
Dichotomous choice contingent valuation
probability distributions{

Geo¡rey N. Kerr*

Parametric distributions applied to dichotomous choice contingent valuation data
invoke assumptions about the distribution of willingness to pay that may contra-
vene economic theory. This article develops and applies distributions that allow the
shape of bid distributions to vary. Alternative distributions provide little, if any,
improvement in statistical ¢t from commonly used distributions. While median
willingness to pay is largely invariant to distribution, estimates of mean consumer
surplus diverge widely. Sensitivity analysis to determine bene¢t measure response
to distributional assumptions is essential to prevent erroneous policy advice from
applied dichotomous choice research.

1. Introduction

Dichotomous choice contingent valuation data are usually analysed by ¢tting
parametric distributions1 to the data to depict a representative individual's
demand for the non-market good. In this way, the analyst has the ability to
de¢ne the general shape of the function, and uses statistical analysis to
identify the best-¢tting function of the speci¢ed shape. Constraining the
distribution of bids to a particular shape may bias welfare measure estimates
when the ¢tted distribution does not closely resemble the underlying distri-
bution of willingness to pay (WTP). An approach to avoiding this problem is
the use of non-parametric, or semi-parametric, statistical methods for ¢tting
response distributions (Carson et al. 1994a; Carson, Wilks and Imber
1994b; Creel and Loomis 1997; Haab and McConnell 1997; KristrÎm 1990;
McFadden 1994). Results for these non-parametric and semi-parametric
approaches are not substantially di¡erent from those obtained from para-
metric models.
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The most commonly utilised parametric distribution is the logistic
function, using either raw or logged bid amounts.2 The normal distribution
and its logged variant have also been used, but because the results are
virtually identical to the logistic models (Bowker and Stoll 1988), the logistic
models are generally preferred for their mathematical tractability. Other
distributions that have been utilised include Hanemann's (1984) variant of
the logistic model, which includes income e¡ects, McFadden's (1994)
£exible model, which also includes income e¡ects, and the Weibull distri-
bution (Carson et al. 1994a, 1994b). While Hanemann's model introduces
the theoretically desirable connection between income and demand, it has
been found to be wanting in other respects. It may produce unexpected
negative bene¢t measures (Bowker and Stoll 1988) and positively sloped
demand curves (Boyle and Bishop 1988), and is inferior to log-logistic
models on the statistical ¢t criterion. These results lead Bowker and Stoll
(1988, p. 379) to call for `better speci¢cations of the utility function', a
call recently echoed by Kanninen (1995, pp. 120^1), who states that `the
researcher should experiment with alternative functional forms for the
WTP distribution. The existence of thick upper tails suggests the use of
an asymmetric distribution which might be less sensitive to bids in the
tails.'
There are several issues in choice of a parametric distribution for the

representative demand function, including: goodness-of-¢t, theoretical
consistency, and mathematical tractability. The di¤culty of reconciling the
¢rst two aims is illustrated by cases in which the log-logistic distribution
outperforms the logistic distribution on goodness-of-¢t criteria, but yields
in¢nite mean consumer surplus estimates.3 The principal approaches to
dealing with this problem include Winsorizing4 (Du¤eld and Patterson
1991), and truncation5 at some `reasonable' upper bid limit, sometimes

2Known, respectively, as logistic and log-logistic models.

3 Log-logistic models do not always yield in¢nite mean consumer surplus, but can do so
with some parameter estimates (Hanemann 1984). It may be more correct to claim that
mean consumer surplus is unde¢ned, rather than in¢nite. The log-logistic function is
asymptotic to the bid axis, but in some cases the area under the function converges to a ¢nite
limit. In cases where the log-logistic function is `£atter', such convergence does not occur,
and in this sense the area under the curve (mean WTP) can be interpreted as in¢nite.
Whichever interpretation is adopted, the result is problematic.

4Du¤eld and Patterson (1991) explain Winsorizing as `assign a value of T to all WTP
values above T before computing the mean'. This approach is also referred to as censoring
at T.

