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Investment planning under uncertainty and flexibilityO. Musshoff and N. Hirschauer

 

Investment planning under uncertainty and 
flexibility: the case of a purchasable sales 

contract*

 

Oliver Musshoff and Norbert Hirschauer

 

†

 

Investment decisions are not only characterised by irreversibility and uncertainty but
also by flexibility with regard to the timing of the investment. This paper describes
how stochastic simulation can be successfully integrated into a backward recursive
programming approach in the context of flexible investment planning. We apply this
hybrid approach to a marketing question from primary production which can be
viewed as an investment problem: should grain farmers purchase sales contracts which
guarantee fixed product prices over the next 10 years? The model results support the
conclusion from dynamic investment theory that it is essential to take simultaneously
account of uncertainty and flexibility.

 

Key words:

 

 dynamic programming, flexibility, investment, sales contract, stochastic simulation, 
uncertainty.

 

1. Introduction

 

In its conventional form, the net present value criterion does not account for
entrepreneurial flexibility with regard to the timing of an investment. Taking
account of temporal flexibility implies that a deferrable investment opportunity
(option) should only be carried out (exercised) if  the profitability of the
immediate investment is higher than the profitability of the deferred investment
(cf. Jorgensen 1963; Dixit and Pindyck 1994, p. 138). Viewing the problem as
a time-interdependent (dynamic) decision problem is equivalent to considering
opportunity costs over time. That is, the critical exercise value (investment
trigger) may be increased compared to a situation without flexibility. If  one
additionally takes uncertainty into consideration the effect of temporal
opportunity costs will be even more pronounced (cf. Myers 1977; Dixit and
Pindyck 1994; Pietola and Myers 2000; Carey and Zilberman 2002) because,
in the course of time, more information will be available.

The weakness of the conventional net present value criterion is a substantial
drawback in many areas of agro-economic decision-making which are often
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characterised by irreversibility 

 

and

 

 uncertainty 

 

and

 

 flexibility. Taking account
of these characteristics in the decision process and trying to improve per-
formance warrants increased planning efforts especially in large farming
companies which face increasing risks in competitive and liberalised markets
such as in Australia or Canada. This applies to most examples of ‘classical’
investments in buildings and animal production facilities even though they
have not been analysed as flexible investments in the past (cf. Pietola and
Wang 2000). Another relevant example is the switching decision between
conventional and organic farming (cf. Kuminoff and Wossink 2005; Mußhoff
and Hirschauer 2008).

The applicability of different approaches to stochastic dynamic decision
problems (i.e. problems that entail choices at various stages and uncertain
events embedded between these stages) depends on a number of contingencies:
analytical solutions are only available for a subset of stochastic processes and
for time-continuous exercise options with infinite lifetime (cf. McDonald and
Siegel 1986). Finite difference methods (e.g. Brennan and Schwartz 1977)
and numerical integration (e.g. Parkinson 1977) are able to solve problems
with discrete exercise options and finite lifetime, but they are still restricted
to a subset of stochastic processes. Stochastic simulation (cf. Boyle 1977), in
contrast, represents a powerful method of representing probabilistic information.
Nevertheless, Monte Carlo simulation has scarcely been applied to stochastic
dynamic decision problems, in general, and flexible farm investment problems,
in particular. The reason is that a stand-alone simulation does not allow for
the consideration of flexibility and the solution of time-interdependent decision
problems (cf., e.g. Hull 2000). Therefore, stochastic dynamic decision problems
such as the optimal exercise strategy of American-type options or analogous
decision problems have been frequently solved in the past by using stochastic
decision trees (e.g. Magee 1964; Trigeorgis 1996; Hull 2000).

However, the use of  decision trees is limited to certain types of  time-
interdependencies. Binomial trees (cf., e.g. Cox 

 

et al

 

. 1979; Jarrow and Rudd
1983), and sometimes trinomial trees (Omberg 1988), are used to model
Brownian motion. Going beyond equal jump processes, Nelson and Ramaswamy
(1990) demonstrate that binomial trees can even be used to model the stationary
Ornstein–Uhlenbeck process. Boyle (1988) demonstrates how to include two
correlated random walk variables in a lattice framework. While allowing for
a discrete approximation of Markov processes (and especially equal jump
processes), decision trees are not suited if  the time-series analysis reveals that
the ‘correct’ process is non-Markov. The Markov property is the precondition
for a recombining stochastic tree. Non-recombining trees, the nodes of which
grow exponentially with each additional time step, become unmanageable
‘bushy messes’ (Hardaker 

 

et al

 

. 2004, p. 203) even with a comparatively low
number of time steps. In line with Briys 

 

et al

 

. (1998), Hull (2000) and Long-
staff  and Schwartz (2001) we may conclude that, even though the increased
computing power of modern PCs has improved the capacity of decision tree
analysis over the last years, more complex problems that include non-Markov
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processes and/or multiple and correlated variables exhibiting diverse processes
cannot – at least not practically – be handled by means of decision trees.

In practice we do not know the results of the statistical analysis in advance
(Laughton and Jacoby 1995; Spahr and Schwebach 1998; Odening 

 

et al

 

.
2007). Hence, for solving stochastic dynamic decision problems, we need a
generally applicable approach with the capacity to process probabilistic
information independent of the type of process and the number of stochastic
variables. In the past decade, a number of simulation-based procedures have
been developed which are capable of handling the wide diversity of stochastic
processes, including non-Markov ones (e.g. Grant 

 

et al

 

. 1997; Glasserman
2004; Ibanez and Zapatero 2004).

