
Decisions and tradable production quota when
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David A. Hennessy and Wei Wei*

This article analyses optimal decisions under regulation by tradable agricultural
production/marketing quotas when production is stochastic. For risk-neutral and
risk-averse producers the fraction of planned production that is covered by quota is
separable from input decisions when yield randomness is additive. The role of quota
in protecting against the risk of production shortfall is investigated. A producer is
shown to bene¢t from being allowed to treat as one all tranches of production quota
under his control. Production decisions are invariant to this amalgamation. But
when production randomness is additive normal, the qualitative impact of
amalgamation on quota positions depends upon whether the ratio of rental price to
the price di¡erence that is being protected exceeds one half.

1. Introduction

It is known that the existence of output uncertainty can give rise to curious
incentive structures when output is quota-regulated. The incentives problem
arises because the quota is a ¢xed number, while production is to some
extent random and surplus production is treated di¡erently from in-quota
production. Thus, a risk-neutral decision-maker will care about uncertainty
even if production is linear in the source of uncertainty.
The problem is important because many agricultural products are subject

to production/marketing quotas, and agricultural production is fraught with
uncertainty. Milk is subject to quota in the 15 European Union countries,
Canada, Japan, Norway, and Switzerland.1 Sugar beet is marketed under
quota in the European Union, as are tobacco and peanuts in the United
States. Canadian provinces regulate the marketing of chickens, turkeys,
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tobacco, and eggs by quota. In many cases these marketing rights can be
leased or sold. Some of these production quotas are multi-tiered in that one
type of quota right might entitle the producer to a high price while a second
type of quota right might provide access to an intermediate marketing
opportunity, and production surplus to the sum of these quotas can only be
sold at a low price. Sugar beet production in the European Union has been
subject to such a system of multiple production quotas.
A literature on the general problem is well established. With reference to

Australian fresh milk quotas, Alston and Quilkey (1980) suggested that the
social costs associated with the, presumably unintended, decision incentives
arising from the interactions between uncertainty and the quota regulation
could be mitigated by a well-functioning quota market. Fraser (1986) re¢ned
the argument by explicitly modelling the optimal decision of a risk-neutral
producer. In his model he clearly showed that marginal revenue is dis-
continuous in the source of uncertainty. In analysing adjustments to rules
governing the sale of Western Australian potatoes, Fraser (1995b) elaborated
further on the topic. Borges and Thurman (1994) extended theoretical and
empirical work by Babcock (1990) on production decisions for the quota-
regulated US peanut crop.
However, none of the above models accommodate the ability to trade

quota. Further, while Babcock (1990) formally poses the problem in a risk-
aversion framework and develops empirical comparative statics, none of the
models draw theoretical conclusions for the problem under risk aversion. Two
objectives of this article are to extend previous analyses of decisions under
stochastic production in these ways. In particular, we identify a separation
between production and quota-holding activities for risk-neutral and risk-
averse ¢rms. A third objective is to demonstrate that quotas under yield
uncertainty may provide an incentive for farms to amalgamate, or for one
farm with two or more distinct tranches of quota to pool these tranches.

The ¢rst section of the article develops a model of the problem faced by
risk-neutral and risk-averse producers who have some control over output
and who are active in one or more quota rental markets. This is followed by
a comparative statics analysis of optimal choices. In the fourth section, it is
shown that the risk of not ¢lling quota also may be managed by coinsuring
risks through a consolidation of tranches of quota. The implications of this
consolidation for other ¢rm-level decisions are also studied. Simulations
illustrate the main results, and a brief discussion concludes the article.