5 Truncation entails dropping from analysis all bids outside some (arbitrary) bid value
range.

234 G.N. Kerr

# Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishers Ltd 2000



accompanied by normalisation6 as an attempt to restore other aspects of
theoretical consistency (Boyle, Welsh and Bishop 1988). It is also possible to
choose distributions with alternative upper tail shapes, as suggested by
Kanninen, or to manipulate distributions to force desirable tail characteristics
(Ready and Hu 1995). Concern about the lower tail shape has given rise to
spike models, which are designed to accommodate discontinuities that arise
because large segments of the population have no interest in the item being
valued (i.e. they are `not in the market'), or are losers if the proposed change
proceeds (KristrÎm 1997).
The major logistic distribution-based models are used as approximations

to theory-consistent functional forms (Bowker and Stoll 1988; Du¤eld and
Patterson 1991; Johansson, KristrÎm and Maler 1989; Park, Loomis and
Creel 1991; Sellar, Chavas and Stoll 1986). Other distributions may work as
well as, or better than, logistic distribution-based models in terms of one or
more of the goodness-of-¢t, theoretical consistency, and mathematical
tractability criteria. This article provides an initial investigation of para-
meterisation e¡ects. It tests variants of the logistic and log-logistic distri-
butions to identify their ability to conform to prior expectations. It also
investigates the implications of several variants of the Weibull/exponential
family of probability distributions. All models are ¢tted to an existing
dichotomous choice data set in order to highlight their implications.

2. Survival functions

The dichotomous choice approach to contingent valuation determines the
probability of a representative consumer being willing to pay some nominated
amount to ensure that a given environmental change occurs, or is avoided.
Alternatively, the probability of willingness to accept some given amount of
compensation may be estimated. As the nominated money amount is
increased, the proportion of respondents willing to pay for the change is
expected to decrease. The `survival function' depicts how likelihood of WTP
decreases as bids increase. The logit and probit models are consistent with the
observation that probabilities are constrained to be in the (inclusive) range
between zero and one.7 However, neither of these distributions allows WTP to
be positive for everyone at some positive bid level nor to decline to zero at
non-in¢nite bids. Both these outcomes are commonly observed and have been
proposed elsewhere as minimum criteria for a valid model of WTP (Haab
andMcConnell 1997, 1998).

6 Boyle et al. (1988) suggested a normalisation process to ensure that probability of
WTP falls to zero at the upper truncation point of the bid range.

7 Although neither of these models allows probabilities to equal either zero or one.
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Minimal desirable conditions that should be satis¢ed by all survival
functions include ¢nite WTP and decreasing likelihood of payment as bid
increases. Additionally, tail shapes may need to vary to accommodate di¡er-
ences in response patterns.
Consider the lower (left) tail of the survival function.8 The survival

function may take one of three alternative tail forms at this point:

Tail 1: intersect the probability axis at a probability less than one.
Tail 2: intersect the probability axis at a probability equal to one.
Tail 3: probability reaches one at a bid amount greater than zero.

These alternative shapes are presented in ¢gure 1. The logistic model (among
others) represents Tail 1, while the log-logistic model represents Tail 2.
The survival function should exhibit Tail 1 for those cases in which some

people are not willing to `purchase' the non-market good at the current
price.9 Measurement of existence values provides an example. If some people
truly do not care about, or have preferences for the destruction of, the
resource, then measurement of WTP for the population as a whole will yield

Figure 1 Possible tail shapes for survival functions

8 The left tail is that part of the distribution about the point where bid is zero.

9 Current price might be, for example, travel and/or time costs for recreational resource
use.

236 G.N. Kerr

# Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishers Ltd 2000



responses of this type (KristrÎm 1997). In the words of Haab and McConnell
(1998, p. 219), `In the case of most public goods, the good being valued can
simply be ignored if it does not provide an increase in utility.' Consequently,
there may be no individuals with negative WTP, but a non-zero mass of
people WTP nothing.
Tail 2 is expected to occur in situations where user populations alone are

surveyed, e.g. on-site surveys of recreationists. Most recreationists will have
positive WTP (above current costs) for their recreation activity, but the
marginal recreationist would quit the activity if price were increased
marginally. Tail 1 type data may be transformed to Tail 2 type data by
excluding all of those people who are not willing to pay marginally more
than the present price. This requires appropriate screening questions within
the contingent valuation survey.
The introduction of either non-price rationing or uncertainty is su¤cient

to justify Tail 3. Where access to a resource is limited, say, by membership
of a closed club or by government policy, marginal WTP could be greater
than zero. Another example is provided by experiences that are superior to
expectations. In such cases, WTP of every resource user may exceed zero (i.e.
the ex ante marginal user is not ambivalent, ex post, about the decision to
utilise the resource); however, this may only be a transitory phase while
expectations adjust.10 Tail type 3 may also be observed within particular
populations because of self-selection, e.g. environmental activists' WTP to
preserve tropical rain forests.
The policy implications of Tail 1 have been the stimulus for some debate

about whether the mean of all WTP values, the mean of only positive WTP
values, or the median provides the most appropriate aggregate bene¢t
measure (Hanemann 1984, 1989; Johansson et al. 1989). KristrÎm (1997)
broadens this argument by introducing the prospect of two types of spike
model, one in which some people are not in the market (the good does not
enter their utility function), and another in which some people are winners,
some are losers and some are ambivalent. Where people are not in the market,
inclusion of negative bids derived from parametric model extrapolation causes
mean WTP (and possibly the median) to be underestimated. The second spike
model, which includes winners and losers, suggests a discontinuity at zero that
may require a di¡erent model speci¢cation on each side of the discontinuity.

