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Abstract. The two-stage least-squares (2SLS) instrumental variables estimator is
commonly used to address endogeneity. However, the estimator suffers from bias
that is exacerbated when the instruments are only weakly correlated with the en-
dogenous variables and when many instruments are used. In this article, I discuss
jackknife instrumental variables estimation as an alternative to 2SLS. Monte Carlo
simulations comparing the jackknife instrument variables estimators to 2SLS and
limited information maximum likelihood (LIML) show that two of the four vari-
ants perform remarkably well even when 2SLS does not. In a weak-instrument
experiment, the two best performing jackknife estimators also outperform LIML.

Keywords: st0108, jive, 2SLS, LIML, JIVE, instrumental variables, endogeneity,
weak instruments

1 Introduction

The two-stage least-squares (2SLS) estimator is perhaps the most common instrumental
variables estimator used to address endogeneity in econometric applications. However,
its use has come under increasing scrutiny in recent decades because of potential finite-
sample and asymptotic problems. Much of the focus has been on the weak-instrument
problem and the use of many instruments.

For example, Angrist and Krueger (1991) fitted an earnings equation in which ed-
ucation was treated as an endogenous variable. They argued that the season in which
a person was born would be correlated with educational attainment. States typically
require students to remain in school until their 16th birthday. Because the school year
starts in autumn, students born early in the year begin school at a later age than stu-
dents born later in the year and thus can drop out of school having spent less time
in the classroom. Angrist and Krueger therefore used season-of-birth indicators (and
interactions with year of birth) as instruments for their education variable.

Although Angrist and Krueger (1991) had a sample of more than 300,000 students,
later work by Bound, Jaeger, and Baker (1995) and others showed that Angrist and
Krueger’s estimates were biased because the correlation between their education variable
and their instruments was weak. By definition an instrument must be uncorrelated
with the structural error term to be valid, though in practice that condition may not
always be met. Bound, Jaeger, and Baker (1995) showed that if the instruments are only
weakly correlated with the endogenous variable, then any such correlation between the

c© 2006 StataCorp LP st0108
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instruments and the structural error term can have a profound impact on the consistency
of the 2SLS estimator. Moreover, the 2SLS estimator is biased toward the ordinary least-
squares (OLS) estimator, and that bias becomes more severe as the correlation between
the endogenous regressor and the instruments approach zero. Regressions of education
on Angrist and Krueger’s seasonal dummy instruments resulted in R2 values as low as
0.0001, suggesting that the bias of 2SLS was severe. Also see Nelson and Startz (1990)
and Stock, Wright, and Yogo (2002) for introductions to using weak instruments.

Even when the instruments are relevant in the sense that they are sufficiently corre-
lated with the endogenous variable, the 2SLS estimator still exhibits a bias that increases
as more instruments are used. Researchers often use many instruments under the pre-
sumption that doing so will make up for the instruments’ being weak. However, that
logic is faulty, because the bias of the 2SLS estimator increases with the number of
instruments; and, to the extent that the instruments are correlated with one another,
using more of them may not aid in identification.

Recently, Angrist, Imbens, and Krueger (1999) and Blomquist and Dahlberg (1999)
proposed estimators that attempt to eliminate the finite-sample bias of 2SLS. Because
they are based on a “leave one out” approach reminiscent of the jackknife, they are
known as the jackknife instrumental variables estimators (JIVEs). Monte Carlo simu-
lations show that they often work well for bias and coverage probabilities, even when
the conventional 2SLS estimator does not. However, JIVEs are not a panacea, for their
distributions are much more dispersed than the distribution of the 2SLS estimator.

The rest of this paper is organized as follows. Section 2 illustrates the source of the
finite-sample bias of the 2SLS estimator. Section 3 presents four variants of the JIVE and
shows how they circumvent the source of the finite-sample bias discussed in section 2.
Section 4 presents the syntax for the Stata command jive, which implements these
estimators. Section 5 provides Monte Carlo evidence, and section 6 concludes.