2. Model and separation issues

A risk-neutral decision-maker produces a partially random quota-regulated
crop. The time 0 choice of planned output, Q, is mapped into time 1
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stochastic output, F�Q; Z�, where Z follows distribution function G�Z� with
continuous density function g�Z�. It is assumed that F�Q; Z� is increasing in
both arguments, FQ�Q; Z� > 0 and FZ�Q; Z� > 0. The expectation operator
over Z is given by EfZg���. The quota regulation allows a price-quantity
schedule that declines over n steps. The size of each of these steps depends
upon the amount of ith-type quota, i � 1; 2; . . . ; nÿ 1, owned by the ¢rm in
question. One unit of ith-type quota allows the ¢rm to market one unit of
output at price Pi. Without any loss of generality, we assume that
P1 > P2 > . . . > Pnÿ1. Further, we assume that the free market price is Pn

where Pnÿ1 > Pn. There are active markets for each of the nÿ 1 di¡erent
quota types, and the producer will take ex ante positions in each of these
markets. Of course, given the pricing structure, ex post the ¢rm will ¢ll ith-
type quota before ¢lling i� 1th-type quota. The ¢rm faces rental price ki,
i � 1; 2; . . . ; nÿ 1 for ith-type quota, and must choose the stock Qi of that
quota type to hold. The cost of planned production is given by the increasing
and convex function C�Q�.
Extending the model of Fraser (1986) and Babcock (1990) to the case of

nÿ 1 quota markets, the problem for the risk-neutral optimising ¢rm with
choice-conditioned stochastic pro¢t p�Q;Q1;Q2; . . . ;Qnÿ1� is to

max
Q;Q1;...;Qnÿ1

EfZg�p�Q;Q1;Q2; . . . ;Qnÿ1�� � max
Q;Q1;...;Qnÿ1

P1EfZg�F�Q; Z�� ÿ C�Q�

ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1�

Z 1
Zi

�F�Q; Z� ÿ Si
k�1Qk�dG�Z� ÿ

Xnÿ1
i�1

kiQi;
�1�

where Zi is the (unique) value of Z that solves F�Q; Z� � Si
k�1Qk. It is easily

seen that Z1 � Z2 � . . . � Znÿ1. As presented in equation 1, it can be
observed that the problem we will address has a yield option interpretation
for quota usage under yield uncertainty. Speci¢cally, in not owning
quota of the ith-type, a producer forgoes a contingent claim to sell an
undetermined amount of output surplus to production level Si

k�1Qk at
price Pi rather than Pi�1. This contingent claim has expected value
�Pi ÿ Pi�1�

R1
Zi
�F�Q; Z� ÿ Si

k�1Qk�dG�Z�. One additional unit of the ith-type
quota provides partial claim on this amount. Further, it alters the values of
claims due to positions in quota markets of the i� 1th through nÿ 1th types.
The ¢rst-order conditions for equation 1 are

P1EfZg�FQ�Q; Z�� ÿ CQ�Q� ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1�

Z 1
Zi

FQ�Q; Z�dG�Z� � 0; �2A�

Xnÿ1
k�i

�Pk ÿ Pk�1��1ÿ G�Zk�� ÿ ki � 0; i � 1; . . . ; nÿ 1; �2B�
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where Leibniz's rule for di¡erentiating an integral bound is applied in
equations 2A and 2B (Royden 1988, p. 107).
It is of interest to identify criteria under which the production decision is

separable, in some sense, from the quota purchase decision. The criteria can
be arrived at by studying how the conditions in equation 2B relate to
condition 2A. Note that decisions Q and Qi enter equation 2B only through
the Zi, the solutions to F�Q; Z� � Si

k�1Qk. It is not plausible for Q or any of
the Qi to vanish in the de¢ning equation for Zi, and so there cannot plausibly
be complete separation. However, suppose that F�Q; Z� � Q� Z where
EfZg�Z� � 0.2 Then Zi � Si

k�1Qk ÿ Q. If Zi increases, then the probability that
the sum of positions in the ¢rst through ith quota markets su¤ce to cover
realised output increases. To abbreviate, we identify the ¢rst through ith
quota market by f1; 2; . . . ; ig. Under the additive speci¢cation of production
risk, the problem becomes

max
Q;Q1;...;Qnÿ1

P1Qÿ C�Q�

ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1�

Z 1
Zi�Si

k�1QkÿQ

�Q� Zÿ Si
k�1Qk�dG�Z� ÿ

Xnÿ1
i�1

kiQi;
�10�

and the ¢rst-order conditions are:

P1 ÿ CQ�Q� ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1��1ÿ G�Zi�� � 0; �2A0�

Xnÿ1
k�i

�Pk ÿ Pk�1��1ÿ G�Zk�� ÿ ki � 0; i � 1; 2; . . . ; nÿ 1: �2B0�

The problem is solved if we can solve for �Q;Z1; . . . ;Znÿ1� because
Q1 � Z1 � Q, Q2 � Z2 ÿ Z1, and generally Qi � Zi ÿ Ziÿ1, i � 2. The second-
order conditions for problem �10� are satis¢ed because CQQ�Q� � 0, because
Pi � Pi�1 for i � 1; 2; . . . ; nÿ 1, because d2p�Q;Q1; . . . ;Qnÿ1�=dQidQj � 0 for
i; j � 1; 2; . . . ; nÿ 1 and i 6� j, and ¢nally because we will show shortly that
d 2p�Q;Q1; . . . ;Qnÿ1�=dQdQi � 0 for i � 1; 2; . . . ; nÿ 1.
We identify the maximising solutions to equations 2A0 and 2B0 as
�Q�;Z�1; . . . ;Z�nÿ1�. Because the Zi presentation arises naturally in conditions
2A0 and 2B0, our equilibrium analysis will primarily study decisions as
expressed in this form. But to provide intuition we will often translate

2 Fraser (1995a), among others, holds that the multiplicative representation of yield
uncertainty is more re£ective of reality than the additive representation. Borges and
Thurman (1994), in their study of North Carolina peanut production, found some evidence
against the additive speci¢cation. We retain it because we will show that it carries with it
strong and insightful implications concerning the nature of optimal decision-making.
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analysis to solution vector �Q�;Q�1; . . . ;Q�nÿ1�. For ease of interpretation, it
might be best to re-write equation 2B0 as

Pi�1ÿ G�Z�i �� �
Xnÿ1
j�i�1

Pj�G�Z�jÿ1� ÿ G�Z�j �� ÿ Pn�1ÿ G�Z�nÿ1��

ÿ ki � 0; i � 1; 2; . . . ; nÿ 1:

�2B00�

Here, Pi�1ÿ G�Z�i �� is an opportunity cost of not having an additional
unit of ith-type quota because price Pi is foregone with probability
1ÿ G�Z�i �. But this calculation overcounts because positions in quota
markets fi� 1; i� 2; . . . ; nÿ 1g will recoup some of this loss in expected
revenue as will sales in the open market for product not covered by quota.
The terms involving Pj; j � i� 1; . . . ; n account for the recouped (in
expectation) revenue.
At least two interesting observations can be made concerning equations

2A0 and 2B0. First, for i � nÿ 1 we have �Pnÿ1 ÿ Pn��1ÿ G�Z�nÿ1�� � knÿ1.
Consequently, for i � nÿ 2 a substitution yields �Pnÿ2 ÿ Pnÿ1��1ÿ G�Z�nÿ2�� �
knÿ2 ÿ knÿ1. By repeated substitutions, we have

�Pi ÿ Pi�1��1ÿ G�Z�i �� � ki ÿ ki�1; i � 1; 2; . . . ; nÿ 1: �3�
Thus, the output price di¡erential arising from a marginal unit of ith-type
quota places an upper bound on the rental di¡erential between quota of the
ith and i� 1th-types. Equation 3 also reveals that the size of Z�i increases
with output price di¡erential Pi ÿ Pi�1 because there is added incentive to
protect against the probability that output is not covered by positions in
quota markets f1; . . . ; ig. And Z�i decreases with an increase in rental price
di¡erential ki ÿ ki�1 because this di¡erential re£ects incremental costs of
protecting against the probability that output is not covered by quota
markets f1; . . . ; ig.
The second, and perhaps more surprising, observation is that when i � 1

in condition 2B0, we may substitute back into condition 2A0 to obtain
P1 ÿ CQ�Q�� � k1.

