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Speaking Stata: Graphs for all seasons
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Abstract. Time series showing seasonality—marked variation with time of year—
are of interest to many scientists, including climatologists, other environmental
scientists, epidemiologists, and economists. The usual graphs plotting response
variables against time, or even time of year, are not always the most effective at
showing the fine structure of seasonality. I survey various modifications of the
usual graphs and other kinds of graphs with a range of examples. Although I
introduce here two new Stata commands, cycleplot and sliceplot, I emphasize
exploiting standard functions, data management commands, and graph options to
get the graphs desired.

Keywords: gr0025, cycleplot, sliceplot, seasonality, time series, graphics, cycle plot,
rotation, state space, incidence plots, folding, repeating

1 Seasonality

Seasonality—marked variation with time of year—must have been evident to the first
humans. Indeed many organisms show awareness of, or adaptations to, seasonality. It
remains a matter of great interest to many scientists.

Astronomers explain seasonality in terms of the motion of the earth relative to the
sun. That story is part of one of the great successes of modern science, which we owe
largely to Copernicus, Kepler, and Newton. Viewed astronomically, seasonality—for
example, prediction of times of sunrise or sunset—is a classic deterministic problem,
but for all other sciences it has a strongly stochastic or statistical flavor. Climatologists
look at variations in temperature, rainfall, and other elements around the year, but
everyone knows that no two summers are identical. Seasonality of climate has many
other environmental effects. Many are fairly direct, such as those on water supply or
vegetation condition, but some are more subtle and even controversial, such as alleged
seasonality in the incidence of earthquakes or volcanic eruptions in response to varia-
tions in overburden pressure. Epidemiologists examine seasonal variations in morbidity,
mortality, and natality, an approach that goes back at least as far as the Hippocratic
writing Airs, Waters, Places in the fifth century BCE. Economists have long monitored
seasonal variations in variables such as employment, sales, and GDP, although often
these are regarded as nuisances requiring seasonal adjustment.

The most common graphs for seasonal data are plots of one or more response vari-
ables versus time or time of year. This statement is surely well known, so why then
this column? Negatively, such plots are often not especially effective at showing the fine
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398 Speaking Stata

structure of seasonality. Positively, their effectiveness can be improved by various tricks,
and other kinds of plots can be useful too: indeed, we can borrow ideas on seasonal
graphics from various fields.

I will introduce two user-written commands, cycleplot and sliceplot, but I will
emphasize using some basic functions, graphics options, and data management com-
mands.

This column is the second of a series with the general theme of circular arguments.
The first column examined time of day as a circular scale (Cox 2006).

2 Related problems

Although the focus here is on seasonality, the main ideas carry over to other periodicities,
such as time of day or time of week. I will not spell out that connection further,
as translating code to other periodicities will typically be straightforward. Similarly,
just flagging a standard point should be enough: seasonality is usually combined with
variations on other time scales. The graphics to be discussed apply either to data with
some seasonal variation or to a seasonally varying component of such data, calculated
in some way.

Traditionally, we distinguish seasons by named divisions: in English, as winter,
spring, summer, and autumn or fall. In climatology, these divisions are often made
more precise as the four quarters December–February, March–May, June–August, and
September–November, because surface phenomena tend to lag solar inputs enough to
justify the offset of 1 month from the conventional calendar year beginning in January.
In data analysis, any such divisions are usually at best conventional or convenient cat-
egories. Underlying them are periodic or circular numerical scales, such as month of
year or day of year, in which the last value of any year is followed by the first value of
the following year.

How far, then, should seasonal data be considered a kind of circular data? Some
intriguing circular graphs have been suggested for seasonal data. For example, Tufte
(2001, 72) reproduces a spiral representation of Italian postal bank deposits from 1876
to 1881. Unfortunately, reading off the structure of seasonality from such graphs is hard.
I suggest that, on the whole, seasonal data are better shown using linear graphics. This
conclusion follows partly because seasonal data are one kind of time series, for which
a linear time axis is both customary and natural, and partly because few scientists
have much experience in interpreting seasonal graphics displayed in circular formats, in
contrast to their frequent familiarity with compass or map formats. Brinton (1914, 80)
aired a similar view.

