds various levels of irrigation to hedging
and insurance decisions, within the existing farm
program framework.

Irrigation strategies are commonly viewed as
yield enhancing, but they are also mitigating the
risk of lower yield outcomes (Lin, Mullen, and
Hoogenboom, 2008; Senft, 1992). Timing of
irrigation applications and the amount of water
administered have been two common research
topics. For example, Pandey (1990) found that
higher levels of water application were risk
efficient at low levels of risk aversion, but that
the preference for water applications declined
at higher risk aversion levels. Dalton (2004)

'In response to an anonymous reviewer, we esti-
mated correlation coefficients of —0.48 and —0.51
between LRGYV yields and, respectively, cash price or
December futures, over the study period of 1976-2005.
Neither yield-price correlation was significantly different
from zero at the 95% level, but both correlations were
significant at the 90% level. So there appears to be only
a weak correlation. When we further omitted the spurious
association of very low 1995 LRGYV yields and corre-
spondingly high prices (the latter attributed to U.S. and
international conditions), the resulting yield-price corre-
lations were in the range of —0.20 for both futures and
cash prices, neither of which were significantly different
from zero at the 90% level. Our conclusion is that our
original assumption of negligible yield-price is correct,
and that our option hedge methodology is unaffected.
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examined the interaction of crop insurance and
irrigation as risk management strategies using
an expected utility framework. The study used
an ex ante bioeconomic simulation approach and
derived certainty equivalents for each decision
alternative. Dalton concluded that irrigation strat-
egies provide risk management benefits as risk
aversion increases, and federal crop insurance
programs were inefficient in reducing exposure to
production risk from variable rainfall. The more
recent paper by Lin, Mullen, and Hoogenboom
(2008) used biophysical simulation to evaluate
both risk efficient irrigation levels and the effec-
tiveness of weather derivatives as a risk mitigation
tool.

To summarize the literature cited above, the
combination of forward pricing and crop insur-
ance appears to be a complementary risk man-
agement strategy, and irrigation appears to be a
general substitute for crop insurance, although
this has not been studied for varying levels of
irrigation. No studies were found that examine the
triple interaction of insurance, forward pricing, and
irrigation level as risk management strategies.

Sixteen combinations of irrigation levels, put
options, and crop insurance are examined in this
research. A Monte Carlo simulation model is
developed to simulate probability distributions
of net returns for a representative LRGV cotton
farm. Many models have used simulation to
generate distributions for key output variables
such as net returns, e.g., Bailey and Richardson
(1985); Coble, Zuniga, and Heifner (2003); Harris
and Mapp (1986); Lien, Hardaker, and Flaten
(2007), Lien et al. (2007); Pandey (1990); Ribera,
Hons, and Richardson (2004); and Zuniga, Coble,
and Heifner (2001). The probability distribu-
tions of net returns are typically ranked using
various procedures. This paper ranks probability
distributions initially with stochastic dominance
and then with stochastic efficiency with respect
to a function (hereafter, SERF) (Hardaker 2004a,
2004b).

Methods
Model

A single-period Monte Carlo financial model
of a 1,000 acre furrow-irrigated cotton farm in
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the LRGV was built. Risk management control
variables in the model included (a) zero, one,
two, or three irrigation applications; (b) pur-
chase (or not) of a 65% multiple peril crop in-
surance policy; and (c) purchase (or not) of put
options on total expected production. Combi-
nations of these three basic strategies comprised
16 different scenarios (i.e., 4 x 2 x 2 choices,
respectively). The key output variable for the
model was whole farm net return, which was
simulated for each of the 16 risk management
strategies. The probability distribution of whole
farm net returns for the 16 alternatives can be
used by a hypothetical decision maker (DM)
to rank the expected benefits of alternative risk
management strategies. The stochastic variables
were yield, cash price, and futures price, with
random draws made from all three of these
variables. Whole farm net return was calculated
using the formula:

Net Return = Total Revenue — Total

(D .
Specified Cost
where:
Total Specified Cost = (Irrigation Cost
) + Option Premium + Insurance Premium
+ Other Production Costs?) * Acres;
Total Revenue = Price * Yield * Acres
3) + Insurance Indemnity Payments
+ Government Payments;
@ Price = Mean Price * [1 + MVE (S; F(S)),
CUSD,)]; and
) Yield = Mean Yield * [1 + MVE (S; F(S;),

CUSD,)).

