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Graphical representation of interactions
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Abstract. We provide a program to illustrate interactions between treatment and
covariates or between two covariates by using forest plots under either the Cox
proportional hazards or the logistic regression model. The program is flexible in
both the possibility of illustrating more than one interaction at a time and variable
specifications of scale.

Keywords: gr0024, fintplot, interaction, forest plot, randomized controlled trial,
survival analysis, logistic regression

1 Introduction

When examining a particular treatment in a trial setting, we are often interested in
the consistency of an observed relationship across covariates. We might suspect that
a treatment works better in older patients than younger ones or that because of the
genetic makeup of men and women the treatment works differently on the two sexes.
Examining the relationship can be helpful later when developing guidance on how to use
that particular treatment. One ongoing MRC Clinical Trials Unit study seeks to identify
in colorectal cancer patients an interaction between the prevalence of the mutated gene
p53 and the results of chemotherapy.

As outlined by Shuster and van Eys (1983), tests for such interactions can have two
uses. First, by retrospective analysis of possible interaction effects, one can formulate
interesting hypotheses for future trials. Second, in planning a prospective trial, one may
incorporate a test of an interaction effect if one suspects that the therapies manipulate
important factors differently. Hence the analysis of interactions in a trial or study can
be exploratory or consist of a test for interactions as defined in the protocol.

Gail and Simon (1985) discussed quantitative and qualitative interactions. In a
quantitative interaction, the magnitude of the treatment effect will vary with a pa-
tient’s characteristics while the direction of the overall treatment effect stays the same.
In a qualitative interaction, a change in the direction of the treatment effect is involved.
Both are illustrated in figure 1.

c© 2006 StataCorp LP gr0024
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Figure 1: Quantitative and qualitative interactions illustrated using Kaplan–Meier sur-
vival curves

Thall and Lachin (1986) proposed a test based on proportional hazards regression
models. Uesaka (1993) used logarithmic generalized odds ratios. Simon (2002) used
Bayesian subset analysis. Xiang, Sather, and Azen (1994), whose test statistic is based
on a weighted residual sum of squares, examined 2×k factorial experiments. To estimate
the parameters of the test statistic, they used the Mantel–Haenszel, maximum likelihood
estimation, and a method based on the ratio of observed to expected events.

Our estimate of the interaction effect is based on a ratio of hazard ratios (RHR)
or a ratio of odds ratios (ROR) derived from a 2 × 2 table as described in section 3.
The definition is similar to that of Peterson and George (1993). This RHR describes
quantitative interactions. We provide a Stata program to illustrate interactions more
easily during the analysis of a clinical trial or study. It provides both numerical and
graphical output in the form of a forest plot while giving a choice of using either the
Cox proportional hazards model or logistic regression.

The following section describes a conventional interaction analysis using a cancer
trial dataset. This analysis is then rerun using the forest plot methods in section 5.1.
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2 Analysis of a cancer trial with suspected treatment–
covariate interactions

We ran the following analysis of a trial with potential treatment–covariate interaction
effects to understand the magnitude of interaction effects and the best way to represent
these. We conducted analyses by using the Cox proportional hazards model, as well as
Kaplan–Meier survival curves. To run the formal interaction analysis, we created an
interaction variable of treatment and a covariate.

The dataset glioma2 is a multicenter German–Austrian randomized trial that tested
two different chemotherapy regimens for brain tumors in adults. There were 447 patients
randomized between February 1983 and June 1988. During the trial, 274 of 411 patients
died. The overall hazard ratio of the trial was 0.89 in favor of chemotherapy, with a
confidence interval ranging from 0.71 to 1.14 and a significance level of 0.38. Hence there
was no evidence of a significant improvement in survival on the basis of treatment.

We can identify the time from first symptom, grade of malignancy, Karnofsky index,
and aphasia as possible interaction candidates. An investigation of the influence of
these variables was initially carried out by Ulm et al. (1989). Each of these variables
was split into two levels, and the Karnofsky index itself has two different level definitions.
The grade of malignancy and the second definition of the Karnofsky index show large
discrepancies in the numbers of patients present in each group. Therefore, power for
the comparison is relatively low.

Kaplan–Meier survival curves indicate that there may be an interaction, especially
for grade of malignancy and the second specification of the Karnofsky index; see figures 2
and 3, respectively.