10 On the other hand, expectations may exceed the bene¢ts actually delivered by a non-
market resource, a situation that may be exacerbated by marketing strategies. If feedback
loops are poor or non-existent (e.g. when recreational activities are purchased by
international travellers and there is little return custom), unrealised expectations may be an
ongoing phenomenon. In the presence of unrealised expectations Alternative 1 may be
observed, whereas Alternative 2 is expected in cases where people are perfectly informed.
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There are also three alternatives for the shape of the low probability end
(upper tail) of the survival function:

Tail 4: reaches the bid axis at a ¢nite bid.
Tail 5: asymptotic to the bid axis.
Tail 6: asymptotic to a probability greater than zero.

The logistic and log-logistic models are both examples of Tail 5. They imply
that some people are willing to pay in¢nite money amounts, which contra-
venes prior expectations for the types of goods usually valued using these
functions. This is termed the `fat tail problem' by Boyle et al. (1988). The
logistic model presents less of a problem because, while it allows some people
to have in¢nite WTP, mean consumer's surplus is ¢nite. This is not the case
for some coe¤cient values of the log-logistic model, for which the mean is
non-¢nite (Hanemann 1984). Tail 4 is consistent with the desirable char-
acteristics of survival functions and always provides ¢nite mean consumer's
surplus. Tail 6 is undesirable because it always yields in¢nite mean WTP.
Ready and Hu's (1995) pinched log-logistic model is one approach for
transforming Tail 5 to Tail 4.
With three possibilities for each of the two tails it is possible to construct

nine di¡erent types of survival function. However, three of those nine
(incorporating Tail 6) are rejected because of in¢nite consumer surplus
estimates. A further three (incorporating Tail 5) have the undesirable
characteristic of allowing individuals to have in¢nite WTP, but may provide
useful approximations in cases where there is a ¢nite limit of integration.

3. Survival function variants

A host of distributions, in addition to the already used normal, logistic,
log-logistic and Weibull distributions, is available to the dichotomous choice
analyst, but many of these can be ruled out on theoretical or pragmatic
grounds. For example, while the Cauchy and Type I Extreme Value11

functions often provide very good ¢ts to data and are extremely tractable
mathematically, they both yield in¢nite mean WTP (Johnson and Kotz
1971).12 For those cases in which a measure of mean WTP is required, say,
as an input to cost-bene¢t analysis, these distributions will be unhelpful.
However, they may be bene¢cial in cases where median WTP is sought, say,

11 Sometimes also referred to as `log-Weibull' and `double exponential'.

12 The probabilities of YES responses (survival rates) for these functions are:
Cauchy PYES � 0:5ÿ tanÿ1�A� BX�=p
Type I Extreme Value PYES � exp�ÿ exp�A� BX��
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to predict referendum results or to assess citizen acceptance of a proposal.
These distributions are not examined further here.
As an alternative to searching across the range of cumulative density

functions that might potentially allow the desired £exibility in survival
function tail shapes, the approach adopted here is to explore the bene¢ts of
variations on survival functions that are already in wide use.13 Following the
approach used by Boyle et al. (1988) and Ready and Hu (1995), additional
parameters are added to commonly used distributions to allow them to
comply with expected tail shapes and to better ¢t the data. The survival
function variants are ¢rst introduced and some key descriptors are de¢ned,
then the range of functions is applied to data to reveal the dependence of the
descriptors on survival function variant.
Scaling provides £exibility in the lower tail. Scaling has the e¡ect of

multiplying predicted probabilities from the standard form of the survival
function by a constant factor. Let g(X) be the standard survival function,
which predicts probability of WTP, f �X�, as a function of bid (X), i.e.
f �X� � g�X�. The scaled survival function has the form f �X� � a:g�X�, where
a is some constant. This simple change allows the lower tail to take any of the
3 potential forms, but does not a¡ect the general shape of the upper tail.14

Compared to the standard form of the survival function, a shifted function
increases all probabilities by some ¢xed (possibly negative amount). The
shifted model has the form f �X� � g�X� � b, where b is some constant.
Addition of a shift parameter allows some £exibility in the upper tail, but
only at the cost of a shift in the lower tail (and vice versa). For example, a
shifted log-logistic model that reaches the bid axis must have probability of
WTP of less than unity at a zero bid. Shifted models are therefore rather
clumsy and may consequently not substantially increase explanatory power
over the standard forms.
The changes in survival function shape because of scaling and shifting

are illustrated in ¢gures 2 and 3, respectively. Figure 2 shows scaling has its
largest e¡ect at low bids, and has a small e¡ect at high bids. Scale factors
greater than one increase probabilities of bid acceptance, all else being
unchanged. However, the addition of a scale parameter will normally a¡ect
all estimated parameters and will consequently change the overall shape of
the ¢tted survival function. Figure 3 illustrates the uniform impact of the