We are the first, to our knowledge, to apply such an approach to a flexible
contract problem in primary production. We examine whether the stochastic
dynamic decision model provides an economic rationale for the observed
behaviour of German grain farmers who did not buy sales contracts which
had been offered to them by a large grain dealer. The application resorts to a
simulation-based backward recursive procedure originally developed to price
American-type financial options (cf. Grant 

 

et al

 

. 1997). The Grant-procedure
exploits the fact that the most flexible method for modelling random variables
is stochastic simulation. It furthermore accounts for the limitations of a
standard simulation which does not include an optimisation algorithm for
time-interdependent decision problems. In our application, minor modifications
and refinements are made to the Grant-approach. Emphasising its characteristics,
the modified approach is labelled ‘bounded recursive stochastic simulation’
(BRSS).

The rest of this paper is organised as follows: In Section 2, we describe the
decision situation of  the grain producers in detail. This includes the
description of the investment problem (subsection 2.1), the formulation of
the investment model (subsection 2.2), and the description of the time-series
model (subsection 2.3) which is used to represent the stochastic market price
of rye. In Section 3, we explain the hybrid approach BRSS which is applied
to the specific flexible investment problem of the grain growers. We present
the results of  our analysis in Section 4. The paper ends with concluding
comments (Section 5).

 

2. A stochastic dynamic decision problem from primary production

2.1 Description of the investment problem

 

In 2004, the EU stopped rye market intervention. Therefore, rye producing
farmers were considerably concerned both about the level and the fluctuations
of future rye prices. In the years 2003–05, relating to these concerns, a large
grain dealer in the new federal states of Germany offered a sales contract to
grain farmers. Buying a contract would have required an immediate payment
of 

 

$

 

250. It would also have obliged the contracting farmer to sell five metric
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tons of rye annually to the grain dealer for the next 10 years. In exchange, the
grain dealer would have fixed the price at 

 

$

 

90 per ton of rye, independent of
future market price volatility. The contract furthermore specified that the
dealer has the right to charge the farmer for ‘cover-purchases’ at market
prices whenever the farmer does not supply the contracted amount of rye.

The farmers’ decision problem can be seen as an investment problem: the
costs of the contract which amount to 

 

$

 

250 per five tons (

 

$

 

50 per ton) are
viewed as investment costs. The useful lifetime of the investment is 10 years,
and the differences between the contracted price and the volatile market
prices represent the uncertain future investment cash flows. Contrary to
conventional investment applications (e.g. purchase of capital goods), the
profitability of  this ‘contractual investment’ increases with a decreasing
product price.

We assume that the farmers considered this investment as both risky and
flexible. That is to say, the essential characteristics of dynamic investments
are to be found in this contract problem: sunk costs, uncertainty of future
cash flows and flexibility with regard to the timing of the investment. The
deferrable investment opportunity to purchase the contract offered by the
grain dealer can thus be seen an option which is analogous to an American-
type call option with a strike price of 

 

$

 

250 (relating to a contract of five tons).
It is to be noted that the contract itself  represents a futures contract (or more
precise: a package of 10 annual futures) certifying the right 

 

and

 

 the obligation
to sell the specified amount of five tons of rye at the price of 

 

$

 

90 per ton in
each of the 10 years following the conclusion of the contract.

The stochastic dynamic investment model which we consequently use to
represent the farmers’ decision situation is based on the following assumptions
and considerations:

1. The rye prices on the market for food grains are uncertain. We assume
that the stochastic process, as derived from the time series of rye prices
according to statistical tests (see below), represents the best model to forecast
the future rye market prices (see subsection 2.3).

2. The individual risk aversion of farmers is unknown to us due to the general
problem of eliciting subjective risk attitudes. This is why – starting from
the risk-free interest rate – we carry out variant calculations regarding the
risk-adjusted discount rate (see subsection 2.2).

3. We assume that the contract clause regarding cover purchases makes the
contract complete in that it makes any breaches unattractive to farmers.
We also assume that farmers, who buy sales contracts, allow for risky
yields by contracting only quantities they are certain to be able to supply
even in years with adverse weather conditions.

4. Looking at the grain dealer, we assume that he will not breach the contract
either because he would experience high economic losses, partly due to a
deterioration of individual reputation. We furthermore do not consider the
farmers’ credit risk arising from an (unlikely) insolvency of the grain dealer.
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5. No additional contract advantages – such as exclusive options to buy
contracts in the future that might be linked to the conclusion of the
present contract – are considered. The existence of such follow-up options
would make the immediate investment comparably more competitive and
reduce the investment trigger.

6. No additional contract disadvantages – such as a loss of flexibility regarding
future land use – are considered. Having in mind that in the considered
region with poor soils and low rainfall much rye is produced due to its
draught resistance, we consider only the partial planning problem of
whether to market rye with or without the contract.

 

1

 

7. Not only the market price of rye, but also the contract terms that will be
offered to the farmer in the future are uncertain. First of all, this regards
the question over which period the sales contract will be offered in principle.
This is equivalent with asking how long the decision to buy the contract
can be deferred. Besides the question of how long the contract will be
offered, there is also uncertainty regarding the question of whether, and
eventually how, the grain dealer will adjust the contract terms (e.g. the
guarantee price) in the future.