CUSD; and CUSD, are correlated uniform
standard deviates which were simulated using
the correlation matrix for cotton yield and price
from 1976-2005 as described by Richardson,

20ther production costs included specified vari-
able and fixed costs by the Texas AgriLife Extension
Service. Harvest related costs were calculated as [(Per
Unit Harvest/Haul Rate + (Ginning Costs — Seed
Value)] * Stochastic Yield}. Fixed costs did not include
a land charge, so net returns in Equation (1) represent
returns to land, management, and non-specified risk.
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Klose, and Gray (2000). MVE is a multivariate
empirical distribution. Mean Price in Equation
(4) is the mean of the national season average
cotton price from 1976-2005.

Mean Yield in Equation (5) is the expected
cotton yield per acre. The latter was based on
regional Extension budgets for non-irrigated
(500 1bs lint per acre) and irrigated cotton (825
Ibs lint per acre) where the irrigated cotton
budget reflects two furrow irrigation applica-
tions of 4.75 acre-inches each (Texas AgriLife
Extension Service — Texas A&M University
System, 2006). The budget mean irrigated yields
were scaled to match the specific treatment
applications examined in this study, i.e., one,
two, and three furrow irrigation applications
of 6 acre-inches each. The scaling involved an
irrigated cotton production function developed
for the LRGV study area (Harman et al., 2005).
Deterministic predictions of yield from this
production function were estimated using 6, 9.5,
12, and 18 acre-inches of total irrigation water,
combined with an average annual 24 inches of
precipitation. These yield estimates were then
scaled proportionately lower to reflect the Ex-
tension budget relationship of 9.5 inches of
irrigation and an 825 1b yield. The rationale for
the scaling was the level of yield in the Exten-
sion budgets account for average pest losses
whereas Harman et al.’s production function
does not. The resulting expected yield values
per acre (by irrigation level) were 500 1bs (zero
irrigation), 634 1bs (one irrigation), 947 lbs (two
irrigations), and 1,189 lbs (three irrigations). The
variability around these expected yields was
characterized by using biophysical simulation
(discussed in the following section).

In Equations (4) and (5), sorted deviations
from the mean are denoted by S;, and F(S;) is
the cumulative probability for S;s. The MVE
distribution for yields and prices was used and
the stochastic variables were expressed as frac-
tional deviations from the means for calculat-
ing the parameters to simulate the stochastic
variables. This method forces constant relative
risk for any assumed mean (Richardson, Klose,
and Gray, 2000). The procedures for estimat-
ing parameters and simulating MVE proba-
bility distributions are described by Richardson
(2000).



532

Characterization of Yield Risk

Field experimentation is costly, time consum-
ing, and could adversely impact the economic
viability of a farmer. As a consequence, there are
generally inadequate data to develop probability
distribution functions for cotton yields under
alternative irrigation strategies. Such would be
the case in our present study if we had tried to
use observed yield data over multiple years and
irrigation levels. On the other hand, simulated
data from plant growth models can be molded
to a researcher’s specifications and are more
easily accessible. Generating biophysical data
with simulation is increasing in importance as
a valid alternative to field experimentation
(Musunuru et al., 2005). Previous studies have
been based on simulated yield data from bio-
physical models that are validated against actual
observed yields (Dalton, 2004; Harris and Mapp,
1986; Musunuru et al., 2005; Pandey, 1990).

A 50-year series of cotton yield data was
simulated using the Crop Production Manage-
ment (CroPMan) model (Blacklands Research
and Extension Center — Texas A&M University
System, 2006). This data series was used to
estimate the probability distribution of cotton
yields under alternative irrigation assumptions.
The CroPMan model predicts a deterministic
yield outcome for a given (and huge) set of plant
growth parameters, local soil parameters, his-
torical weather data, and other controlling var-
iables. To generate a yield distribution required
applying CroPMan for a given set of site specific