13 These are the logistic, log-logistic, Weibull and exponential distributions. The normal
distribution is not included because of its similarity to the logistic distribution. McFadden
(1994) describes and Cooper (1993) utilises the gamma distribution. The beta model too has
been introduced recently (Haab and McConnell 1998). Neither the beta nor the gamma
distribution is analysed here.

14 Scaling is implicit in the distributions described in McFadden (1994).
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Figure 2 Scaled survival functions

Figure 3 Shifted survival functions
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shift parameter across the whole survival function. Shift factors greater than
zero can be envisaged as `sliding' the survival function up the y-axis. Again,
the overall shape of the ¢tted function is able to change with the addition of
a shift parameter.
One approach to obtaining the upper tail bene¢ts of shifting as well as

the lower tail bene¢ts of scaling is to combine both into a single speci¢cation
of the survival function. The generalised model incorporates both scale and
shift parameters and has the form f �X� � a:g�X� � b, where a and b are
constants. All tail combinations are possible and the generalised model
produces the standard, scaled and shifted models as special case outcomes.
The variants of the logistic survival function illustrate how the additional

parameters enter the survival functions. These are:

Standard logistic survival function f �X� � �1� eÿ�A�BX��ÿ1
Scaled logistic survival function f �X� � a:�1� eÿ�A�BX��ÿ1
Shifted logistic survival function f �X� � �1� eÿ�A�BX��ÿ1 � b

Generalised logistic survival function f �X� � a:�1� eÿ�A�BX��ÿ1 � b

In each case A is a constant, B is the coe¤cient on the money bid, a is the
scale parameter and b is the shift parameter.
The implications of these changes in model speci¢cation may be quite

profound. For example, the upper tails of the shifted and generalised
functions for the commonly used survival functions are asymptotic to
probability equal to b, so mean consumer's surplus is in¢nite whenever
b > 0, and is ¢nite whenever b < 0.
A further potential variation on currently used survival functions involves

a transformation of the upper tail, as illustrated by the `pinched log-logistic'
form utilised by Ready and Hu (1995), f �X� � �1ÿX=T�g�X�, where T is
the (endogenous) point at which the upper tail reaches the bid axis and g�X�
is the standard log-logistic survival function. This model retains the
constraint that probability of paying a zero bid is one, but ensures that
probability becomes zero at the ¢nite bid level, T. In contrast, KristrÎm's
(1997) spike model transforms the lower tail while retaining the original
upper tail shape.
The variants do not constrain f �X� to fall within the range �0; 1�. Let

PYES�X� be the probability of WTP money bid amount X, i.e. the survival
function. Then:

PYES�X� � 1 if f �X� � 1 �1�
PYES�X� � f �X� if 0 < f �X� < 1 �2�
PYES�X� � 0 if f �X� � 0 �3�
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4. Derivation of mean WTP

For Tail 1, di¡erent derivations of the mean apply, depending upon whether
negative WTP is permitted or not. The following derivations assume that
negative WTP is not permitted. To evaluate mean WTP for scaled, shifted
and generalised models it is necessary to de¢ne XL and XU, the bids at which
probabilities of WTP are 1 and 0, respectively.

f �XL� � 1;XL � 0; and

f �XU� � 0

To illustrate, XL and XU are derived for the scaled logistic model by solving
for X in the following equations.

XL : C:�1� eÿ�A�BX��ÿ1 � 1 ) XL � ÿ�A� ln�Cÿ 1��=B ffor C > 1g

XU : C:�1� eÿ�A�BX��ÿ1 � 0 ) XU � 1
Mean WTP is in¢nite whenever XU is not de¢ned (Tail 6). This condition
occurs only for shifted and generalised models. Recalling that XL is non-
negative, mean WTP is the area under the survival function:

Mean � XL �
Z XU

XL
f �X�dX

It is often easier to evaluate the equivalent:

Mean � XL �
Z XU

0
f �X�dXÿ

Z XL

0
f �X�dX

The integrals may need to be evaluated numerically. Simple analytical
solutions for median WTP exist for all model variants.15