The important question for the farmer is whether and when to sign the
contract. Given the stochastic development of rye prices, we modelled farmers
who faced the question which observed rye market price (critical price)
should trigger them to buy the contract. Aiming to account for the farmer’s
uncertainty regarding the contract terms we distinguish two scenarios.
Within the 

 

constant-contract-term scenario 1

 

, we assume that the grain dealer
will offer the contract at constant terms for a certain period. Since farmers
are uncertain about this contract-offer period, we carry out variant analyses
for periods from zero to five years and for varying risk attitudes. Within the

 

constant-contract-value scenario 2

 

, we maintain the variant calculations
regarding the contract-offer period over which the decision to buy the contract
can be deferred and regarding the risk attitudes. Since farmers are also uncertain
about the terms they get in the case of a future contract conclusion, we now
assume that the grain dealer tries to maintain a constant-contract-value offer.
To be more precise, we assume that, within the time he upholds the contract
offer in principle, he will annually adjust the guarantee price according to the
drift rate found for the stochastic rye market price.

 

1

 

We aim at finding a plausible economic rationale for the contract refusal of farmers in the
new federal states of Germany who produce rye at present because they face both low rainfalls
and quickly draining sandy soils. Climatic change makes us expect rather more precarious
rainfalls in these areas in the future (Lasch 

 

et al

 

. 1999). It seems thus plausible to assume that
the relative competitiveness of rye will even increase. This justifies the a priori assumption that
rye will be produced in the future and thus a partial approach that searches only for the best
utilisation (marketing) strategy. In other words, we argue that the expected future opportunity
costs of entering the contract (i.e. the costs caused by the fact of not being able to produce
something else if  something else becomes more profitable) are negligible.
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2.2 Formulation of the investment model

 

In the model, buying the contract is seen as an additional investment into a
running business. Contrary to isolated investments, this requires the quantifica-
tion of the 

 

incremental

 

 benefits which accrue from the investment. The net
present value NPV

 

t

 

 of the contract investment which can be carried out within
the time span 

 

T

 

 in different years 

 

t

 

 (

 

t

 

 = 0, 1, . . . , 

 

T

 

) is to be calculated as
follows:

(1)

 

V

 

t

 

 describes the expected present value of future investment cash flows, and

 

I

 

 (= 

 

$

 

50 per ton) the investment cost. 

 

Z

 

 (= 10 years) denotes the useful lifetime
of the investment, that is, the contracted supply period. The 

 

certain contract
cash flows

 

 

 

P

 

G
t

 

 result from the fixed rye price which is guaranteed for 

 

Z

 

 years
if  the farmer signs the contract in time 

 

t

 

. 

 

E

 

(

 

P

 

ω

 

), with 

 

E

 

(·) as the expectation
value operator, designates the expectation values of  the 

 

uncertain without-
contract cash flows

 

 (i.e. the uncertain market prices per ton of rye) for the pro-
duction periods 

 

ω

 

, 

 

ω

 

 = 

 

t

 

 + 1, 

 

t

 

 + 2, . . . , 

 

t

 

 +

 

 Z

 

. These expectation values
depend on the stochastic process identified for the rye price. The additional
symbol 

 

ω

 

 is needed because 

 

t

 

 itself varies depending on when the option is exer-
cised. The contract investment generates a positive return in a time-period 

 

ω

 

 if
the market price falls below the guarantee price. PV

 

G
t

 

 is the present value of
future cash flows for one ton of rye, if  the farmer buys the contract. PV

 

t

 

 is the
expected present value of cash flows without the investment, that is, if  the
farmer continues to sell rye on the spot market. 

 

ρ

 

 describes the risk-adjusted
discount rate, and 

 

p

 

 is the risk premium which is added to the risk-free interest
rate 

 

r

 

. The following relationship is valid (cf. Hull 2000, p. 502):

(2)

For discounting the certain contract cash flows 

 

P

 

G
t

 

, the risk-free interest rate

 

r

 

 = 

 

ρ

 

 – 

 

p

 

 is adequate, independent of the risk attitudes of the decision-maker.
However, utilising the risk-free interest rate 

 

r

 

 for discounting the volatile
without-contract cash flows 

 

P

 

ω

 

 is only justified in the case of risk-neutral
decision-makers. A risk-averse decision-maker requires an additional risk-
premium 

 

p

 

 for discounting the uncertain market prices of rye.
Being used to discount inflation-adjusted prices, the risk-free interest rate 

 

r

 

is derived as the inflation-adjusted average return on German Federal bonds
with remaining lives of 15–30 years, the assumption being that there is no risk
involved in these bonds. The nominal (time continuous) average return of
German Federal bonds for the period of 1988–2003 amounts to 6.3 per cent
per annum. In the same period, the (continuous) inflation rate amounts to

NPV PV PV with

PV and PV

t t t
G
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t
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2.0 per cent (Deutsche Bundesbank 2006). We use the resulting real interest
rate of 4.3 per cent as proxy for the (continuous) risk-free interest rate.

The subjective risk attitudes of decision-makers remain inherently uncertain
unless reliable empirical evidence is provided through adequate survey work.
Due to the well-known empirical problems of quantifying subjective risk attitudes
(cf. Hudson 

 

et al

 

. 2005, for an overview), risk premiums required by decision-
makers are often assumed for modelling purposes (cf., e.g. Gebremedhin and
Gebrelul 1992; Berg 2003). Frequently, additional sensitivity analysis is used
to mitigate the problem. The range of values explored in this study is supported
by the literature. Gebremedhin and Gebrelul (1992), for example, use six different
discount rates ranging from 0 to 12 per cent in their study of  meat goat
enterprises. Marchant 

 

et al

 

. (2004) choose three discount rates, namely 3, 5
and 10 per cent per annum. We carry out a sensitivity analysis which varies
the risk premium 

 

p

 

 in four increasing steps of 2.5 per cent, thus covering a
range of risk-adjusted discount rates from 4.3 to 14.3 per cent per annum.