3 This means that planned production is separable from
positions taken in quota markets. Thus, as in the case of deterministic
production, marginal cost is set equal to the in-quota marginal revenue less
the rental price. It is the role of the tradable quota decision to speculate on
production risk whereas Q is chosen without regard to risk. Thus, similar to
the separation result in the analysis of futures hedging under risk aversion
(see, e.g. Holthausen (1979)), the decision environment is su¤ciently rich
that the production decision is separated from the speculation decision. The

3And so d 2p�Q;Q1; . . . ;Qnÿ1�=dQdQi � 0 for i � 1; 2; . . . ; nÿ 1.
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separability is a consequence of the additive nature of production risk in
our model.
But the separability result is quite robust to other aspects of the decision

environment. Notwithstanding the non-linearities in our monetary pay-o¡
function, separation carries through to decisions under risk aversion. Suppose
that the rational decision-maker has an increasing and concave von Neumann
andMorgenstern utility of pay-o¡ function, U�p�. The problem is then to

max
Q;Q1;...;Qnÿ1

EfZgU �Q� Z�P1 ÿ C�Q� ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1�max�Q� Zÿ Si

k�1Qk; 0� ÿ
Xnÿ1
i�1

kiQi

" #
;

�4�

and the ¢rst-order conditions are:

EfZg Up�p� P1 ÿ CQ�Q�� ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1�IfZ�Z�i g

( )" #
� 0; �5A�

EfZg Up�p�
Xnÿ1
k�i

�Pk ÿ Pk�1�IfZ�Z�
k
g ÿ ki

( )" #
� 0; i � 1; 2; . . . ; nÿ 1: �5B�

Here, IfZ�Zig is the indicator function that equals unity when Z � Zi and
equals zero otherwise. Adding condition 5B when i � 1 to condition 5A, we
have EfZg�Up�p�fP1 ÿ CQ�Q�� ÿ k1g� � 0, or P1 ÿ CQ�Q�� ÿ k1 � 0. And so
separability continues to adhere.4 Consequently, the optimised production
decision Q is invariant to risk aversion, risk distribution or any wealth
considerations. This independence is driven by the linear nature of the
randomness, and would not hold if, for example, F�Q; Z� � QZ. But the
optimum choices of the Qi, i.e. the Z�i , depend upon these factors even when
production risk is additive. In the next section, we will analyse how
exogenous parameters a¡ect optimal choices under risk neutrality and, to
some extent, under risk aversion.5

4 Concerning second-order su¤cient conditions, it is readily shown that they are satis¢ed
when n � 2 if CQQ�Q� � 0 and Up�p� � 0 � Upp�p�. However, concavity for larger values of n
could not be a¤rmed.

5 A large literature now exists concerning the applicability of separability when positions
can be taken in price-contingent markets. The interested reader is referred to Lapan and
Moschini (1994) and Moschini and Lapan (1995).
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3. Comparative statics

The comparative statics of Q� are the same under risk neutrality and risk
aversion. They are readily arrived at, and we will not dwell upon them. We
have dQ�=dP1 � ÿdQ�=dk1 � 1=�CQQ�Q��� � 0, while dQ�=dPi � dQ�=dki � 0,
i � 2; 3; . . . ; n. The e¡ect, if any, of Pi, i � 2; 3; . . . ; n on optimum planned
production comes through equilibrium e¡ects on k1. This is because the
role of the quota rental markets is to manage risk exposure to the per-
unit penalty for excess production. The smaller the size of the Pi,
i � 2; 3; . . . ; nÿ 1, the greater will be the demand for the stock of quota that
provides access to price P1.
Availing of the fact that choice Q� is independent of choices Z�i , we can

investigate the e¡ects of the ki and the Pi on optimal Zi by di¡erentiation of
condition 2B0, for risk neutrality. We will not present the comparative statics
of Z�i under risk aversion because our analysis did not yield noteworthy
insights. Under risk-neutrality:

dZ�i
dki

� ÿ 1
�Pi ÿ Pi�1�g�Z�i �

< 0; �6�

and so, as one would expect, cumulative position in quota markets
f1; 2; . . . ; ig, i.e. Si

k�1Qk, is decreasing in the rental premium for the ith type
quota. The reason is that when an increase in ki occurs, then the ith-type quota
market becomes less attractive as a means of protecting against the price
consequences of a good harvest. Use of quotas markets f1; 2; . . . ; ig actually
increases in response to an increase in ki, i.e. from equation 3, when lagged,