2 Finite-sample bias of 2SLS

The model we consider is

yi = xiβ + εi

xi = ziπ + νi

where xi and νi are 1×L, zi is 1×K, β is L× 1, and π is K ×L. By assumption, some
elements of xi are correlated with εi, though all elements of zi are uncorrelated with
νi. Let σεν denote the 1 × L vector of covariances between εi and νi. Let y denote the
N × 1 result of stacking yi for i = 1, . . . , N , where N is the sample size; and similarly
define X, Z, ε, and ν.

If the jth column of xi is exogenous, then a corresponding column of zi is equal to
xij , νij is equal to 0, and one of the rows of π has one element equal to one with the
remaining elements zero. Identification of β requires that K ≥ L.
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If π were known, then the optimal instrumental variables estimator of β would be

β̂opt = (π′Z′X)−1
π′Z′y

Obviously, E(β̂opt) = β; and Zπ is therefore known as the optimal-instrument matrix.
However, π is not known, and the 2SLS estimator uses the OLS estimator of π:

β̂2SLS = (π̂′Z′X)−1
π̂′Z′y

=
{
X′Z(Z′Z)−1Z′X

}−1
X′Z(Z′Z)−1Z′y

Taking expectations of that expression, we see that the bias of β̂2SLS depends on
E
(
X′Z(Z′Z)−1Z′ε

)
, which is equal to E (π̂Z′ε). For any observation i,

E (π̂′z′iεi) = E {E (π̂′z′iεi|Z)}

= E
[
E
{(

π′z′iεi + ν′
izi(Z′Z)−1z′iεi

) |Z}]
= E

{
zi(Z′Z)−1z′i · E (νiεi)

}
=

K

N
σεν

(1)

where the last equality follows from the expected value of the ith diagonal element of
the hat matrix (K/N).

Equation (1) shows that the bias of the 2SLS estimator arises from the correlation of
the fitted value from the first-stage regression for observation i with εi. Moreover, this
bias persists even if the instruments zi are uncorrelated with εi (as valid instruments
must be). See Nagar (1959) for the seminal work on the finite-sample bias of k-class
estimators, of which 2SLS is a particular case.

3 JIVE

The bias of the 2SLS estimator arises from the correlation between the OLS estimate
of the optimal instrument matrix ziπ̂ and the residual εi. Thus what is needed is an
alternative estimator of ziπ that does not suffer from such correlation.

3.1 UJIVE1

Angrist, Imbens, and Krueger (1999) and Blomquist and Dahlberg (1999), building on
the work of Phillips and Hale (1977), suggest using all observations except observation
i to estimate the parameter matrix π and then using this estimate along with zi to
compute the fitted value of the instrument for observation i. This process is repeated
for each i = 1, . . . , N . That is, let
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π̂−i = (Z′
−iZ−i)−1Z′

−iX−i (2)

where Z−i denotes the (N − 1) × K matrix consisting of all rows of Z except the ith
row and similarly for X−i. The ith row of the optimal instrument matrix is estimated
by ziπ̂−i. Notice that

E
(
π̂′
−iz

′
iεi

)
= E

{(
X′

−iZ−i(Z′
−iZ−i)−1z′iεi

) |Z}
= E

{
E
(
X′

−iεi|Z
)
Z−i(Z′

−iZ−i)−1zi

}
= 0

because observations are assumed to be independent. Therefore, the estimator we will
call UJIVE1 defined by

β̂UJIVE1 = (X̂′X)−1X̂′y

where the ith row of X̂ is defined as ziπ̂−i, does not suffer from the finite-sample bias of
2SLS. Moreover, since π̂−i is a consistent estimator of π, β̂UJIVE1 is a consistent estimator
of β. The variance of β̂UJIVE1 is given by

Var
(
β̂UJIVE1

)
= (X̂′X)−1X̂′εε′X̂(X′X̂)−1

If we assume that εi is homoskedastic, then an estimator of the covariance matrix is
simply