3CroPMan is a production-risk management aid
that incorporates weather, soil type, pesticides/fertilizers,
water application, and management decisions (Blacklands
Research and Extension Center — Texas A&M Uni-
versity System, 2006). CroPMan employs the envi-
ronmental policy impact calculator crop growth model
with extensive databases of soil series data, historical
weather data, machinery parameters, environmental
parameters, hundreds plant growth coefficients, and
other controlling variables (Williams, Jones, and Dyke,
1984). Using region-specific soil and weather data-
bases, CroPMan has been validated in regional field
validation trials for Texas cotton, and specifically for
the LRGV (Supercinski, 2005). See Ko et al. (2009)
for an example of a South Texas cotton field valida-
tion trial and the complexity of biophysical variables
involved.
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biophysical parameters over a successive num-
ber of historical weather conditions for that
site. For the present study, cotton yields were
simulated using 50 years of historical weather
data for McAllen, Texas between 1956-2005
(Blacklands Research and Extension Center —
Texas A&M University System, 2006). Other
assumptions included Willacy fine sandy loam
soil parameters (with 61% sand content), 600
ppm salt in the irrigation water, and current
cotton variety growth parameters. As mentioned
previously, the irrigation levels were zero, one,
two, and three furrow applications of 6 inches
of water per acre. The resulting CroPMan yield
distributions were used to incorporate variability
around the expected budget yields for the var-
ious levels of irrigation. Stochastic yields were
simulated using a trend corrected empirical
probability distribution as this distribution per-
formed better than 15 parametric distributions
using Simetar’s distribution goodness of fit test
(Richardson, 2006).

Price Data

Annual price observations from 1976 through
2005 were used to estimate the probability dis-
tribution for cotton cash and futures prices.*
United States season average cash price data
were obtained from the National Agricultural
Statistics Service — United States Department
of Agriculture (USDA) (2006). The local price
of cotton was simulated using the stochastic
national price plus a stochastic price wedge
between the national price and local price. The
average price wedge was estimated from a linear
regression of harvest period national price and
December futures prices between 1976 and 2005.
The residuals for the regression were assumed

4The price series used in this analysis included
annual observations of cotton cash and futures prices
between 1976 and 2005, inclusive. We also conducted
the risk analysis using a more recent subset of price
data (1991 through 2005) but this did not affect the
previous summary statistics comparisons or the SERF
rankings. The price series ends in 2005 to match the
period of water shortages in the study area, and also to
account for evidence of a structural break in the
relationship of various fundamental factors and cotton
prices for the period 2006 through 2009 (Power and
Robinson, 2010).
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to be distributed normally for simulating the
stochastic price wedge.

Harvest-time futures price consisted of a
weighted” average of December cotton futures
settlement prices centered around the first trad-
ing day in September for 1976-2005. The futures
price data were compiled at Texas A&M Univer-
sity (Gleaton, 2006) from daily futures exchange
settlements. The December futures contract was
selected because it is the most heavily traded
cotton contract, and the early September period
is when LRGYV cotton farmers complete harvest
and presumably offset pre-harvest hedges.

Estimation and Evaluation of Probability
Distributions

The stochastic variables were simulated using
the MVE method described by Richardson,
Klose, and Gray (2000). Ordinary least squares
analysis indicated no statistically significant
trend (at the 0.05 level) in yields or futures price,
but there was a significant trend in cash price.
Correlation was found in the historical data of
several of the stochastic variables and a Student’s
t-test indicated statistical significance. There-
fore, an MVE distribution was used to avoid
biasing the results and to adequately represent
the data from a small sample (Richardson, 2006;
Richardson, Klose, and Gray, 2000).

Historical price and yield data were expressed
as percent deviations from expected values. As
mentioned above, expected yields were based on
Extension budget yields (Texas AgriLife Exten-
sion Service — Texas A&M University System,
2006). The expected national cash price value
was the forecasted 2007 farm price obtained from
the Food and Agricultural Policy Research In-
stitute — University of Missouri and Iowa State
University (2007). The mean futures price used

5In each year, 29 observations centered around the
first trading day in September were used to estimate
a weighted average price based on the normal distri-
bution of the number of trading days on either side of
the first trading day in September. The mean of this
distribution was zero and the standard deviation was
8.51 days. The probability mass function values were
used to calculate weights, which valued the days closer
to the first trading day in September more than those
further away.
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was forecasted by the Texas AgriLife Extension
Service cotton marketing specialist (Robinson,
2006). Validation tests were performed to test
if the simulated random variables statistically
reproduced their respective historical distribu-
tions, as well as reproduced the historical corre-
lation matrix.°

Financial Model

The stochastic yield and price variables were
used in the whole-farm model to simulate net
return for a 1,000 acre irrigated cotton farm in
the LRGV. The same Extension representative
cotton budgets previously used to specify ex-
pected yield were used to calculate production
costs (Texas Agrilife Extension Service — Texas
A&M University System, 2006). Variable and
fixed costs were calculated individually for each
irrigation level, as some costs vary according to
yield and water applications. The costs that var-
ied with yield were scaled by the mean or sto-
chastic yield (depending on whether the price is
determined before or after yields are known) for
each level of irrigation.