dZ�iÿ1
dki

� 1
�Piÿ1 ÿ Pi�g�Z�iÿ1�

> 0: �7�

Impact 7 may be interpreted as a substitution e¡ect whereby if quota that
secures a relatively low output price comes at a larger rental rate, then it is
best to increase the fraction of the yield distribution that is covered by quota
which carry more favourable output prices. Considering equations 6 and 7
together, the interval of Z that is covered by positions in the ith quota
market, i.e. of length Qi, contracts from both end points in response to the
increase in ki.
The impact of an increase in Pi on the cumulative positions in markets
f1; 2; . . . ; ig is given by

dZ�i
dPi

� 1ÿ G�Z�i �
�Pi ÿ Pi�1�g�Z�i �

> 0; �8�

and so the incentive to protect against not ¢lling quota at Pi increases with
an increase in this higher price. Similarly,
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dZ�i
dPi�1

� ÿ 1ÿ G�Z�i �
�Pi ÿ Pi�1�g�Z�i �

< 0; �9�

so that dZ�i =dPi � ÿdZ�i =dPi�1. The invariance to a price shift that preserves
Pi ÿ Pi�1 arises because the role of quota is to protect the price di¡erential,
and if the di¡erential does not change on moving from the ith to the i� 1th-
type quota, then there is no incentive to change cumulative coverage of
production through positions in quota markets f1; 2; . . . ; ig. While a change
in Pi will induce a change in Z�iÿ1, this will be o¡set by a change in Q

�
i . And

the change in Q
�
i will be exactly that required to preserve Z�i because Pi�1

changes to preserve the value of Pi ÿ Pi�1.
A ¢rst-degree stochastically dominating (FSD) shift in Z decreases G�Zi�

at any Zi, and so increases 1ÿ G�Z�i �. Therefore, optimum Zi must increase
to restore the risk-neutral equilibrium. This result can be seen from
representing equation 2B0 in the form of equation 3. If distribution G�Z�
undergoes a stochastic shift to H�Z� such that H�Z�i � < G�Z�i �, then the value
of Z�i must increase to restore equilibrium. Thus, quantities Q

�
1, Q

�
1 � Q

�
2,

and generally Si
k�1Q

�
k increase. But the impact on each Q

�
i , i � 2; 3; . . . ; nÿ 1

is not clear. The e¡ect on Z�i of a mean-preserving contraction in the manner
of Rothschild and Stiglitz (1970) is ambiguous because the expression
1ÿ G�Z�i � may either rise or fall under it.

4. Firm amalgamations

We turn next to the incentives implications that production quota might
have for ¢rm amalgamations. We address two issues. First, we will show that
it is always optimal for risk-neutral ¢rms to amalgamate their production
quota because amalgamation reduces the size of the loss that arises when
quota is exceeded. Second, we will identify what determines the impact of
such an amalgamation on optimal decisions.

4.1 Amalgamation decision

We assume that two ¢rms, 1 and 2, each face additive production risk so that
their production technologies are given by F�Qk; Zk� � Qk � Zk, k � 1; 2.
Consequently, equation 2A0 and equation 2B0 apply. The ¢rms are alike in
all ways except that the production risk distributions they are exposed to
di¡er.6 For ¢rm k 2 f1; 2g, the ex post random pro¢t is

6 The conclusions in subsection 4.1 continue to hold if the ¢rm cost functions and the ki

are allowed to di¡er.
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�Qk � Zk�P1 ÿ C�Qk� ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1�max�Qk � Zk ÿ Si

j�1Qk; j; 0� ÿ
Xnÿ1
j�1

kjQk; j;

�10�
where Qk; j is the position of ¢rm k in quota market j. Assume that
equation 10 is evaluated at the ex ante optimum for the expected pro¢t-
maximising ¢rms when they are separate. If the ¢rms amalgamate, then the
sum of the ex post random pro¢ts, when evaluated at the ex ante optimal
choices for separated ¢rms, is

P1

X2

k�1
�Qk � Zk� ÿ

X2

k�1
C�Qk�

ÿ
Xnÿ1
i�1
�Pi ÿ Pi�1�max�S2

k�1�Qk � Zk� ÿ S2
k�1S

i
j�1Qk; j; 0� ÿ

X2

k�1

Xnÿ1
j�1

kjQk; j:

�11�

Comparing equation 10, summed over k, with equation 11, the latter,
when evaluated at the ex ante optimal choices for separated ¢rms, is
at least as large as the former if for i � 1; 2; . . . ; nÿ 1 we have
S2

k�1 max�Qk � Zk ÿ Si
j�1Qj; 0� � max�S2

k�1�Qk � Zk� ÿ S2
k�1S

i
j�1Qk; j; 0�. But this

inequality follows immediately from a state-space analysis of bankruptcy
presented in Scott (1977). To see why, note that it is possible for
Q1 � Z1 ÿ Si

j�1Q1; j > 0 > Q2 � Z2 ÿ Si
j�1Q2; j. The amalgamated ¢rm is free to

re-optimise the levels of choice variables. Thus, regardless of the state of
nature, it is always best to amalgamate. This risk management incentive to
consolidate has arisen elsewhere. Hennessy et al. (1997) came across it when
comparing whole-farm with crop-speci¢c insurance policies, while Hennessy
and Roosen (1999) studied it in the context of pollution permit management.
Scott (1977) and also MacMinn and Brockett (1995) identi¢ed converse
implications in that a ¢rm facing liabilities might bene¢t from partitioning
¢rm assets into separate limited liability companies in order to maximise the
expected future value to shareholders at the expense of debt holders.

4.2 Impact of amalgamation on decisions

We now turn to the implications of this incentive to merge for optimal
choices. We continue to assume that the ¢rms are identical in all ways except
for the distribution of the ¢rm's Z. Regardless of whether the ¢rms
amalgamate and regardless of whether decision-makers are risk averse, from
¢rst-order conditions 2A0{ 2B0 and 5A^5B it is clear that Q�k solves
P1 ÿ CQ�Q�k� � k1, k � 1; 2. The solution is independent of k, and so we drop
the subscript on Q�k. To facilitate an identi¢cation of the critical issues, we
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also assume that there is just one quota market, i.e. that Pi � 0 8 i � 3. If
the ¢rms are separate and the marginal distributions are common, then for
risk-neutral ¢rms the optimum Qk solves �P1 ÿ P2�Prob�Zk � Zs� � k1 where
Zs � Q

s

k ÿ Q� and where the superscripted s denotes the optimal solution
under ¢rm separation and where the value of Q� is known from the
separation result. Because the marginals are common, the value of Q

s

k does
not depend on the ¢rm in question and so we write it as Q

s.
If the ¢rms amalgamate, then the optimising Q, averaged over the two

identical ¢rms, solves �P1 ÿ P2�Prob�12 Z1 � 1
2 Z2 � Za� � k1 where Za � Q

a ÿ Q�

and where the superscripted a identi¢es amalgamation. We will con¢ne
ourselves, as does Fraser (1995a), to a study of a bivariate normal distribution
for �Z1; Z2�. Just and Weninger (1999) have argued that the hypothesis of
normal agricultural yield distributions has not yet been refuted in statistical
analyses. We have already required that the means of �Z1; Z2� equal zero.
Denote the common variance of the marginals by s2 and the correlation
coe¤cient by r. Then the variance of 1

2 Z1 � 1
2 Z2 is 1

2 �1� r�s2 with least upper
bound s2. We can now compare the survival functions of the cumulative
normal distributions for the identically distributed Zk, k 2 f1; 2g with the
cumulative normal distribution of 1

2 Z1 � 1
2 Z2. Both pass through the point �0; 12�

and the single crossing is at that point. On the half-line �ÿ1; 0� the survival
function of the Zk, k 2 f1; 2g is below that of 1

2 Z1 � 1
2 Z2, whereas on the half-line

�0;1� the common survival function for the separated risks is above that of
1
2 Z1 � 1

2 Z2. The situation is depicted in ¢gure 1. From the ¢rst-order conditions,
we can conclude that if 1

2 � k1=�P1 ÿ P2�, then Za � Zs and so Q
a � Q

s because
quota is expensive to buy. Consequently, both the amalgamated ¢rm and the
separated ¢rms will expect not to need to sell any product at price P2. The
diversi¢cation, and the consequent variance reduction, associated with
amalgamation will make it more likely that the amalgamated ¢rm will
overproduce relative to the separated ¢rms. From equation 2B0, it is the
probability of exceeding quota that determines the amount of rented quota,
and so the amalgamated ¢rm has a larger position in rented quota. The reverse
is true when 1

2 � k1=�P1 ÿ P2�. In this case, the amalgamated ¢rm and also the
separated ¢rms will expect to exceed quota. Diversi¢cation then makes the
probability of excess production smaller for the amalgamated ¢rm, and so
Q

a � Q
s.