That said, one elementary but also fundamental idea is worth borrowing in seasonal
graphics and has already been hinted at. January is an arbitrary start to the year in
almost all senses but calendar convention, so rotating the seasons to start the time-
of-year scale at another time may be useful. The concept is already familiar to those
accustomed to thinking in financial or fiscal years.
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The examples here are all for time series in the strict sense: variables counted
or measured for regularly spaced times, whether intervals or points. There are also
event data, times for deaths, earthquakes, riots, and so forth. Ideas for graphing the
occurrence or frequency of such point process data follow readily from the ideas to be
discussed here.

With its focus on graphics, this column cannot do justice to a theme that is linked
but also distinct: how best to model (or smooth) time series, given the presence of
seasonality. Similarly, Fourier or spectral (or frequency domain) methods also deserve
more discussion. My own prejudice is that seasonality is usually obvious enough not to
need discovery as a massive spike in the spectrum. Nevertheless, sometimes only spectral
methods can give the full context of variability at a range of frequencies. Newton (1993)
surveyed graphics for time series, discussing frequency domain displays in some detail.

3 The Bills of Mortality

Bills of Mortality were issued weekly in London from the 16th century on giving counts
of deaths from various causes, collating data from the several parishes in the city. They
stimulated John Graunt (1620–1674), a London draper, to write Natural and Political
Observations . . . upon the Bills of Mortality, one of the founding documents of statistics,
epidemiology, and demography. He was elected to the then-young Royal Society within
weeks of the book’s publication.

From the fifth (and posthumous) edition of 1676, we take data on deaths from plague
in various years, noting the peaks around August and September. Figure 1 shows the
annual series superimposed, and figure 2 shows them separated. Logarithmic scales
seem especially appropriate for explosive phenomena such as plague.

(Continued on next page)
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Figure 1: Plague deaths in London in various years from data reported by Graunt
(1676). Note the shared tendency to peaks around August and September.
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Figure 2: Plague deaths in London in various years from data reported by Graunt
(1676). Added dates show weekly reports with highest numbers in each year.

In his edition of Graunt (1676), Hull gave detailed comments on the data. Implau-
sible numerical quirks imply that the 1592 data are unreliable. Other sources indicate
various small corrections and qualifications for the later years. However, none of these
problems affect the main argument here.
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Choosing between superimposing and juxtaposing is not always easy. Although
examples clearly give complementary views of a given dataset, you may not be able to
persuade reviewers or editors to include both in a publication.

4 Stata tips for plotting versus time of year

Reviewing some small but practical points for graphs of this kind may be helpful. The
data may have arrived as, or been converted to, Stata date variables, but having, e.g.,
separate month and year variables is also helpful.

An especially useful function is doy() for day of year, running from 1 to 365 or 366.
Note also the egen function foy() for fraction of year in the egenmore package on SSC

(see [R] ssc for more on SSC).

Check out built-in sequences, such as c(Mons). See the results of creturn list,
scrolling toward the end. See also Cox (2004a).

Remember twoway connected as well as line. Although line plots are conventional
in various disciplines, connected plots have the merit of showing individual data points.
Marker symbol size can always be tuned to be noticeable but not obtrusive.

Use the separate command to separate one variable into several for easy comparison.
See also Cox (2005b) for another example.

Because zeros cannot be shown as such on logarithmic scales, change zeros to missing
in a copy of the data. Then prohibit connections across spells of missing values with
the option cmissing(n).

5 Cycle plots

5.1 Introduction

Graunt’s data come for selected years. Having single or multiple time series extend-
ing over several years is more common. Figure 3 is an example from economics with
monthly data. Trend, seasonality, and irregularities (attributable here mostly to strikes)
are all evident. The data are for distance flown by U.K. airlines and come from
Kendall and Ord (1990). Logarithmic scales again appear natural.

(Continued on next page)
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Figure 3: Distance flown by U.K. airlines—a common kind of economic time-series
graph showing trend, seasonality, and irregularities.