If the investment decision is made immediately, a non-negative net present
value is realised which hereafter will be referred to as ‘intrinsic value’.

 

2

 

 The
non-negativity of this value is due to the fact that no investment obligation is
involved. Formally, the intrinsic value can be calculated as follows:

(3)

If the investment decision is postponed, the ‘living’ opportunity to invest has
a continuation value ft which describes the value of  the optimal future
investment decision:

(4)

Ft+1 is the value of the investment opportunity in t + 1. The value of Ft+1 is defined
by the optimal future decision strategy and the development pattern of the sto-
chastic variable. Investing immediately implies that one realises the intrinsic value
by eliminating the continuation value. A profit maximising investor will invest
only if the intrinsic value exceeds the continuation value. Otherwise, ‘wait and
see’ is a better strategy. At any one point in time, the value of an investment
opportunity Ft equals the maximum of the intrinsic value it (of the immediate
investment) and the continuation value ft (of the postponed investment):

(5)

Equation (5) is equivalent to the Bellman equation (cf. Bellman 1957). It can
be shown that under certain regularity assumptions stopping region and
continuation region are separated by an unambiguous critical value P* or V*
(see Dixit and Pindyck 1994, p. 129).

2 This term is taken from the domain of  option pricing theory where similar decision
problems such as the determination of the early exercise frontier for American-type options on
stocks have to be solved.

it t  max( , )= 0 NPV

f E F et t  ( )= ⋅+
−

1
ρ

F i ft t t  max( , )=
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2.3 The time-series model

In Equation (1), the rye market price Pt represents a stochastic variable.3 Due
to the fact that EU-intervention on the rye market has come to an end,
empirical time series of rye prices from Germany do not contain much useful
information with regard to the stochastic pattern that is to be expected in the
future. Assuming that future rye prices will follow the price pattern of the
world market, we resort to a time-series analysis of Canadian price data. Canada
is a country with significant rye production and largely liberalised agricultural
markets. While realising that even Canadian rye prices may be affected by state
intervention (e.g. by the price of wheat which, in turn, is partially influenced
by the Canadian Wheat Board), they seem to be the best available proxy for
rye world market prices.4 To be more specific: we use – in accordance with the
real interest rate – inflation-adjusted average annual Canadian rye prices
from 1988 to 2003 (Agriculture and Agri-Food Canada 2003) in order to
determine the pattern of plausible future price fluctuations in Germany.

The identification of the most adequate stochastic process requires, first of
all, a test of stationarity. According to the Dickey–Fuller test (Dickey and
Fuller 1981), the rye price series is non-stationary at a significance level of 5
per cent. Geometric Brownian motion (GBM) is a non-stationary Markov
process that is well suited to represent price dynamics because it excludes
negative (price) values. The time discrete and state continuous version of GBM,
which is required for simulation, is to be formalised as follows (cf. Luenberger
1998, p. 311):

(6)

α denotes the drift rate and σ the standard deviation of the logarithmic relative
changes in rye prices (cf. Campbell et al. 1997, p. 363). εt describes a standard
normally distributed random number (white noise), and Δt denotes the length
of a time interval (here: one year). Given Equation (6), E(Pt) = Pt–Δt · e

α · Δt

denotes the expectation value for the rye price which is needed to calculate
the present value of cash flows without contract investment according to
Equation (1). Calculations based on Canadian rye prices yield a drift rate
α = 1.24 per cent, and a standard deviation σ = 28.10 per cent per annum.

Note that farmers cannot exit the contract after having signed. Thus, the
relevant annual payoffs of signing the contract (= incremental benefits) as well as
their present value Vt (= PVG

t  − PVt) can be negative. That is, while both depend

3 Structural models representing causal relationships are necessarily larger and more complex
than time-series models which mirror the stochastic pattern of  relevant random variables. In
line with many other contributions on investment analysis under uncertainty (cf. e.g. Pietola and
Wang 2000; Odening et al. 2005) we have decided to estimate a time-series model for forecasting.

4 Despite potential price effects of an increasing bio-energetic use of agricultural crops, we
furthermore assume that a time-series analysis of (past) rye prices reveals relevant probabilistic
information for a future-orientated decision-making (time stability hypothesis).
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on the stochastic variable rye price Pt which follows GBM, neither incremental
investment benefits nor the present value Vt of incremental benefits follow GBM.

Data used in the decision model are summarised in Table 1.

3. The hybrid solution algorithm BRSS

Hereafter we illustrate the BRSS-method and apply it to the above-described
contract problem from primary production. When describing the principal
procedure we refer to an early exercise period of five years. While GBM turns
out to be the incidental result of the statistical analysis in the exemplary case,
we use the generally applicable BRSS procedure, thus taking into account
that in practical applications the type of process is not known in advance.
When describing the BRSS procedure, which facilitates the consideration of
any probabilistic information, we refer to stochastic processes in general. It
should be noted that – in order to economise on planning costs – one should
always choose the method which presumably causes the least costs for the
required performance. This includes learning costs.