5. Empirical test of impacts

The implications of alternative functional forms are tested by their
application to data from a household survey used to determine bene¢ts of
water quality improvement in New Zealand's Waimakariri River (Sheppard
et al. 1993). The Waimakariri River runs to the sea on the outskirts of
Christchurch City. It receives substantial recreational use from residents of
Christchurch and the surrounding region. It also receives several major
pollutant discharges that reduce the recreational and aesthetic values of the

15 Survival function de¢nitions and analytical solutions for XL, XU, Median WTP and
Mean WTP are available from the author on request.
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lower river reaches. The study used o¡-site surveys to value an improvement
in water quality. Because an o¡-site survey would have captured some
respondents who had no interest in the issue,16 Tail 1 is expected. The data
con¢rm this expectation, with 16.3 per cent of valid responses indicating
their non-willingness to pay the nominal sum of $1 for the proposed
water quality improvement. Shift parameters less than unity should be found
in the log-logistic, Weibull and exponential distribution-based models which
ordinarily assume 100 per cent WTP when the bid is zero.
While the survey did not contain questions directly analogous to KristrÎm's

questioning format, it is assumed that the contingent market validity test
applied to verify validity of responses indicating non-WTP $1 is a suitable
proxy for application of the simple `not in the market' spike model.
After validation of willingness to enter the contingent market, survey

participants responded to a single dichotomous choice question that sought
their response to a referendum. The two available responses were (1) the
status quo, and (2) payment of additional annual regional council rates to
treat discharges into the river, thereby raising the water quality from its
existing suitability only for ¢shing and boating to a level that would be safe
for swimming. A postal survey was administered that obtained 1 161
responses from 2 628 delivered questionnaires (44 per cent). Follow-up
telephone interviews of non-respondents indicated that survey responses were
biased towards river visitors. After deletion of item non-responses and
protest responses, 824 cases remained to be analysed. Response rates did not
vary signi¢cantly across the range of bids. Data are reported in table 1.
Pre-tests indicated the likely range of bids, and the bid amounts sub-

sequently included in the survey were chosen in the expectation that the
higher amounts would exceed WTP of nearly every individual in the
population. This expectation proved to be false, with an unexpected number
of positive responses to the high bids. These data therefore represent the
classic fat tails situation, in which the data are not optimal, but are
nevertheless the basis for some policy evaluation task that requires
measurement of the area under the survival function.
Parametric models have been ¢tted using maximum likelihood estimation.

Signi¢cance of improvements in ¢t are tested using likelihood ratio tests
(Cramer 1986). If the standard models that are commonly used are poor
approximations to the underlying distributions of WTP, it is expected that at
least some of the descriptors (mean, median, probability of WTP zero, XU)
will change signi¢cantly with the inclusion of additional parameters.

16 The lower Waimakariri River had been visited by 47 per cent of survey respondents
(Sheppard et al. 1993).

Contingent valuation probability distributions 243

# Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishers Ltd 2000



6. Results

Descriptor variables and their bootstrapped con¢dence intervals are
reported in table 2 and likelihood ratio tests of additional parameters are
presented in table 3. Point estimates of the mean (de¢ned here only over the
positive bid range) vary dramatically with functional form, ranging from
$94 to in¢nity. Excluding models that predict in¢nite means, the highest
point estimate of the mean is $308. Di¡erences in non-in¢nite means are
statistically signi¢cant in some cases. Upper 95 per cent con¢dence interval
bounds for the relatively poorly ¢tting logistic, spiked logistic, exponential
and shifted exponential models are $130, $103, $108 and $120, respectively.
Comparison with lower 95 per cent con¢dence interval bounds for shifted
log-logistic, Weibull and scaled Weibull models ($121, $128, $169) indicates
a number of signi¢cant di¡erences. For comparative purposes, KristrÎm's
(1990) non-parametric (PAVA) estimate of the mean for these data, using an

Table 1 Data

Dollar
amount

Number
WTP

Number not
WTP

Proportion
WTP

Number of
responses at this

bid amount

2 25 2 .926 27
7 20 6 .769 26
12 20 5 .800 25
17 19 6 .760 25
22 12 14 .462 26
27 13 8 .619 21
32 16 12 .571 28
37 15 14 .517 29
42 6 16 .273 22
47 15 10 .600 25
57 21 35 .375 56
67 18 26 .409 44
77 29 32 .475 61
87 26 30 .464 56
97 16 38 .281 54
117 10 20 .333 30
137 8 16 .333 24
157 11 19 .367 30
177 12 23 .343 35
197 5 19 .208 24
217 6 33 .154 39
237 7 25 .219 32
257 3 29 .094 32
277 8 17 .320 25
297 2 26 .071 28

Total 343 481 824
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Table 2 Results