This graph illustrates an elementary principle: the sort order for monthly data is
naturally first by year and then by month. The idea of cycle plots is just to reverse
that: sort by month, and then by year, to see the information in a different way. We
could do this by using some graph command and an option, by(monthvar), but there
would be too much scaffolding. Hence I have written cycleplot for this purpose and
formally publish it with this column.

5.2 Syntax

cycleplot responsevars month year
[
if
] [

in
] [

, length(#) start(#)

summary(egen function) mylabels(labels list) line options
]

5.3 Options

length(#) indicates that data are for # shorter periods within each longer period.
The default is 12, for months within a year.

start(#) indicates the first value of month plotted on the x-axis. The default is
start(1). This option may be used whenever there is some better natural start to
the year than (say) January. For example, rainfall in climates with a wet season
either side of December is best plotted starting in (say) July.

summary(egen function) calculates a summary function to be shown for each month.
The summary function may be any function acceptable to egen that has syntax
like egen newvar = mean(response), by(month). mean() and median() are the
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most obvious possibilities. Know that whenever summaries are plotted, the order of
variables on the graph is all the response variables followed by all the corresponding
summary variables.

mylabels(labels list) specifies text labels to use on the time axis, instead of default la-
bels such as 1/12. The number of labels specified should be the same as the argument
of length(), or by default 12. Labels consisting of two or more words should be
bound in " ". Labels including " should be bound in ‘" "’. mylabels(‘c(Mons)’)
specifies Jan Feb Mar . . . Nov Dec, and mylabels(‘c(Months)’) specifies January
February March . . . November December. Do not rotate the list to reflect a start()
choice other than 1; this step will be done automatically.

line options refers to options of graph twoway line; see [G] graph twoway line.
connect(L ..) is wired in. You can use recast() to get a different twoway type.

5.4 Examples

Cycle plots have been discussed under other names in the literature, including cycle-
subseries plot, month plot, seasonal-by-month plot, and seasonal subseries plot. For
textbook treatments, see Becker, Chambers, and Wilks (1988); Cleveland (1993, 1994);
or Robbins (2005). For research paper examples, see Cleveland and Devlin (1980);
Cleveland and Terpenning (1982); Cleveland, Freeny, and Graedel (1983); or Cleveland
et al. (1990).

Figure 4 is a default cycle plot for our example. We see the structure of seasonality
much more easily, especially details such as the shift in peak from July to September.

The syntax used was

. cycleplot air month year,
> ylabel(6000 "6" 8000 "8" 10000 "10" 12000 "12" 14000 "14" 16000 "16", ang(h))
> ytitle(million miles flown) yscale(log)

(Continued on next page)
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Figure 4: Distance flown by U.K. airlines. This cycle plot gives a different take on
seasonality, more clearly showing timing (and shifts in timing) of peaks and troughs.

The program cycleplot can plot several responses and is applicable to any setup of
longer periods divided into a fixed number of shorter periods. Quarterly data are thus
another application. We will stick to the terms “month” and “year” as more concise,
despite the imprecise terminology.

In cycleplot, you can rotate the time axis to start within the year. Experience
indicates that splitting troughs, not peaks of the cycle, is best, although the opposite
would apply if troughs were the focus of interest. Thus in studying rainfall variations,
split the dry season rather than the wet season, unless the structure of the dry season
is of concern.

You can also superimpose a summary for each month by naming the corresponding
egen function, such as mean.

Standard graph options include recast(). Figure 5 shows the previous cycle plot,
modified merely by adding the option recast(connected) and tweaking the axis labels
by the option mylabels(‘c(Mons)’).
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Figure 5: Distance flown by U.K. airlines. This cycle plot has been tweaked into a
connected plot, and the month axis labels have been modified.

Here is another example, from medical statistics. Figure 6, using data from Diggle
(1990), shows deaths in the United Kingdom from bronchitis, emphysema, and asthma.
Seasonality is no surprise here, but as before a cycle plot is better than the standard
time-series plot at showing the fine structure—indeed at showing basic details such as
peak and trough months. A logarithmic scale makes each fluctuation up or down come
out around the same height. Figure 7 shows a cycle plot, here rotated so that the winter
is not cut, by using the option start(8), and recast as a connected plot, by using the
option recast(connected).