Table 1 Decision model parameters and data

Investment cost I $50 per ton of rye
Useful life of the investment Z 10 years
Assumed contract-offer period Systematically varied between zero and 

five years
Risk-free interest rate r 4.3% per annum
Risk premium p Systematically varied between 0.0% and

10.0% per annum
Range of risk-adjusted discount rate ρ Between 4.3% and 14.3% per annum

Stochastic process of the rye market price Pt Geometric Brownian motion (GBM)
Parameters of the stochastic process

Drift rate α 1.24%
Standard deviation σ 28.10%

Guaranteed rye price at present PG
0 $90.0 per ton

Corresponding present value $715.8 per ton

Initial rye market price P0 $90.0 per ton
Corresponding present value PV0 $763.4 per ton (for ρ = 4.3%) 

$671.3 per ton (for ρ = 6.8%)
$593.2 per ton (for ρ = 9.3%)
$526.9 per ton (for ρ = 11.8%)
$470.3 per ton (for ρ = 14.3%)
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The BRSS-method is a hybrid approach comprising two elements: first,
dynamic programming with its capacity for a simultaneous consideration of
the uncertainty and the flexibility of investments, and second, Monte Carlo
simulation with its nearly unlimited capacity for a modelling of stochastic
variables (i.e. including non-Markov processes, multiple stochastic variables,
correlations, etc.). Table 2 summarises the symbols that are used below when
describing the BRSS procedure in detail.

VT−5* ,VT−4* , . . . ,VT−1* ,VT* denote the early exercise strategy, that is, the critical
present values of investment cash flows that are to be determined. At each
early exercise date t (t = T – 5, T – 4, . . . , T – 1, T ), it will be optimal to invest
(buy the sales contract) whenever the corresponding critical present value of
investment cash flows is reached. After some manipulation, this investment
trigger can be alternatively expressed as critical rye price PT*. The general
relationship between Vt and Pt (and thus Vt* and Pt* ) is defined by the
investment model as specified in Equation (1). The exact relationship between
Vt and Pt, however, depends on the specific type of the stochastic process
which is assumed for the future production and contract years.5

While determining the critical exercise values in the backward recursive manner
of dynamic programming, we use Monte Carlo simulations to represent the

5 If  the stochastic market price of rye Pt follows a Markov process, every expected present
value of the investment returns Vt corresponds to an unambiguous initial rye price since the
expected future prices depend only on the current price level (E(Pω|Pt)). In the most simple
case, if  Pt follows random walk with zero drift, the price Pt corresponding to Vt is simply
derived from Equation (1) by multiplying PVt with the corresponding capital recovery factor
for the useful life of the investment Z and the risk-adjusted interest rate ρ. In our case, that is, GBM
with a non-zero drift α, the relevant rate to be used is ρ – α (cf. Table 1). In the non-Markov case,
the expected present value Vt, still depends on the expected future prices. These, however, depend
on the evolvement of the price to its current level, that is, on other past values (E(Pω|Pt, Pt–1,
Pt–2, . . .)). In other words, after identifying the stochastic process and given Pt–1, Pt–2, . . . , for any
given present value PVt corresponding prices Pt can be constructed according to Equation (1).

Table 2 Summary of symbols used for the description of BRSS working steps

t = 0, 1, . . . , T = T – 5, T – 4, ..., T – 1, T Early-exercise dates of the investment option 
(here: T = 5)

VT−5* , VT−4* , . . . , VT−1* , VT* Critical present value of investment cash flows 
at different exercise dates

PT−5* , PT−4* , . . . , PT−1* , PT* Critical market price of rye at different exercise 
dates

n = 1, 2, . . . , N Consecutive number of test values (here: N = 10)
V(n)T−5, V(n)T−4, . . . , V(n)T−1, 
P(n)T−5, P(n)T−4, . . . , P(n)T−1

Test values (present values of investment cash 
flows) and corresponding test prices used as 
starting point for the Monte Carlo simulation

s = 1, 2, . . . , S Consecutive number of simulation runs 
(here: S = 50 000)

f(n, s)T−5, f(n, s)T−4, . . . , f(n, s)T−1 Continuation value at different exercise dates 
and depending on the nth test value in the sth 
simulation run
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identified stochastic process. At each early exercise date (T – 1, T – 2, . . . , T – 5),
we choose N (n = 1, 2, . . . , N ) test present values of the investment cash flows
(V(n)T–1, V(n)T–2, . . . , V(n)T–5). The range which these test values are taken
from is determined by using the known critical exercise value of the following
period as a lower bound, and by making an educated guess at an upper bound,
obtaining thereby an interval which is divided into N – 1 equal subintervals
deemed sufficiently small for subsequent interpolation. We then determine
the corresponding test prices P(n)T–1, (P(n)T–2, . . . , P(n)T–5). These test prices are
used as starting points for a Monte Carlo simulation comprising S (s = 1, 2, . . . S)
runs. Thus, for each of the test prices at each early exercise date a total of S ‘path-
dependent continuation values’ f (n, s)T–1, ( f (n, s)T–2, . . . , f(n, s)T–5) are determined.

3.1 Determination of the critical exercise value at the last potential exercise 
date

The critical exercise value at the termination date T is the starting point for
the backward recursion. There is no temporal flexibility left. Hence, the
investment should be carried out if  we observe a market price of rye of PT* at
which the expected present value of future investment cash flows covers the
investment costs (VT* = I ).