V̂ar
(
β̂UJIVE1

)
= σ̂2(X̂′X)−1X̂′X̂(X′X̂)−1

where
σ̂2 =

1
N

∑
i

(
yi − xiβ̂UJIVE1

)2

A heteroskedasticity-robust estimator is1

V̂ar
(
β̂UJIVE1

)
= (X̂′X)−1

∑
i

ε̂i
2x̂ix̂i

′(X′X̂)−1

where
ε̂i

2 =
(
yi − xiβ̂UJIVE1

)2

3.2 UJIVE2

Angrist, Imbens, and Krueger (1999) also proposed adjusting only the Z′X component
of π̂, which we will call UJIVE2. The only difference between UJIVE1 and UJIVE2 is that
for UJIVE2 we redefine π̂−i as

π̂−i = (Z′Z)−1Z′
−iX−i (3)

1. Chao and Swanson (2004) derive the asymptotic distribution of JIVE with heteroskedastic errors.
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The formulas for the estimator and its covariance matrix are otherwise identical to those
for UJIVE1.

Whether UJIVE1 or UJIVE2 is in any sense better than the other will be explored
using Monte Carlo simulation in the next section.

3.3 JIVE1 and JIVE2

Blomquist and Dahlberg (1999) also proposed the estimator

β̂JIVE1 = (X̂′X̂)−1X̂′y

using π̂−i as in (2) that has the (modest) advantage of requiring just OLS regression
once X̂ has been computed; we will call this estimator JIVE1. Using (3) instead of (2)
for π̂−i results in what we will call the JIVE2 estimator.

Although JIVE1 and JIVE2 are consistent estimators of β, unlike UJIVE1 and UJIVE2,
they are not unbiased. Moreover, while apparently Blomquist and Dahlberg (1999) use
the covariance matrix estimator

V̂ar
(
β̂JIVE1

)
= σ̂2(X̂′X̂)−1

that is only an approximation to the true covariance matrix even with the assumption
of homoskedasticity. In the Stata implementation, we also offer the heteroskedasticity-
robust covariance matrix

V̂ar
(
β̂JIVE1

)
= (X̂′X̂)−1

∑
i

ε̂i
2x̂ix̂i

′(X̂′X̂)−1

4 Stata implementation

4.1 Syntax

jive depvar
[
varlist1

]
(varlist2 = varlistiv)

[
if
] [

in
] [

, options
]

options description

ujive1 use Angrist et al. (unbiased) JIVE1 estimator
ujive2 use Angrist et al. (unbiased) JIVE2 estimator
jive1 use Blomquist and Dahlberg JIVE1 estimator
jive2 use Blomquist and Dahlberg JIVE2 estimator
robust compute heteroskedasticity-consistent standard errors
level(#) set confidence level; default is level(95)

by, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.
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4.2 Options

ujive1, the default, requests Angrist, Imbens, and Krueger’s (1999) UJIVE1 estimator,
which adjusts both the Z′Z and Z′X terms of the first-stage regression.

ujive2 requests Angrist, Imbens, and Krueger’s (1999) UJIVE2 estimator, which adjusts
only the Z′Z term of the first-stage regression.

jive1 requests Blomquist and Dahlberg’s (1999) JIVE1 estimator, which adjusts both
the Z′Z and Z′X terms of the first-stage regression and uses OLS regression in the
second stage.

jive2 requests Blomquist and Dahlberg’s (1999) JIVE2 estimator, which adjusts only
the Z′Z term of the first-stage regression and uses OLS regression in the second stage.

robust requests that the Huber/White/sandwich heteroskedasticity-consistent covari-
ance matrix be used in place of the traditional calculation. See [U] 20.14 Obtaining
robust variance estimates.

level(#) sets the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level. See [U] 20.6 Specifying the width
of confidence levels.