For crop insurance, multiple peril crop in-
surance with 65% coverage and 100% price
election was used, as this was the most repre-
sentative level of insurance in the study area. The
insurance yield (i.e., actual production history
yield) was assumed to equal the expected yield at
each irrigation level.” Crop insurance premiums
were obtained from an on-line USDA calculator
for the study area (Risk Management Agency —
USDA, 2006).

6 The Hotelling’s T test was used to test that the
simulated means were statistically equal to their as-
sumed values. Box’s M Squared test was used to test
that the covariance for the simulated variables equaled
the historical covariance matrix. Student’s 7-tests were
used to test that the individual correlation coefficients
among the simulated variables were statistically equal
to their historical values.

7This approach assumes no conflicts with the Risk
Management Agency and crop insurance adjustors re-
garding deficit irrigation within an irrigated practice
policy. Full irrigation for cotton is represented by three
irrigations. Based on discussions with local crop in-
surance representatives, this assumption may be valid
for two or even one irrigation in years where there is
a recognized shortage of irrigation water.
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To operationalize the put option hedging
strategy, a put option strike price of $0.60/1b was
assumed as a representative hedging price tar-
get. The premium for this put option was based
on the average of $0.60 strike put option settle-
ments between December 15, 2006 and January
15,2007 (i.e., reflecting a pre-season decision for
a one-period model of the upcoming 2007 crop).
Option contracts cover 50,000 pounds of pro-
duction, so multiple put options were purchased
to approximate (without exceeding) expected
whole farm production for each irrigation strategy.

Operating loan interest included in the model
was the only interest cost, as the model simu-
lates farm costs for only 1 year. Operating loan
interest was calculated based on the number of
months the funds for each variable cost were
borrowed. Variable cost was multiplied by the
percentage of the year that it was used.

Counter-cyclical payments (CCP) and direct
payments (DP) were included in the calculation
of net return for all 16 scenarios. As these two
payments are independent of actual production,
their payment yields did not vary across scenar-
ios. Assuming 2002 farm program provisions,®
CCP and DP yields of 500 Ibs/acre were used for
dryland, and 625 lbs/acre were used for irrigated
land (Agricultural and Food Policy Center,
2006). These yields reflected historical irrigated
yields and are invariant to actual levels of irri-
gation or yield. The cotton loan rate, target price,
direct payment rate, and payment fraction were
obtained from the USDA Farm Service Agency
(Farm Service Agency — United States Depart-
ment of Agriculture, 2006). The DP payment rate
was fixed, and the CCP rate was stochastic and
based on the national cotton price.

Ranking Risky Scenarios

The 16 net return probability distributions (one
for each risk management combination) were

82002 farm program payment rates were used to be
consistent with the 2007 setting of this model. For a
post-2007 time frame, the farm program payment rates
would need a small downward adjustment to reflect
those authorized by the Food, Conservation, and Energy
Act of 2008 commodity title, assuming no Average Crop
Revenue Election.
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ranked using SERF. SERF calculates certainty
equivalents (CE) over a range of risk aversion
coefficients (RACs), rather than selecting a sin-
gle RAC, and ranks risky alternatives based on
the CE values over the range of RACs. The most
preferred risky alternative is the one with the
highest CE at each RAC. Anderson and Dillon
(1992) defined degrees of relative risk aversion
coefficients (RRAC), using zero to represent
risk neutral decision makers and 4.0 to represent
extremely risk-averse decision makers. A power
utility function was used for the risk ranking.