Model
Log-

likelihood
Median WTP

($)
Mean WTP

($)
XU

($)
Probability of
WTP zero

Constant 559.5 0.42

Logistic 509.6 64
(45,80)

111
(97,130)

1 0.64
(0.59,0.70)

Spiked logistic 537.7 81
(73,91)

94
(86,103)

1 0.80
(0.78,0.82)

Scaled logistic # 505.3 61 116 1 0.73

Shifted logistic 504.3 49
(34,71)

1
(1,1)

nd
(nd,nd)

0.79
(0.65,0.97)

Generalised logistic# 501.7 50 1 nd 0.86

Log-logistic 498.7 44
(34,54)

1
(1,1)

1 1.00

Pinched log-logistic 498.4 46
(36,56)

134
(100,9431)

820
(399,1:7�108)

1.00

Scaled log-logistic 498.7 44
(27,56)

1
(2715,1)

1 1.00
(0.81,1.00)

Shifted log-logistic 498.7 44
(33,58)

308
(121,1)

12310
(776,nd)

0.99
(0.83,1.00)

Generalised
log-logistic #

498.0 45 123 644 1.00

Weibull 498.7 48
(37,59)

171
(128,292)

1 1.00

Scaled Weibull 498.3 45
(34,60)

215
(169,1318)

1 1.00
(0.86,1.00)

Shifted Weibull 498.5 46
(35,60)

1
(605,1)

nd
(605,nd)

1.00
(0.87,1.00)

GeneralisedWeibull# 498.0 45 123 644 1.00

Exponential 531.1 69
(64,75)

100
(92,108)

1 1.00

Scaled Exponential 505.2 60
(47,72)

116
(101,138)

1 0.73
(0.65,0.82)

Shifted Exponential 508.3 66
(48,79)

105
(95,120)

380
(342,441)

0.68
(0.61,0.76)

Generalised
Exponential

501.7 50
(35,64)

1
(108,1)

nd
(577,nd)

0.86
(0.72,0.99)

Notes:
Underlined entries (e.g. 1.00) take their values by de¢nition.
nd Not de¢ned (e.g. requires logarithm of a negative number, or the bid function is asymptotic to a

positive probability).
# Con¢dence intervals have not been derived because of convergence problems in these models.
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upper bid limit of $350 obtained by linear extrapolation, is $103. It is
notable, however, that the lower bound measures of mean WTP (for non-
in¢nite cases) fall within a narrow range, apart from the shifted Weibull and
scaled log-logistic models.
Median estimates show consistency, di¡erences are generally not signi-

¢cant, with the log-logistic and Weibull-based models showing remarkable
consistency. Medians for the logistic and exponential models tend to be
higher than for the other models, but this di¡erence is only signi¢cant for the
poorly ¢tting one-parameter, standard exponential model and the even
poorer ¢tting spiked logistic model. The symmetric logistic distribution does
not re£ect the asymmetric nature of the data, which may have constrained
this model from reliably estimating the median.17

Addition of parameters had little impact on goodness-of-¢t of the log-
logistic and Weibull forms, but o¡ered signi¢cant improvements for the
poorer ¢tting logistic and exponential forms. The generalised models
performed poorly. The generalised exponential form approached the ex-
planatory power of the log-logistic and Weibull families of functions.
However, the generalised exponential model also yielded undesirable Tail 6.
The other generalised models all exhibited convergence problems and, while
it was possible to derive (unreliable) point estimates of parameters, it was
not possible to derive con¢dence intervals. Similar di¤culties were en-

Table 3 Chi squared tests of significance of additional parameters

Variant
Degrees

of freedom Logistic Log-logistic Weibull Exponential

Standard vs pinched 1 0.62
Standard vs scaled 1 8.74** 0.01 0.83 51.87**
Standard vs shifted 1 10.72** 0.04 0.42 45.54**
Standard vs generalised 2 15.78** 1.36 1.44 58.71**
Pinched vs generalised 1 0.75
Scaled vs generalised 1 7.05** 1.36 0.61 6.84**
Shifted vs generalised 1 5.06* 1.33 1.02 13.17**

Notes:
* Signi¢cant @ a � 0.05
** Signi¢cant @ a � 0.01

Critical values:
a � :05 a � :01

1 dof 3.84 6.63
2 dof 5.99 9.21
3 dof 7.81 11.34

17 I am indebted to an anonymous reviewer for this point.
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countered with the scaled logistic model. The shifted logistic and shifted
Weibull models produced Tail 6, while the shifted log-logistic and shifted
exponential models produced a transition from Tail 5 to Tail 4. In obtaining
this desirable outcome the shifted exponential model has over-corrected the
left tail so that the con¢dence interval for probability of WTP at zero bid
does not overlap that observed in the data.