(Continued on next page)
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Figure 6: Deaths in the United Kingdom from bronchitis, emphysema, and asthma.
Standard line plot of a strongly seasonal series.
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Figure 7: Deaths in the United Kingdom from bronchitis, emphysema, and asthma.
This cycle plot more clearly shows the structure of seasonality.

6 Do-it-yourself rotation

cycleplot allows you to rotate the time-of-year axis. Few analysts will need much
convincing that rotation can be a good idea. So how could you do it yourself?
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Let us keep the example of monthly data and assume that a month variable runs
from 1 (January) to 12 (December). (Separate month and year variables are useful even
when you have Stata date variables.) Say that you want to start the year in month 8
(August). So months 8–12 are to be mapped to positions 1–5, and months 1–7 are to
be mapped to positions 6–12.

An expression to use in generating such a new variable is

cond(month > 7, month - 7, month + 5)

as there are two cases to cover, the second part of the year that becomes the first and
vice versa. See Kantor and Cox (2005) for a tutorial on cond(). An alternative is

1 + mod(month - 8,12)

as the remainder on dividing integers by 12 must vary from 0 to 11. I suggest that the
latter method is more elegant but the former is easier to emulate.

Short of fixing axis labels, that is all that you need to know. However, you might
wish to note various pertinent egen functions in Cox (1999, 2000) and egenmore from
SSC.

7 Mauna Loa: Superimposing, slicing, stacking

7.1 Introduction

In 1958 the oceanographer Charles D. Keeling (1928–2005) started what is now the
longest continuous series of carbon dioxide measurements on top of Mauna Loa, Hawaii.
This dataset is crucial to discussions of human effects on the atmosphere. The units are
ppm, parts per million (by volume). Thus 300 ppm = 0.03%.

I accessed data from http://cdiac.ornl.gov/ftp/trends/co2/maunaloa.co2 on March
22, 2006 and linearly interpolated a few small gaps in the early part of the record.
Figure 8a shows a strong trend and seasonality. Given the trend, a plot against month
using connect(L) is interesting (figure 8b). The lack of overlap here can be considered
fortuitous but also fortunate. connect(L) connects if and only if the x-axis variable is
increasing (strictly, not decreasing). connect(l) would be useless here, producing logi-
cal but confusing backward connections between each December (12) and the following
January (1).

(Continued on next page)
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Figure 8: (a) Carbon dioxide measured at Mauna Loa shows a strong upward trend and
fairly systematic seasonality. (b) Plotting against time of year gives a handle on the
seasonality. By chance, no playing with offsets is needed for the annual segments.

Given such series, we should smooth or model and look at the residuals. How
best to do that is a fascinating subject, and time-series experts could have a field day
comparing their favorite methods, but here we just use the lowess default and plot the
residuals from that. A superimposed line plot (figure 9a) and a standard time-series
plot (figure 9b) of residuals show the family resemblance of seasonal cycles, but whether
you choose spaghetti or a roller-coaster, each shows a clear pattern but also fails to
suggest anything new.
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Figure 9: (a) Residuals from lowess default plotted against time of year. (b) Same
residuals plotted as time series.

In particular, the aspect ratio of figure 9b is a problem. Standard advice (Fisher
1925; Cox 2004b) is to choose an aspect ratio such that line segments are as near 45◦ as
possible, but here that would lead to a long graph. An alternative is to slice the series
into parts, graph each part, and then stack the graphs by using graph combine. The
details are mostly mundane but typically tedious. sliceplot, here published formally,
is a wrapper program to automate that process.