4.3 Example

The basic syntax of jive is the same as that for ivreg; see [R] ivreg. To fit a regression
of rent on pcturban and hsngval using the UJIVE2 estimator, treating hsngval as
endogenous and using faminc and region dummies as instruments, we type

. use http://www.stata-press.com/data/r9/hsng2
(1980 Census housing data)

. jive rent pcturban (hsngval = faminc reg2-reg4), ujive2

Jackknife instrumental variables regression (UJIVE2)

First-stage summary Number of obs = 50
F( 2, 47) = 34.99

F( 4, 44) = 13.30 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = 0.6638
R-squared = 0.6908 Adj R-squared = 0.6495

Root MSE = 20.9304

rent Coef. Std. Err. t P>|t| [95% Conf. Interval]

hsngval .0017197 .0003812 4.51 0.000 .0009529 .0024865
pcturban .4020523 .3134261 1.28 0.206 -.2284796 1.032584

_cons 124.4641 14.4686 8.60 0.000 95.35705 153.5712

Instrumented: hsngval
Instruments: pcturban faminc reg2 reg3 reg4

See the left-hand column in the output header. When the model contains one right-
hand-side endogenous variable, jive lists the first-stage regression’s F statistic and
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R2. Stock, Wright, and Yogo (2002) indicate that the first-stage F statistic typically
must exceed 10 for inference based on the 2SLS estimator to be reliable. That paper
also includes an alternative to the F statistic to use when the number of endogenous
regressors is greater than one, though the alternative is not implemented in jive. The
first-stage R2 is also often used to gauge the validity of instruments. Although there is
no universally accepted test for or against weak instruments, the first-stage F statistic
and R2 both have the benefit of intuitive appeal.

4.4 Saved results

jive saves the following in e():

Scalars
e(N) number of observations e(F1) first-stage F statistic
e(rmse) root mean squared error e(df m F1) first-stage model degrees of
e(F) model F statistic freedom
e(df m) model degrees of freedom e(df r F1) first-stage residual degrees of
e(df r) residual degrees of freedom freedom
e(r2) R2 e(r2 1) first-stage R2

e(r2 a) adjusted R2

Macros
e(model) UJIVE1, UJIVE2, JIVE1, or e(instd) instrumented variables

JIVE2 e(insts) instruments
e(title) title in estimation output e(properties) b V

e(depvar) name of dependent variable

Matrices
e(b) coefficient vector e(V) variance–covariance matrix of

the estimator

Functions
e(sample) marks estimation sample

5 Monte Carlo simulation

5.1 Model 1

Our first simulation model is identical to the first one analyzed by Angrist, Imbens, and
Krueger (1999):

yi = 0 + 1 · xi + εi

xi = 0 + 0.3 · zi1 + 0 · zi2 + νi

where zi1 and zi2 are independently and identically distributed standard normal and(
εi

νi

)
∼ N

{(
0
0

)
,

(
0.25 0.20
0.20 0.25

)}
The population coefficient on zi2 in the equation for xi is zero. In this and all subsequent
models, I used a sample size of N = 100 and 5,000 simulations.
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Table 1: Results from model 1 simulations

Percentile 95% CI

Estimator 10th 25th 50th 75th 90th Standard Robust

UJIVE1 0.612 0.799 0.947 1.068 1.158 0.964 0.957
UJIVE2 0.608 0.798 0.946 1.068 1.158 0.964 0.958
JIVE1 0.525 0.710 0.866 0.992 1.085 0.965 0.946
JIVE2 0.545 0.737 0.901 1.032 1.129 0.963 0.950
2SLS 0.766 0.903 1.021 1.118 1.200 0.939 0.931
LIML 0.730 0.874 0.995 1.098 1.183 0.948 0.945

Table 1 shows the 10th, 25th, 50th, 75th, and 90th percentiles of the observed
distribution, as well as the coverage rate of the 95% confidence interval constructed
using the standard and heteroskedasticity-consistent covariance matrices.

Because Stata’s official ivreg command does not implement the LIML estimator,
we used the ivreg2 command of Baum, Schaffer, and Stillman (2003, 2004, 2005). The
condivreg command of Moreira and Poi (2003) and Mikusheva and Poi (2006) can also
perform LIML estimation when the model contains one endogenous regressor.

Here the 2SLS estimator performed well, since we had only two instruments (one
relevant, one irrelevant) and one endogenous variable. The confidence intervals had
coverage rates near their nominal sizes. All four jackknife estimators exhibited right-
skewed distributions (more mass to the left of the true value), and the distributions
were more dispersed than the ones for 2SLS and limited information maximum likelihood
(LIML). The JIVEs produced relatively large standard errors, as the confidence intervals
performed well despite the skewed distributions. The UJIVEs performed slightly better
than the JIVEs in terms of the amount of skew in the distributions. Which definition of
π̂−i was used had a modest impact on the JIVEs but not the UJIVEs. Our results are
similar to those reported by Angrist, Imbens, and Krueger (1999).