Results and Discussion
Budget Comparisons

The mean yield per acre, irrigation input and
costs per acre, other variable costs per acre (sans
insurance and put option costs), fixed costs per
acre, and net returns per acre are summarized in
Table 1 across levels of irrigation. Non-irrigation
variable costs tend to increase with increasing
irrigation because many chemical inputs, not to
mention harvest costs, are a function of yield. A
comparison of these budget parameters across
levels of irrigation explains some of the underly-
ing differences in average net returns (e.g., the
relative cost savings of zero irrigations outweighs
the yield gain of one irrigation, so the average net
returns to dryland exceeds that of one irrigation).
However, the two and three irrigation budgets
have enough yield response to give higher net
returns than dryland (at the lint and water prices
evaluated in this study).

Summary Statistics

The mean, standard deviation, coefficient of
variation (CV), and minimum and maximum net
returns from the simulated output for the 16
combinations of risky alternatives are presented
in Table 2 for implementing put options and/or
insurance at each irrigation level. A review of
the summary statistics is useful in examining how
particular risk management strategies affect net
returns in the present model.

Table 2 results for “Irrigation Only” indicate
that applying multiple irrigations increases whole
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Table 1. Selected Budget Parameters for a 1,000 Representative Cotton Farm in the Lower Rio

Grande Valley, 2007

Dryland 1 Irrigation 2 Irrigations 3 Irrigations
Yield (Ibs/acre) 500 634 947 1,189
Total Irrigation Water (acre-inches) 0 6 12 18
Total Irrigation Cost/Acre (water and labor) $0.00 $20.31 $40.62 $60.93
Other Non-Risk Management Variable Cost/Acre  $197.02 $260.51 $345.13 $396.75
Total Irrigation Plus Non-Risk Management $197.02 $280.82 $385.75 $457.68
Variable Cost/Acre
Total Fixed Cost/Acre $71.31 $73.54 $73.54 $73.54
Net Returns/Acre at Loan Rate —$8.33 —$24.68 $33.15 $87.06

farm mean net returns from $73,640 (zero irriga-
tions) and $61,741 (one irrigation) to $154,405
(two irrigations) and $214,396 (three irrigations),
and greatly reduces the variability of net re-
turns. The variability reduction is evident by
(1) the smaller standard deviation of $91,781
and $87,892 at two and three irrigations,

respectively, compared with $238,559 and
$237,092 at lower irrigation levels; and (2) the
associated lower coefficients of variation with
59% and 41% for two and three irrigations, re-
spectively, and 324% and 384 % on zero and one
irrigation, respectively. Also, the range from
minimum net return to maximum net return is

Table 2. Simulated Net Return Summary Statistics for Various Levels of Irrigation for a 1,000 Acre
Cotton Farm in the Lower Rio Grande Valley in 2007

Zero 1 Irrigation 2 Irrigations 3 Irrigations
Irrigation Only
Mean ($) 73,640 61,741 154,405 214,396
Standard Deviation ($) 238,559 237,092 91,781 87,892
Coefficient of Variation (%) 324 384 59 41
Minimum ($) —203,074 —239,925 —130,083 —177,774
Maximum ($) 878,141 813,502 432,000 456,949
Irrigation and Put Options
Mean ($) 94,988 87,359 192,831 263,496
Standard Deviation ($) 258,842 260,014 145,610 158,215
Coefficient of Variation (%) 273 298 76 60
Minimum ($) —222,050 —262,696 —119,484 —164,231
Maximum ($) 998,647 958,109 648,911 734,113
Irrigation and Crop Insurance
Mean ($) 137,578 121,052 164,052 211,170
Standard Deviation ($) 189,339 182,234 77,202 85,239
Coefficient of Variation (%) 144 151 47 40
Minimum ($) —55,389 —87,883 —141,926 —183,202
Maximum ($) 865,202 800,891 420,157 445,699
Irrigation, Put Options and Crop Insurance
Mean ($) 152,926 146,670 202,478 260,270
Standard Deviation ($) 210,572 206,937 134,722 157,349
Coefficient of Variation (%) 138 141 66 60
Minimum ($) —69,314 —85,226 —131,327 —169,659
Maximum ($) 985,707 945,498 637,067 722,862
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much smaller for multiple irrigations than for one
irrigation and zero.