3.2 Determination of the critical exercise value at the penultimate potential 
exercise date

Using the critical exercise value of the following period (here: VT*  = 50) as a lower
bound and choosing an upper bound (here: $500) we generate a rather large
interval to select the N (here: 10) test values from. Starting from each of the corre-
sponding test prices P(n)T–1, S (here: 50 000) simulation runs (paths) are simulated
according to the given price process. Knowing VT*  and PT* , we first calculate
the path-dependent continuation values f (n, s)T–1 for all paths and test prices:

(7)

After simulating enough paths6 for an isomorphic representation of  the
stochastic process, the continuation value f (n)T–1 for each test value is calculated
as the average of all path-dependent continuation values for this test value:

(8)

6 For a technical description of how to use stochastic simulation to model a wide variety of
stochastic processes with established software packages see Winston (1998, p. 325). Regarding
the number of required simulation runs, Haug (1998, p. 40) stipulates that at least 10 000 runs
should be carried out. Fortunately, with any given number of simulation runs, one can improve
the stability of the solution by using so called variance reduction methods without a great
increase of computational time. An overview of various variance reduction procedures can be
found in Glasserman (2004, chs 4 and 5).
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In order to compare the possible strategies ‘invest’ and ‘wait’, we additionally
need to calculate the intrinsic value. The intrinsic value i(n)T–1 for each test
value V(n)T–1 can be directly derived as:

(9)

It is very unlikely that the so-called identity condition where intrinsic value
and the continuation value coincide will be met by one of the predefined test
values. In most cases, the critical value will fall between two test values where
a change of sign of the difference of intrinsic value and continuation value
occurs. The critical present value VT−1*  is then determined by means of linear
interpolation. In the example presented in Figure 1, one needs to interpolate
between the values V(4)T–1 and V(5)T–1.

Reducing the length of the initial interval and maintaining the number of
subintervals improves the quality of the approximation because it shortens
the subinterval on which one needs to interpolate. The initial interval must be
enlarged if  it did not yield a change of sign of the difference of intrinsic value
and continuation value.

3.3 Determination of the critical exercise values at the remaining early exercise 
dates

The principal procedure described above is applied backwards until all critical
early exercise values are known. However, whereas the determination of the

i n V n IT T( )   max( , ( )   )− −= −1 10

Figure 1 Determination of the critical present value VT−1*  using the BRSS.



Investment planning under uncertainty and flexibility 29

© 2008 The Authors
Journal compilation © 2008 Australian Agricultural and Resource Economics Society Inc. and Blackwell Publishing Asia Pty Ltd

continuation value at the pen-ultimate exercise date reflects the valuation of
a European option, the determination of the continuation value at earlier
exercise dates truly reflects the valuation of an American option. That is,
when one determines, at any exercise date t, the critical exercise value Vt* and
Pt* one has to take into account that a future investment may be carried out
at time t + 1, t + 2 up to T. Again stochastic simulation can be used to determine
the continuation values for a given set of test values V(n)t, because the future
exercise strategy is known. The procedure that is used to determine the
remaining critical values is analogous to the one described above. Only the
computation of the continuation value for each path in Equation (10) has to
be modified according to the actual exercise time κ resulting in each path:

(10)

Figure 2 provides an overview of  the working steps. They can be easily
programmed in spreadsheet software such as MS-EXCEL which include a
random number generator.

The minor, but effective modifications which we have made to improve the
approach of Grant et al. (1997) can be summarised as follows. At a given
early exercise date, our first working step is to predefine N equally distant test

Figure 2 Procedural steps for determining the optimal investment strategy by means of BRSS.
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prices. We then use the same sequence of random numbers for all simulations
starting from these test-values. This saves a great deal of  effort and time
compared to the original procedure which required the repeated generation
of random numbers for subsequent simulations of price paths starting from
different test-values. Furthermore, using a predefined sequence of test-values
facilitates the technical automation of consecutive work steps whereas the
original procedure required an intervention after each simulation in that either
a lower or a higher test value for the next simulation had to be explicitly chosen
by the analyst according to the result of the previous simulation.7

4. Results

Table 3 shows the critical exercise prices and critical present values of investment
returns for t = 0, depending on the risk-adjusted discount rate and the period

7 Using the above-described hybrid procedure, the solution to the decision problem is
straightforward as long as one deals with a single stochastic state variable (such as the rye
price) following a Markov-process. In this simple case, one needs, at each time instant, to
determine one critical exercise value forming, in turn, a two-dimensional early exercise strategy
over time. In the case of multiple stochastic state variables, one needs, at each time instant, to
determine critical combinations of values for different stochastic variables (an early exercise
function) forming, in turn, a multidimensional early exercise strategy over time (cf. Ibanez and
Zapatero 2004). The same applies if  the stochastic variable follows a more complex stochastic
process such as a non-Markov process. Because the regularity assumptions are not met we are
not able to express the optimal exercise strategy at any one early exercise date as one critical
value. Instead, it needs to be expressed as critical combinations of all those values that determine
the forecast of the stochastic variable. If  we assume, for example, an autoregressive process of
the second order, we need to determine a critical value in period t for a given value of  this
variable in the previous period t – 1. By a subsequent systematic parameterisation of this previous
value, we are able to determine critical combinations. With regard to the BRSS procedure this
implies that, at each early exercise date, we replicate the process of  determining test prices
(corresponding to the test present values) as well as the simulation starting from these test
prices for each of the parameterised previous values.

Table 3 Constant-contract-term scenario 1: critical exercise values (in $ per ton) for different
risk-adjusted discount rates ρ and different contract-offer periods*

Critical rye prices in t = 0 Critical present values in t = 0

1 2 3 4 5 6 7 8 9 10

ρ (%) 4.3 6.8 9.3 11.8 14.3 4.3 6.8 9.3 11.8 14.3

Contract-offer period
0 years 78.5 89.3 101.0 113.7 127.4 50.0 50.0 50.0 50.0 50.0
1 year 58.6 69.0 79.8 91.5 104.2 218.7 201.2 189.8 180.1 171.3
2 years 53.2 63.7 74.6 86.4 99.0 264.5 240.7 224.1 210.0 198.5
3 years 50.3 60.8 71.9 83.7 96.4 289.1 262.3 241.9 225.8 212.1
4 years 48.2 59.0 70.2 82.2 95.0 307.0 275.8 253.1 234.6 219.4
5 years 46.8 57.8 69.1 81.2 93.9 318.8 284.7 260.3 240.4 225.1

*The critical price P0* is to be derived as: P0* = (PVG
0  − V0*)[(e

ρ−α − 1)/(1 − e−(ρ−α) · Z)] (cf. Table 1).
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over which the contract offer is presumably maintained. This contract-offer
period was varied from zero (no flexibility to defer) to five years.8 In the
considered scenario 1, the contract terms are presumed to be constant within
this contract-offer period.