5. Simulation analysis

Table 1 reports simulated impacts of price parameters on optimal choices.
In it, we have assumed that P1 > P2 > 0 and that Pi � 0 8 i � 3. Motivated
by equation 2A0 and equation 2B0 under these circumstances, we abbreviate
c � P1 ÿ k1 and o � k1=�P1 ÿ P2�. We choose a quadratic cost function,
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C�Q� � c0 � c1Q� 1
2 c2Q

2 where the cj, j � 0; 1; 2 are parameters. We let
c2 � 1, while parameter c1 is set equal to zero because it is arbitrary in that it
is subsumed in P1 in equation 2A0. The distribution of Z is held to be normal.
Values for c in table 1 are set at 5 and 10. Values of o are allowed to range
on �0:1; 0:9�. The two levels of standard deviation that we consider in
table 1 are s � 1 and s � 2. These are su¤ciently small that the draws where
Q� � Z < 0 are rare. Choices conform to our analysis in that there is
separation between planned production and quota usage. Note that the level
of Q

�
1 ÿ Q� decreases with s if o � 0:9, but increases with s if o � 0:1.

Figure 1 E¡ect of amalgamation on quota rental position

Table 1 Optimum single firm decisions under different pricing and distribution parameters

c � 5;s � 1 c � 10; s � 1 c � 5; s � 2 c � 10;s � 2

o � 0:1 Q� � 5 Q� � 10 Q� � 5 Q� � 10

Q�1 � 6:28 Q�1 � 11:28 Q�1 � 7:57 Q�1 � 12:57

o � 0:5 Q� � 5 Q� � 10 Q� � 5 Q� � 10

Q�1 � 5 Q�1 � 10 Q�1 � 5 Q�1 � 10

o � 0:9 Q� � 5 Q� � 10 Q� � 5 Q� � 10

Q�1 � 3:72 Q�1 � 8:72 Q�1 � 2:43 Q�1 � 7:43
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Table 2 provides an assessment of the change (increase) in expected pro¢t
arising from the amalgamation of two ¢rms. When ¢rms are identical in all
ways including common marginal distributions, and when there is only one
quota market, then expected pro¢t for each of the separated ¢rms is

QsP
1
ÿ C�Qs� ÿ �P1 ÿ P2�EfZgfmax�Qs � Zÿ Q

s

1; 0�g ÿ k1Q
s; �12�

where subscripts identifying the ¢rm in question have been removed because
they are not relevant. If the ¢rms amalgamate, then half the ex ante expected
value of amalgamated pro¢t, when evaluated at the ex ante optimal choices
for separated ¢rms, is

QsP
1
ÿ C�Qs� ÿ �P1 ÿ P2�EfZgfmax�12 Z1 � 1

2 Z2 � Qs ÿ Q
s

1; 0�g ÿ k1Q
s

1: �13�
Under the assumption of normality, we will calculate the expected value of
the max functions. From Theorem 21.2 in Greene (1990), we have that:

EfZgfmax�Qs � Zÿ Q
s

1; 0�g � �Qs ÿ Q
s

1�Prob�Z � Q
s

1 ÿ Qs� � sf�a�; �14�
where a � �Qs ÿ Q

s�=s and f��� is the density function of the standard
normal distribution. In table 2, we set P1 � 12, P2 � 4, and k1 � 4 so that
c � 8 and o � 0:5. It can then be shown that Q