7.2 Syntax

sliceplot plottype yvarlist xvar
[
if
] [

in
] [

, at(numlist) unequal length(#)

slices(#) combine(combine options) twoway options
]

7.3 Options

at(numlist) specifies cutpoints for the ends of each slice as values of the x-axis variable.
Values outside the range of the data will be ignored with a warning.

unequal may be used with at() if you want to allow slices to have unequal scales.
It specifies that unequal scales be used on slices of different length. The default
is to use (approximately) the same scale. A common application is to show more
interesting values at a greater magnification than others.

length(#) specifies the maximum length of each slice in units of the x-axis variable.
The default is length(100).
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slices(#) specifies the number of slices.

combine(combine options) specifies options of graph combine; see [G] graph com-
bine. The defaults are imargin(zero) cols(1).

twoway options are options of graph twoway (see [G] graph twoway) controlling other
features of the graph.

7.4 Examples

Figure 10 shows an example of what sliceplot can do.
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Figure 10: Residuals from lowess default plotted in slices to give a more congenial
aspect ratio.

The command for that is

. sliceplot line res date, slices(4) ytitle(residual (ppm))
> ylabel(-6(2)4, angle(h)) xtitle("")

showing that sliceplot is a wrapper command that calls up a graphics command and
slices the dataset by cutting the horizontal axis. You may specify both slicing options
and standard graph options. Here we ask for just four slices, but options also exist to
control slice endpoints and lengths. An analog could be written to cut the vertical axis,
but I find that this aspect ratio problem occurs mostly with time series.

8 Loops in state space

One basic technique—perhaps more common in physics than in mainstream statistics—
is to consider plots in some state space. Figure 11a is a basic line plot of residual versus
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previous residual for the Mauna Loa data. lwidth(0) (indeed) is a way to get thin
lines. Figure 11b shows that we can identify months, which underlines the regularity of
this cycle.
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Figure 11: Residuals versus previous residuals shown using (a) a connected line and (b)
month identifiers.

We can also connect with arrows by using twoway pcarrow. The main idea here
was discussed in detail in Cox (2005a). Figure 12 gives another handle showing more
of the repetitive fine structure of each seasonal cycle.
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Figure 12: Residuals versus previous residuals shown using arrows.
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For another application of the state space idea, let us revisit one of the staples
of elementary geography, graphs of monthly means of precipitation and temperature.
The usual graphs cut the year, sometimes painfully. Figures 13 and 14 give conventional
graphs of the seasonal cycle for Boston, Houston, and San Francisco in the United States,
using data from Pearce and Smith (1984). In the dataset, these cities are separate
panels.
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Figure 13: Annual cycle of precipitation for Boston, Houston, and San Francisco. An-
nual totals shown by text.
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Figure 14: Annual cycle of temperature for Boston, Houston, and San Francisco.
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One of various alternatives to the usual graphs is to plot the annual cycle as a loop
in some two-dimensional space, say, combining precipitation and temperature. Such
graphs are often called climagraphs or climographs, but there is nothing intrinsically
climatic about them. It appears (Linacre 1992) that they go back to Alexandre Gustave
Eiffel (1832–1923), better known for more towering achievements. For examples in a
medical context, see Cliff, Haggett, and Smallman-Raynor (2004).

Figure 15a is an example in which the monthly means from January to December
are connected in time order. However, December logically should also be connected to
January to close the loop. Figure 15b is the result.
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Figure 15: Annual cycle of precipitation and temperature for Boston, Houston, and San
Francisco. (a) Open loop. (b) Closed loop.

How did we do that? We need to add an extra observation at the end of each panel
that is a copy of the first observation. The main idea is to use by: and expand.

In more detail: The structure of the dataset is three panels and 12 months for each
panel. We need to tag the first observation in each panel and then create a copy of
those first observations. Knowing that expand adds extra observations at the end of the
dataset helps. Each extra observation is assigned a value of month of 13, which ensures
that after sorting, the new observation will be in the right position.

. preserve

. local N = _N

. by place (month), sort: gen first = _n == 1

. expand 2 if first

. replace month = 13 if _n > ‘N’

. sort place month

. graph_commands

. restore



414 Speaking Stata

Here we preserve and then restore so that the original dataset is in memory after
graphics. Other solutions to the problem caused by a modification of the data, which
we want only for this purpose, include a save of the original dataset so that it can be
returned to as and when desired.