The first value in the first column of Table 3 reveals that, if  the contract
offer is not maintained (i.e. if the farmer faces again a now or never decision),
the critical rye price amounts to $78.5 per ton for a risk-neutral farmer. In
column 6, the corresponding critical present value of future investment cash flows
is shown. It is equivalent to the costs of  the contract investment of  $50.0
per ton. Given the presently observed price of $90.0 per ton (which results in
a present value of future cash flows of –$47.6 per ton if the farmer exercises
the investment), a risk-neutral farmer should not buy the contract. He would
realise a negative net present value of the contract investment of –$97.6 per ton.

Farmers are even less inclined to buy the sales contract if  they assume that
they can defer the investment decision because the contract offer is maintained
for a certain period. The five subsequent rows of columns 1 and 6 in Table 3,
headed by the presumed contract-offer period, depict the corresponding
results. If  a risk-neutral farmer believes, that he can defer the contract
investment for one year, he should only buy the sales contract immediately if
the presently observed market price for rye (present value of future investment
cash flows) was below $58.6 (above $218.7) per ton.9 With increasing time to
defer, the critical price (present value) decreases (increases). With many
future investment dates left, chances are high that a delayed investment will
be more profitable than an immediate purchase of the contract. We could
also say that the opportunity costs of investing immediately are higher if
there is a lot of flexibility left. If  there is no flexibility, temporal opportunity
costs are down to zero and the critical present value is down to investment
costs.

The opposite behaviour of the two criteria ‘critical price’ and ‘critical
present value’ is due to the fact that the profitability of the considered contract
investment increases with a decreasing product price (cf. Equation (1)). However,
the important drop of  the critical rye price comes with the first years of
flexibility. In other words, the critical values are especially sensitive depending
on whether zero, one, or two years of flexibility are assumed. In this context

8 In the case considered here (i.e. with the assumption of constant contract terms), the critical
values that are shown for t = 0 and for the presumed contract-offer periods of zero (1, 2, 3, 4, 5)
years coincide with the critical early exercise values in the dates T (T – 1, T – 2, T – 3, T – 4,
T – 5) for an exercise period of five years. The value 79.8 (see column 3, row 2), for instance,
indicates the critical price at which a farmer who uses a risk-adjusted discount rate of 9.3 per
cent should exercise at the present date if  he presumes that the contract offer will remain con-
stant for one year. It also indicates the penultimate early exercise value in his early exercise
strategy if  he assumed an early exercise period of five years.

9 It can be shown that the binomial-method, which also could be used because we incidentally
found GBM, provides nearly identical results to the BRSS-method. In the considered case,
using time steps of 0.05 years to model the stochastic variable, the value of the flexible contract
investment opportunity, for instance, deviates only by 0.1 per cent.
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it is interesting to note that the grain dealer had indeed maintained his offer
for two years. The critical values do not change significantly if  longer times
to defer are assumed.

Columns 2–5 and columns 7–10 give the same sort of information for
farmers with different risk-aversions. The variation of risk-adjusted discount
rates shows that the more risk-averse a farmer, the more ready he is to insure
against risk; that is, the critical market price the falling short of which makes
him buy the fixed-price contract is higher than for a less risk-averse farmer.
For any given flexibility, risk-averse decision-makers are more inclined to give
up the chances of a market solution in favour of a reduction of price volatility.
For a farmer with a risk-adjusted rate of 9.3 per cent (column 3), for instance,
the critical price trigger is $101.0 per ton if  there is no time to defer. If  the
farmer expects to be able to defer the investment for five years, the critical rye
price amounts to $69.1 per ton. Looking at the corresponding critical present
value, we find for this farmer (column 8) an increase of the critical value from
$50.0 to $260.3 per ton. In this context, it is interesting to note that in the case
of a now-or-never decision the critical present value of future cash flows is
equivalent to the costs of the contract investment, independent of the risk
attitude (see columns 6–10).

Table 4 shows the critical exercise prices and critical present values of
investment returns for scenario 2. In this scenario, we maintain the variant
calculations regarding the period over which the contract offer is presumed
to be maintained. We now assume, however, that within this contract-offer
period the grain dealer will, year by year, adjust the guarantee price he offers
according to the drift rate of the stochastic rye market price.