The risk aspects of increasing irrigation re-
main constant for all of the risk management
strategies examined. For example, adding put
options simply increases the mean, standard
deviation, and range of net returns for all four
irrigation levels. Mean net returns were in-
creased from $73,640, $61,741, $154,405, and
$214,396 (i.e., “Irrigation Only” in Table 2)
to $94,988, $87,359, $192,831, and $263,496
(i.e., “Irrigation and Put Options” in Table 2)
at zero, one, two, and three irrigation levels,
respectively.

Combining put options with irrigation ap-
pears to increase variability of net returns, but
the results depend on the level of irrigation. In
absolute terms, the increased variability of net
returns is reflected by larger standard deviations
of net returns across all irrigation/put option
combinations, relative to irrigation alone (Table
2). However, put option strategies resulted in
higher mean net returns, with mixed results
for variability relative to the mean, i.e., higher
(lower) CVs for higher (lower) levels of irriga-
tion. Put options involve paying the up-front
option premiums, a pricing insurance strategy
which sometimes pays off and sometimes does
not. The outcome of this strategy matters more
at higher levels of irrigation because it involves
correspondingly higher levels of potential yield,
potential gross income, and put option coverage.

Crop insurance and irrigation generate the
smallest CV for two and three irrigations (47%
and 40%, respectively) out of all 16 scenarios,
and also the smallest standard deviations of net
returns (Table 2). The ability of crop insurance
to reduce the variability of net returns demon-
strates the effectiveness of insurance to reduce
the riskiness of net returns. It also confirms the
observation that crop insurance for Texas cotton
tends to pay off regularly (Stokes and Ortega,
2006).

Combining put options with two or three ir-
rigations results in relatively higher mean net
returns, albeit with added risk in relative terms,
compared with combining crop insurance and
higher levels of irrigation (Table 2). Crop in-
surance and irrigation result in lower risk and
lower mean net returns relative to put options and
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higher irrigation levels. Following a discussion of
stochastic dominance, the SERF procedure is
utilized to rank the risky outcomes.

Risk Ranking

Inspection of the cumulative distribution func-
tions (not shown) for all 16 scenarios had few
consistent risk implications. In general, the
combinations involving zero or one irrigation
tended to have lower returns, except that 10%
to 30% of the time these strategies dominated
the higher irrigation strategies. This reflects
those infrequent situations when adequate
rainfall gives the lower irrigation strategies a
cost advantage.

Due to extensive multiple crossing of the
cumulative distributions for the 16 scenarios,
only three scenarios were first degree stochastic
dominant (FDSD); one irrigation is dominated
in FDSD by: dryland with a put, by dryland with
a put and insurance, and by one irrigation with
a put and insurance. As a result, all 16 scenarios
were ranked using SERF (Figure 1). The vertical
axis in Figure 1 is certainty equivalents and
the lines represent the CEs for each scenario
calculated at the respective RRAC. A rational
DM prefers a higher CE to a lower value at
their particular RRAC, so the scenarios can be
ranked by observing the highest CE at each
relative risk aversion coefficient.

The most preferred risky alternative across
ranges of relative risk aversion from 0—4 is three
irrigations and put options. The CE line for this
scenario is higher than all others for all classes
of risk-averse decision makers with relative
risk aversion between 0 and 4. The second most
preferred alternative is three irrigations, put
options, and crop insurance. The third most
preferred alternative is three irrigations without
insurance or a put option. Figure 1 also indicates
that three irrigations are preferred for all com-
binations of risk management alternatives over
only two irrigations. Put options are also pre-
ferred at two and three irrigation levels, both
when insurance is used and when it is not. Two
irrigations alone is preferred to one irrigation
with puts and insurance for all risk-averse DMs.

Growing dryland cotton without insurance and
puts is preferred to the least preferred scenario,
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Figure 1. SERF Ranking of Risky Alternatives Over a Range of Relative Risk Aversion Co-

efficients Using a Power Utility Function for a 1,000 Acre Cotton Farm in the Texas Lower Rio
Grande Valley® (Y-axis refers to certainty equivalents)

one irrigation with no insurance and no puts
(Figure 1). Adding a put to the dryland or the
one irrigation scenario increases its preference
over the one irrigation and the dryland options.

Conclusions

In summary, all risk-averse decision makers
(DMs), from risk neutral to extremely risk-
averse, prefer put options at higher levels of ir-
rigation and prefer crop insurance at lower levels
of irrigation. These results agree with previous
studies that crop insurance substitutes for higher
levels of irrigation (Dalton, 2004).