9 Incidence plots

What are here called incidence plots are scatterplots of the form

scatter year month if condition

year and month are named here for concreteness. Your names naturally may differ, and
your month variable may even be day of year, quarter, or some other suitable time unit.
Whichever variables you choose, such an incidence plot is in essence a graphical table
in which each year is a row. Logically equivalent is a scatterplot of the form

scatter month year if condition

in which each year is a column.

As we can superimpose several such plots, we can compare different years, even
in a fairly long time series, with a bird’s-eye view of the incidence of several different
conditions.

The Mauna Loa data have been tsset, so we can use time-series operators, for
example to look at changes from value to value. So after

. summarize D.co2, detail

we can show months with large positive changes (say, those in the top 10%) and months
with large negative changes (say, those in the bottom 10%). The result is given in figure
16.

. scatter year month if D.co2 > ‘=r(p90)’, options
> ||
> scatter year month if D.co2 < ‘=r(p10)’, more_options
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Figure 16: Incidence plot showing months of largest increases and decreases in carbon
dioxide content at Mauna Loa.

Sakamoto-Momiyama (1977) makes good use of a related idea. Her disease calendars
use a series of bar charts to show months of highest mortality for various diseases for
different years, age groups, countries, etc. This information is within a monograph that
is dense with a variety of carefully designed graphics to show seasonal variations in
mortality.

10 Folding

The time-of-year axis can be folded so that the second half of the year is superimposed
on the first, giving more space and a graphical handle on the asymmetry of annual
cycles.

With monthly data, folding is best accomplished by the transformation min(month,
14 - month), which pairs months as follows: 1 by itself, 2 and 12, 3 and 11, 4 and 10,
5 and 9, 6 and 8, and 7 by itself. Naturally a similar transformation may be used after
a rotation.

Folding in this manner was used by the climatologist Victor Conrad (1876–1962).
See Conrad and Pollak (1950).

11 Repeating

Values in the latter part of the year can be copied left of the start, and values in the
earlier part of the year can be copied right of the end. This method reduces the effects
of cutting. Mathematician and scientist Johann Heinrich Lambert (1728–1777) used
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repeating in this manner with seasonal data. Tufte (2001, 29) accessibly reproduces
an example graph. More recently, Tukey (1972) blew a trumpet for the idea that two
cycles are better than one. Two cycles are naturally not compulsory: you can copy as
much or as little as desired.

The Stata code for this process is a variation on that given earlier for adding extra
observations to close loops by connecting the last and first in each panel. It can be done
using expand, often after preserve and before restore. One sequence could run like
this, for two cycles:

. preserve

. local N = _N

. expand 2 if month <= 6

. replace month = month + 12 if _n > ‘N’

. local N = _N

. expand 2 if month >= 7

. replace month = month - 12 if _n > ‘N’

. graph_commands

. restore

This code gives two cycles of monthly data. First, the first 6 months are copied, and
in the copies, months 1–6 are mapped to 13 to 18. Then the last 6 months are copied,
and in the copies, months 7–12 are mapped to −5 to 0. The correct sort order for the
graph can be obtained by an explicit sort or on the fly by a sort option of graph.
Panel data need use of by:, as seen earlier.

Figure 17 reunites San Francisco’s wet winter.
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Figure 17: Annual cycle of precipitation in San Francisco. Each month is shown twice.
Annual total shown by text.
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12 Conclusion

For seasonal data, I give this advice on graphics.

Graphs showing the fine structure of seasonality tell us more than graphs that serve
mostly to reveal its existence. The examples here are of well-understood phenomena.
Can you use the method to break new ground in understanding fresh datasets?

Reordering the data into subseries (cycleplot) is often useful; rotate to start at
an appropriate time of year for the analysis; superimpose, slice, and stack to compare
years (sliceplot); plot loops in state space; use incidence plots; fold the time-of-year
axis; and repeat values fore and aft to show up to two cycles.

Know your functions, graphics options, and data management commands. Each
new program can be a curse as well as a convenience, being just one more thing to
learn, remember, forget, and confuse. Once you understand the logic for rotating axes
or repeating values fore and aft, the need for extra commands or extra functions to do
such tasks diminishes rapidly.
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