A brief look at Table 4 shows that the systematic effects found in the previous
Table 3 – that is, the impact of an increasing risk aversion as well as the impact
of an increasing time to defer – are confirmed. In other words: both scenarios
demonstrate that the critical price (present value) increases (decreases) with

Table 4 Constant-contract-value scenario 2: critical exercise values (in $ per ton) for different
risk-adjusted discount rates ρ and different contract-offer periods*

Critical rye prices in t = 0 Critical present values in t = 0

1 2 3 4 5 6 7 8 9 10

ρ (%) 4.3 6.8 9.3 11.8 14.3 4.3 6.8 9.3 11.8 14.3

Contract-offer period
0 years 78.5 89.3 101.0 113.7 127.4 50.0 50.0 50.0 50.0 50.0
1 year 53.5 64.8 76.0 88.3 100.9 262.0 232.5 214.8 198.8 188.6
2 years 47.4 58.9 70.3 82.4 95.1 313.7 276.5 252.4 233.4 218.9
3 years 43.9 55.5 67.3 79.3 92.2 343.4 301.9 272.2 251.5 234.0
4 years 41.4 53.4 65.3 77.6 90.4 364.6 317.5 285.4 261.5 243.4
5 years 39.7 52.1 64.0 76.4 89.5 379.1 327.2 293.9 268.5 248.1

*The critical price P0* is to be derived as: P0* = (PVG
0  − V0*)[(e

ρ−α − 1)/(1 − e− (ρ−α) · Z)] (cf. Table 1).
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increasing risk aversion. The critical price (present value) decreases (increases)
with an increasing time to defer.

A brief comparison of both tables show that – for any one of the combinations
of risk aversion and flexibility – the critical prices (present values) are lower
(higher) in Table 4 compared to Table 3. These results can be interpreted as
a lower inclination of the farmer to buy the contract. This is due to the
assumption made in scenario 2 that the grain dealer will, year by year,
increase the prices that are guaranteed in the contracts concluded in the
future. From the farmer’s point of view, this generates higher opportunity
costs of the immediate investment.

Additional variant calculations reveal that – given a time to defer of at least
one year, an observed rye price of $90 per ton, a stochastic future rye price
development according to the specified time-series model, and the offered
contract terms – the immediate purchase of the sales contract is not preferable
for moderately risk averse farmers with a risk-adjusted discount rate of up to
ρ = 11.5 per cent (scenario 1) or ρ = 12.2 per cent (scenario 2). In contrast, if
one assumed that there is no flexibility at all, moderately risk-averse farmers
should have bought the contract. This applies to both scenarios. While our
stochastic dynamic decision model thus provides an economic rationale for
the observed investment reluctance, it is interesting to know how the grain
dealer would have to adjust the terms of the contract in order to make it
attractive to farmers. Based on the fact that the presently observed rye market
price is a ‘given’ for both market partners, Table 5 depicts the ceteris paribus
critical guarantee price PG* and the critical investment costs I* from the
viewpoint of a farmer who uses a risk-adjusted discount rate of 9.3 per cent
and who assumes a contract-offer period between zero and two years.

Scenario 1 shows, for instance, that the grain dealer has to guarantee a
price of more than $107.4 ($100.8) per ton in order to make the contract offer
attractive for a farmer who uses a risk-adjusted discount rate of 9.3 per cent
and who expects to be able to defer the investment for two years (one year).
The critical guarantee price decreases with the contract-offer period. The
grain dealer could also adjust the investment costs in order to make his offer
attractive to the farmer. Given the overall constellation of the other contract

Table 5 Critical guarantee prices and investment costs (in $ per ton)*

Scenario 1 
(constant-contract-term)

Scenario 2 
(constant-contract-value)

1 2 3 4

Contract offer period PG* I* PG* I*
2 107.4 −88.3 113.4 −124.7
1 100.8 −35.9 105.3 −65.3
0 80.9 122.6 80.9 122.6

*ρ = 9.3%, P0 = $90 per ton.
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terms, the grain dealer would ceteris paribus even have to pay $88.3 ($35.9) per
ton in order to make his offer attractive to the farmer who uses a risk-adjusted
discount rate of 9.3 per cent and who expects to be able to defer the investment
for two years (one year). The critical investment costs increase with a decrease
of the flexibility. Scenario 2 confirms these systematic effects. Due to its
assumption of an increasing guarantee price, the farmers’ refusal to buy the
contract is all the more explained by the model in scenario 2.

5. Concluding comments

Traditional methods of investment appraisal exhibit major deficiencies with
regard to a simultaneous consideration of the uncertainty of future cash
flows and of the flexibility of investment timing under many circumstances.
For instance, decision trees are not suited to represent problems that include
stochastic variables which follow non-Markov processes. They are cumber-
some, at least, in the case of multiple stochastic variables and non-Brownian
Markov processes. We have refined and described a numerical procedure
originally developed to price American-type options which is clearly superior
under these circumstances. The approach, labelled BRSS, is a hybrid method
which combines two essential advantages of conventional techniques: the
power of stochastic simulation with respect to the modelling of all types of
stochastic processes, and the capacity of dynamic programming for solving
dynamic problems.

We have demonstrated the suitability of the hybrid approach for stochastic
dynamic decision problems with an application to a decision problem of
German grain farmers who were offered a sales contract by their grain dealer
that would have fixed the price of rye independent of future market price
developments. Given an opportunity to defer the decision, the farmers’ decision
situation represents a flexible investment planning problem. Considering
uncertainty, irreversibility and flexibility, we find that it would only make
sense to buy the contract immediately for very risk-averse farmers. We may
thus conclude that our stochastic dynamic decision model provides both a
plausible economic rationale for the empirically observed behaviour of
decision-makers and a valuable decision support tool.

Future applications aiming at providing better explanations for observed
behaviour and better decision support could tackle other important decisions
that are to be made under risk and flexibility. This refers to other contract
decisions as well as ‘regular’ capital investments (e.g. in buildings or technical
equipments) or the decision to convert from conventional to organic farming.
Doing so, it will be important to systematically extract the relevant stochastic
information from the available data (time-series analysis) and to process this
information adequately in a stochastic dynamic decision model. Such a decision
model needs to be flexible enough to handle the many different stochastic
processes that might result for the random variables from the time-series
analysis.
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