5.2 Model 2

Our second model is the same as the second model of Angrist, Imbens, and Krueger
(1999) and is similar to model 1 except that there are 19 irrelevant instruments instead
of just one:

xi = 0 + 0.3 · zi1 +
j=20∑
j=2

0 · zij + νi
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Table 2: Results from model 2 simulations

Percentile Coverage rate

Estimator 10th 25th 50th 75th 90th Standard Robust

UJIVE1 0.393 0.720 0.948 1.109 1.220 0.948 0.939
UJIVE2 0.395 0.718 0.946 1.106 1.222 0.947 0.940
JIVE1 0.142 0.334 0.521 0.687 0.807 0.231 0.239
JIVE2 0.182 0.424 0.663 0.872 1.029 0.652 0.635
2SLS 1.137 1.205 1.278 1.347 1.408 0.318 0.319
LIML 0.702 0.854 0.996 1.113 1.203 0.928 0.953

Table 2 shows that the 2SLS estimator is clearly biased upward, and the coverage rates
of the confidence intervals are low. This finding is not surprising given the analytical
result of section 1. The JIVEs are severely right skewed, and their confidence intervals
perform poorly as well. The UJIVEs exhibit right skew, but the median estimate is off
by only about 5%. Moreover, the confidence intervals have excellent coverage rates.
The LIML estimator also has good coverage, and it does not suffer from nearly as much
right skew as the UJIVEs.

5.3 Model 3

Model 3 is similar to model 1, except that the error term in the equation for yi is
conditionally heteroskedastic:

yi = 0 + 1 · xi + z2
1iεi

Here we are concerned mainly with testing the robust option of our jive command.

Table 3: Results from model 3 simulations

Percentile Coverage rate

Estimator 10th 25th 50th 75th 90th Standard Robust

UJIVE1 −0.200 0.418 0.906 1.303 1.644 0.697 0.942
UJIVE2 −0.164 0.430 0.907 1.293 1.625 0.712 0.943
JIVE1 −0.174 0.371 0.828 1.206 1.540 0.658 0.946
JIVE2 −0.145 0.399 0.858 1.237 1.578 0.679 0.944
2SLS 0.125 0.598 1.017 1.376 1.690 0.676 0.930
LIML 0.057 0.556 0.990 1.366 1.690 0.667 0.931
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Table 3 shows that, just as with model 1, the 2SLS and LIML estimators provide good
results in that they are approximately median unbiased. As expected, the standard
95% confidence interval has relatively poor coverage, but the heteroskedasticity-robust
variant has coverage near the nominal size of the confidence interval. The UJIVEs are
again right skewed, and the median estimates are roughly 9% too small. However, the
robust covariance matrices do result in confidence intervals with good coverage. The
JIVEs are slightly less dispersed than the UJIVEs, but they show more negative bias.
Nevertheless, the confidence intervals based on the robust covariance matrix perform
well.

5.4 Model 4

The fourth model we consider contains nonlinearities and heteroskedasticity in the first-
stage equation for xi; the full model is

yi = 0 + 1 · xi + εi

xi = 0 + 0.3 · zi1 +
j=20∑
j=2

0 · zij + 0.3
j=20∑
j=2

z2
ij + νi

j=20∑
j=2

z2
ij/19

The error structure is (
εi

νi

)
∼ N

{(
0
0

)
,

(
1.0 0.8
0.8 1.0

)}

Table 4: Results from model 4 simulations

Percentile Coverage rate

Estimator 10th 25th 50th 75th 90th Standard Robust

UJIVE1 0.223 0.865 1.155 1.425 1.986 0.969 0.966
UJIVE2 0.621 0.894 1.049 1.176 1.350 0.954 0.944
JIVE1 −0.508 −0.248 −0.001 0.210 0.376 1.000 1.000
JIVE2 −1.084 −0.816 −0.521 −0.247 −0.012 1.000 1.000
2SLS 1.032 1.091 1.151 1.211 1.264 0.601 0.585
LIML 0.311 0.820 1.082 1.301 1.736 0.813 0.944