A priori expectations were for probability to be less than unity when the
bid amount is zero. This expectation is borne out by the logistic and
exponential-based models, with di¡erences from unity always being signi-
¢cant. The standard logistic model predicts a somewhat lower zero-bid
probability than other models, signi¢cantly so in some cases. Probabilities
are not signi¢cantly di¡erent from unity for the log-logistic and Weibull-
based models, although lower bound values are all less than one and are
close to the observed value. The upper bound on XL over all models was $2.
Clearly, Tail 3 does not apply to these data. However it is not possible to
distinguish statistically between Tails 1 and 2, both being supported by some
model speci¢cations. It is notable that the spiked logistic model, although
coming very close to correctly ¢tting the left tail, o¡ers an extremely poorly
¢tting survival function.

7. Discussion

The fat tails problem has been known for some time and a variety of
approaches, principally based on truncation, have been used to address it.
Recognition of the problem is implicit acceptance that the parametric models
being ¢tted to the data do not well represent expected and/or observed
behaviour. At least three potential causes arise: (1) the array of bids pre-
sented to survey participants is inadequate to de¢ne the tails of the
distribution; (2) incorrect parameterisation of ¢tted models; or (3) the data
are poorly behaved because of strategic or other behavioural responses.
Better anchoring the tail of the distribution would seem to imply the

desirability of placing more bids in the upper tail. However, this solution is
not always possible in applied settings where time and budget constraints
often force reliance on existing data. Even with extensive survey pre-testing it
is not uncommon to ¢nd surprises in the data, typically an unexpected high
frequency of yes responses to high bids. In many instances it is simply not
possible for practical reasons to utilise the information contained in these data
to undertake further sampling to address data concerns, either by expanding
the sample size to reduce the probability of `£yers' or to alter the bid
distribution. However, measures of value are often still required to help
resolve some resource management issue and the existing data may provide
the only source of such estimates, forcing reliance on less than optimal data.
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Further sampling to develop an optimal bid distribution may be of little
value anyway. Several authors have tackled the problem of identi¢cation of
the optimal bid distribution for dichotomous choice contingent valuation
(Du¤eld and Patterson 1991; Cooper and Loomis 1992, 1993; Cooper 1993;
Kanninen and KristrÎm 1993; Alberini 1995a; Kanninen 1995). These
studies generally make strong assumptions about the form of the underlying
bid distribution as the basis for their analyses. As Kanninen and KristrÎm
(1993, p. 201, emphasis added) indicate `it is not necessary, provided the
distributional assumption is correct, to cover the entire range of WTP values'.
However, it is apparent that in applied settings the underlying survival
function is unknown a priori. Alberini (1995b) used simulated data to test
the ability to di¡erentiate between correct and incorrect distributions. She
found that extending the vector of bids did not increase the power to identify
a mis-speci¢ed distribution except in some instances when sample size was
very large. Alberini's test is not conclusive, however, as she used an optimal
sampling routine based on each of the assumed distributions18 so that the
sample di¡ered between data sets, unlike most applied cases in which a
number of distributions are ¢tted to a single data set. Where the survival
function is unknown a priori, neither theory nor practice provide clear
guidance on optimal dichotomous choice bid distributions.
The possibility of incorrect survival function parameterisation suggests

testing alternative distributions. This article has done so by using four
common distributions, and by increasing their £exibility. The simple changes
made to commonly used distributions are additions to a process of dis-
tributional modi¢cation. Results have been mixed. Variants of the log-
logistic and Weibull distributions o¡er negligible advantage over other forms
in terms of goodness-of-¢t. Adding parameters only o¡ered signi¢cant
improvements for the poorer ¢tting logistic and exponential forms. Standard
log-logistic distributions commonly fail to yield ¢nite mean WTP. In this
case, scaling failed to address that problem, but shifted and generalised
forms of the log-logistic distribution were partially successful. Both means
had ¢nite expected values, although the upper bound was not de¢ned for the
shifted model, and no con¢dence interval could be de¢ned for the generalised
model.
Choice of the best model cannot be made on statistical grounds as there

is very little, if any, di¡erence in goodness-of-¢t. Similarity of goodness-of-¢t
coupled with non-overlapping estimates of the mean between distributional
forms raises the issue of which estimate of the mean should be used for cost-
bene¢t analysis. The fat tail problem remains in somewhat di¡erent form,

18 The two distributions tested were log-normal and Weibull.
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there exists a variety of distributions which satisfy the non-in¢nite WTP
criterion, but these provide somewhat diverse bene¢t estimates ö the ratio
of highest to lowest non-in¢nite point estimates derived here being about 3.
The choice between competing functional forms can be resolved statistically
for the bid range for which data exist, but the behaviour of survival functions
outside that range cannot be judged. Further search for distributions which
resolve the problem is therefore likely to be unsuccessful in that the `correct'
distribution could already be within the set of models tested here, but the
analyst has no way of identifying it. In other words, it is not possible to
estimate our way out of the fat tail problem.
Several authors note the potential role of yea-saying in the fat-tail problem