The strength of the study lies in the exami-
nation of three basic risk management strate-
gies analyzed under various combinations of
scenarios, an approach that had not been uti-
lized in previous studies. Extending the study
to ranking of these risky alternatives across risk
aversion levels using stochastic efficiency with
respect to a function (SERF) took the study one
step further. Ranking the scenarios showed

three irrigations to have a significant positive
impact on net returns, and that three irrigations

93 Irr, Put: three irrigations, with put options, no
insurance
3 Irr, Put, Ins.: three irrigations, with put options, with
insurance
3 Inr: three irrigations, no put options, no insurance
3 Inr, Ins.: three irrigations, no put options, with insurance
2 Irr, Put, Ins.: two irrigations, with put options, with
insurance
2 Irr, Put: two irrigations, with put options, no insurance
2 Irr, Put: two irrigations, with put options, no insurance
2 Irr, Ins.: two irrigations, no put options, with insurance
2 Irr: two irrigations, no put options, no insurance
D, Put, Ins.: dryland (zero irrigation), with put options,
with insurance
1 Irr, Put, Ins.: one irrigation, with put options, with
insurance
D, Ins.: dryland (zero irrigation), no put options, with
insurance
1 Irr, Ins.: one irrigation, no put options, with insurance
D, Put: dryland (zero irrigation), with put options, no
insurance
1 Irr, Put: one irrigation, with put options, no insurance
D: dryland (zero irrigation), no put options, no insurance
1 Irr: one irrigation, no put options, no insurance
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is preferred across risk aversion levels and for all
the scenarios examined. Despite the complexities
of analyzing 16 scenarios, using SERF to in-
terpret the data provides a clear illustration of
the preferences of a decision maker.

As illustrated in Figure 1, all risk-averse DMs
prefer more irrigations to less. Irrigation water
in the study area is allocated annually based
on reservoir storage levels, and is thus a po-
tential limiting factor for producers (Robinson,
Michelsen, and Gollehon, 2010; Stubbs et al.,
2003). With an allocation of three irrigations,
a put option combination is most preferred, and
a crop insurance combination is least preferred.
When two irrigation applications are allotted,
DMs prefer additional risk management strat-
egies of (1) purchasing both insurance and put
options, followed by (2) purchasing put options
only, and then (3) purchasing crop insurance
only. All of these strategies are preferred over
two irrigations alone.

With only one possible irrigation, DMs pre-
fer purchasing both insurance and put options.
Also with one irrigation, insurance alone is
preferred over puts alone. Operating with only
one irrigation and no additional risk manage-
ment strategies is the least preferred of the four
alternatives.

Limitations and Further Research

The study depended on data generated from
CroPMan, rather than actual historical yields,
to develop probability distributions for yields.
Yields simulated with CroPMan cannot be ad-
justed for the presence of pests and diseases,
which may increase with the amount of water
applied through irrigation. Although CroPMan
yields are not ideal, they are better in this case
than relying on county average yields, as CroPMan
yields better reflect farm level variability across
alternative irrigation levels. Another limitation
of the present study is that the put options are
evaluated at expiration based on intrinsic value.
A more complete evaluation would include ear-
lier offsetting of put options, with potential time
and volatility value.

Another limitation of this study is the annual
nature of the irrigation decisions. The demand
for irrigation is contingent on unfolding states

Journal of Agricultural and Applied Economics, November 2011

of nature with respect to crop condition, soil
moisture, available reservoir supplies, and rain-
fall through the growing season. While sequen-
tial modeling would have been more realistic, it
would also have been considerably more com-
plicated from a biophysical modeling standpoint.
Our analysis considers the irrigation more like
a pre-plant, crop mix decision, i.e., fully irrigated
cotton versus deficit irrigated cotton. This ap-
proach fits in with the context of other early
season decisions like buying crop insurance and
forward pricing. While this abstracts from the
more realistic framework of sequential irrigation
decisions, it does represent the early season
choice set of a Texas Lower Rio Grande Valley
(LRGV) grower when reservoir levels are
known and the planting-time irrigation allo-
cations are commonly announced. Early sea-
son irrigation availability has been demonstrated
to influence crop mix in the LRGV (Robinson,
Michelsen, and Gollehon, 2010).

[Received December 2009; Accepted June 2011.]
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