As table 4 shows, the nonlinear relationship between xi and the zi’s is apparently
causing the 2SLS estimates to exhibit an upward bias; and, because the heteroskedas-
ticity affects xi and not yi, the use of a robust covariance matrix does not improve
the coverage rate of the confidence interval. The UJIVE1 estimates are widely dispersed
and slightly biased upward, though the confidence intervals do provide good coverage.
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The UJIVE2 results show much less dispersion than the UJIVE1 ones; Angrist, Imbens,
and Krueger (1999) report that only in nonlinear data-generating processes like this
one have they seen such a disparity between UJIVE1 and UJIVE2. The JIVE1 and JIVE2

estimates are severely biased downward. The confidence interval coverage rates are vir-
tually 100%, because the standard errors were so large. The covariance matrix used
for JIVE1 and JIVE2 is only an approximation to the true covariance matrix, and that
approximation clearly fails when the relationship between xi and the zi’s is nonlinear.
The LIML estimator performs reasonably well, though UJIVE2 clearly does better here.

5.5 Model 5

The average of the first-stage R2s in the simulations of model 1 was 0.2725, with 90%
of the simulations’ R2s lying between 0.1525 and 0.4013. Moreover, the first-stage F
statistic averaged 18.17, with 90% of the values lying between 8.73 and 32.51. From the
assertion of Stock, Wright, and Yogo (2002) that the first-stage F statistic should be at
least 10 for 2SLS inference to be reliable, there does not appear to be a weak-instrument
problem, as our Monte Carlo results confirmed.

Here we use the setup of model 2, except that we reduce the correlation between xi

and the instruments:

xi = 0 + 0.03 · zi1 +
j=20∑
j=2

0 · zij + νi

This setup allows us to see whether UJIVE and JIVE provide any safeguards against the
common use of many weak instruments. With this model, the first-stage F statistic
averaged only 0.98, with 99% of the 5,000 simulations yielding F < 2.11. The average
first-stage R2 was 0.1987, however.

Table 5: Results from model 5 simulations

Percentile Coverage rate

Estimator 10th 25th 50th 75th 90th Standard Robust

UJIVE1 0.424 1.372 1.800 2.209 3.011 0.734 0.717
UJIVE2 0.497 1.383 1.807 2.224 3.082 0.731 0.718
JIVE1 −0.903 −0.500 −0.103 0.236 0.473 0.084 0.084
JIVE2 −1.165 −0.650 −0.137 0.296 0.604 0.320 0.305
2SLS 1.606 1.691 1.784 1.879 1.959 0.004 0.004
LIML −0.125 1.097 1.727 2.342 3.659 0.541 0.728

Table 5 shows that the 2SLS estimator shows a substantial upward bias, and the
nominal 95% confidence interval has a coverage rate of virtually zero. The UJIVEs
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show a median bias approximately equal to that of the 2SLS estimator. However, the
distribution is much more dispersed; although the confidence intervals do not have
coverage rates equal to their nominal sizes, they do perform notably better than all the
other estimators except LIML. The JIVEs exhibit extreme negative bias, and this model
provides no compelling reason to prefer them over 2SLS. The LIML estimator is slightly
less biased in its median than the UJIVEs, but its distribution is more dispersed.

6 Conclusion

The 2SLS estimator is known to be biased, and instruments that are only weakly cor-
related with the endogenous regressor compound the problem. In this article, I have
presented a new Stata command for fitting models by using the JIVE, and I have pro-
vided Monte Carlo evidence showing that two variants of the estimator, UJIVE1 and
UJIVE2, yield good results even when the usual 2SLS estimator does not. My simula-
tions also show LIML to be a good alternative to 2SLS. Two other variants, JIVE1 and
JIVE2, appear to offer no compelling advantages over 2SLS based on the simulations,
though they are implemented in the Stata command jive for those who wish to try
other models.
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