�
1 � Q� � 8. Setting c0 � 24,

the percentage impact of amalgamation on ¢rm expected pro¢ts is presented
in table 2. When the marginals are common and r � 1, then there are no
gains from amalgamation. But, under common marginals, if r 6� 1 then there
are gains from amalgamation. Further, if the marginals are not common,
di¡ering by location and scale parameters, then there would be gains from
amalgamation even if r � 1. For farm operations that are geographically
proximate, the value of r is likely closer to 1 than 0. It should be noted that
while, for business entities contemplating an amalgamation, data such as
those in table 2 are important in deciding whether the gains from the
consolidation o¡set costs associated with consolidation, our ¢gures are
arbitrary. In a low margin industry, combination to better manage revenue
risks due to not ¢lling quota will be important. But in many industry
circumstances it may be a minor determinant of ¢rm size.

Table 2 Expected percentage gain in profit from
amalgamation under different bivariate distribution
parameters

r � 0 r � 1

s � 1 19.4 0

s � 2 29.2 0
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Table 3 presents the impact of amalgamation on decisions when the
assumptions made are as in table 2. We compare r � 0 with r � 0:5 at
di¡erent levels of s. Due to the separation result, there is no impact on the
optimum level of production. And so we only report the impact on the quota
rental decision when the unit of analysis is the pre-merged ¢rm. For example,
when r � 0, s � 1, and o � 0:1, then the post-merger output level will be
twice the pre-merger level less 0.75 production units. Due to the symmetry
attributes made concerning ¢rms and distributions, the impact of amal-
gamation on quota rental positions is negative when o < 0:5 and is positive
when o > 0:5. The impacts in table 3 involve changes amounting to 2^10 per
cent of the quota held per unit of planned production.

6. Conclusion

Production and marketing quotas are important agricultural policy instru-
ments, and production uncertainty pervades the sector. For a risky production
technology, the phenomenon that we considered was the discontinuity in
marginal revenue to which quotas give rise. Other policy instruments that
may have similar consequences include grading in grain and horticultural
markets and bulk discounts under uncertain demand. Each situation has
distinctive attributes, and so each policy may have to be analysed in its distinct
context. Incentives to merge also may arise under these policy environments.

Many of the results obtained in this article are stronger than those
identi¢ed in models of non-tradable production quotas when output is
stochastic. For example, it is not possible to ascertain the e¡ects of a mean
preserving contraction on input choices in the models of Fraser (1986,
1995a). Yet it is shown here that a mean preserving contraction has no e¡ect
on production. It may seem strange that the more involved (i.e. two
decisions) model renders results more readily. Upon re£ection, however, this

Table 3 Effects of amalgamation on quota rental decisions; change in production units
covered by quota a

r � 0;s � 1 r � 0:5; s � 1 r � 0; s � 2 r � 0:5;s � 2

o � 0:1 ÿ0:375 ÿ0:172 ÿ0:750 ÿ0:344
o � 0:3 ÿ0:154 ÿ0:070 ÿ0:308 ÿ0:141
o � 0:7 �0:154 �0:070 �0:308 �0:141
o � 0:9 �0:375 �0:172 �0:750 �0:344
a The changes reported pertain to pre-merger business units. When the reference point is post-merger
business units, then the changes are twice as large.
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should be no surprise. The producer is not in equilibrium when quota is not
tradable. Freedom to choose both factors expands the set of choices but
places more restrictions upon the structure of the set of optimal choices. The
stronger conclusions are a consequence of the more structured set of
choices.
A related issue that warrants some attention is that of the interactions

between risk and dynamics when an optimiser seeks to allocate quota over
the time period for which the quota pertains. It is not clear what conditions
will encourage the ¢rm to save quota early in the time interval just in case
production is abundant later, and what conditions will encourage the ¢rm to
use quota early just in case the marginal cost of ¢lling quota later turns out
to be high. If quota markets are active throughout the production period,
then the problem is more involved. Rather than rent early, the producer
could wait until the size of the producer's harvest is more certain. This just-
in-time strategy will likely involve paying a higher price for quota if the
producer's harvest is highly correlated with aggregate harvest in the quota
trading area. The problem of optimal quota allocation among time periods
and under non-random production does not appear to have been tackled yet,
and so it might be best to await this analysis before introducing dynamics
into the stochastic model.
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