(Alberini 1995b; Kanninen 1995). Yea-saying, nay-saying and other non-
truthful response behaviours19 such as strategic responses, random responses,
faulty coding or any other actions resulting in `non-truthful' data also
possess the potential to induce the fat tail problem and should not be
overlooked. Any of these actions could e¡ectively result in Tail 6, even
though true preferences embody Tail 4. If the inclusion of extended bid
ranges creates more incentives for non-truthful responses or does not
remove the reasons for this type of behaviour, then extension of the bid
range will not remove the fat tail problem, it may simply bias results. For
example, if very high bids are included, these may seem quite implausible
to some respondents who may then respond £ippantly or strategically.
While non-truthful responses are consistent with the unexpected frequency
of yes responses to high bids in the Waimakariri River study, the high
variance in responses across the entire bid range suggests that this potential
explanation should not be adopted unquestioningly. It should also be noted
that neither distributional variety nor extended bid ranges adequately
address issues arising from fat tail problems that result because of be-
havioural response issues.
Estimates of bene¢ts from water quality improvement in the Lower

Waimakariri River varied by a factor of three over the range of theoretically
acceptable distributions ¢tted to the data. The results presented here bring
into question the robustness of non-market bene¢t estimates that have been
derived using only one or two distributions. It is readily apparent that the
variability of bene¢t measures requires caution in the use of such values to
inform policy decisions and, in the short term at least, a need for greater
sensitivity analysis on the part of dichotomous choice analysts. This study
has investigated a very small range of the distributions upon which that
sensitivity analysis might be based. There may be other distributions that

19Whether intentional or not.
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would ¢t the data much better, removing many of the concerns raised here,
however, further research in this direction must eliminate yea-saying and
other behavioural causes of the fat tail problem in order to make progress.
The consistency of lower bound mean WTP estimates suggests that use

of lower bounds to support a change yielding non-market bene¢ts (e.g.,
improving water quality in the Lower Waimakariri River) is justi¢ed. The
volatility of upper bounds implies the converse does not hold.
It is worth noting the consistency of medians estimated across functional

forms. There were only two outliers, the spiked logistic model and the
extremely simple standard exponential model. The single parameter
exponential model cannot be expected to ¢t the data well and is unlikely to
be utilised. However, the spiked logistic model has been promoted as a
desirable alternative to other commonly used models. Inability of the
symmetric logistic model both to conform to the spike and to ¢t the
remainder of the data has resulted in the highest point estimate of the
median (and the lowest estimate of the mean). This result signals the need
for caution in utilisation of measures derived using the spiked logistic model.
Notwithstanding the discrepancies already noted, the median is extremely
robust to assumptions about functional form in this case.
It has not been possible to identify the relative abilities of the new

distributional variants to estimate true mean WTP because that quantity is
unknown under the case study approach used here. The use of synthetic data
of known form and mean o¡ers an alternative approach for testing the
potential advantages of these new distributions. It also allows for elimination
of behavioural response biases. The resolution of fat tail problems is
dependent upon their cause, implying the need for better understanding of
dichotomous choice behaviours. Even when the data represent `true'
responses, the fat tail problem may remain. These results suggest the need
for a great deal of caution in reliance on dichotomous choice results where
it has not been shown that mean WTP is insensitive to distributional
assumption. It does not appear possible to remove this problem by adding
£exibility to commonly used distributions to better accommodate both
economic theory and ability to conform with empirical data, although the
potential bene¢ts of extending the search to other distributions cannot be
ruled out.
The opportunity for `art' in the design and interpretation of dichotomous

choice contingent valuation studies remains. Analysts need to be aware of
the nature of their data and should choose parameterisations accordingly.
For example, shifted models are incapable of yielding survival functions that
simultaneously have positive lower bounds and non-in¢nite upper bounds.
Approaches to dealing with problems perceived in one tail of the survival
function have implications for the other tail and the ¢t to the rest of the data.
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Awareness of these implications indicates the need for close scrutiny of
assumptions about the form of the data and choice of a survival function
that conforms with these assumptions. Questionnaire design that explicitly
identi¢es tail shape, as with the spike models, is likely to be extremely useful
in this regard. Median WTP appears relatively immune to changes in
functional form, but close scrutiny and increased sensitivity analysis are
urged for applications reliant upon dichotomous choice estimates of mean
WTP.
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