Figure 2: Kaplan–Meier survival estimates, by treatment (treatment) and grade of
malignancy (grade) in the glioma2 dataset
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Figure 3: Kaplan–Meier survival estimates, by treatment (treatment) and Karnofsky
index (type 2) (Karnofsky2) in the glioma2 dataset

When running a log-rank test for each of the covariates alone as prognostic factors,
the differences between the categories for survival were found to be significant at the
5% level apart from grade of malignancy and aphasia.

The interaction of time from first symptom and treatment was found to be significant
at the 5% level (p-value 0.03) with a hazard ratio for the interaction term of 0.58 and a
confidence interval from 0.35 to 0.96, which is wide. Similarly, both specifications of the
Karnofsky index were found to have a significant interaction with treatment (p-values
of 0.002 and 0.031) and similar interaction hazard ratios of 0.64 and 0.66 (confidence
interval 1: 0.49–0.82; confidence interval 2: 0.49–0.89). A multiplicative interaction
term was created between treatment and the covariates. The Kaplan–Meier survival
curves for both levels of the interaction term between treatment and the Karnofsky
index (type 1) are shown in figure 4. These data also suggest a significant interaction
between the Karnofsky index (type 1) and treatment.

(Continued on next page)
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Figure 4: Kaplan–Meier survival estimates for interaction between treatment and
Karnofsky index (type 1) (treatment Karnofsky1) in the glioma2 dataset

The interactions of grade of malignancy and aphasia with treatment illustrated were,
however, not found to be significant (p-values 0.37 and 0.39).

3 Model and computation

We wrote a Stata 8 program and dialog to more readily show treatment–covariate
interaction effects. The program produces tables and graphics of the interaction effects.
This and the next two sections describe first the mathematical background for the
calculations and then the program setup. Two trial examples are given at the end.

The model underlying the calculations is based on a 2 × 2 table for interactions
as illustrated in table 1. For the Cox proportional hazards model, the hazard ratio
between treatment = 1 and treatment = 0, while the covariate is equal to 0, is λ.
Similarly, we arrive at a hazard ratio of υ between the covariate being equal to 1 and
0, while treatment is equal to 0. We then define the RHR as τ , which illustrates the
interaction effect and is derived as

RHR =
(λυτ

υ )
(λ

1 )
= τ

A similar definition arises when looking at the logistic regression model, as the param-
eters remain the same, but we are dealing with odds ratios instead of hazard ratios. So
again we can use table 1 for illustration and define the ROR as τ .
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Table 1: A 2 × 2 table of hazards in a model with interaction effects

Treatment = 0 Treatment = 1

Covariate = 0 1 λ

Covariate = 1 υ λυτ

Let A denote the treatment and Z a covariate of interest. The overall hazard is
calculated using

h(t|A) = h0(t) exp(α1A)

where α1 is the coefficient for the treatment variable, whereas the hazards in the two
groups as well as the hazard for the RHR are based on the model

h(t|A,Z) = h0(t) exp(β1A + β2Z + β12AZ)

We can estimate λ by β1 and υ by β2. The interaction term is given by β12.

The logistic option uses logistic regression. The overall treatment odds ratio is
estimated using

π(A) =
exp(α0 + α1A)

1 + exp(α0 + α1A)
The odds ratio in both levels of the covariate and the ROR are based on the following
model

π(A,Z) =
exp{g(A,Z)}

1 + exp{g(A,Z)}
for

g(A,Z) = β0 + β1A + β2Z + β12AZ

where β0 is the coefficient on the constant term; βi, i = 1, 2, are the coefficients on the
independent variables; and β12 denotes the coefficient for the interaction term.

The graphical output of this program is based on forest plots—pictorial presentations
of the hazard or odds ratio with corresponding confidence intervals. A more detailed
description of forest plots and their history may be found in Lewis and Clarke (2001).

4 Design of the dialog

The fintplot command may be invoked by using the fintplot menu and its associated
dialog box. A table of output contains the overall treatment hazard ratio, the hazard
ratio in both groups of the prognostic factor chosen, and an estimate of the RHR or ROR

for interaction. A forest plot is also displayed. The program has an overview dialog
box to provide a forest plot of the overall treatment hazard or odds ratio and RHRs or
RORs for up to five covariates with treatment. Calculations are performed in the ado-
files fintplot and fintplotk. The default method of analysis is the Cox proportional
hazards model.
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fintmenu can be executed by typing fintmenu on and a new item, fintplot, will
appear on the Stata menu bar under User. This menu can be turned off again by typing
fintmenu off.

4.1 Forest plot and table for interaction

Selecting User > fintplot > fintplot - overview or User > fintplot > fintplot -
detail will open a new window titled fintplot - overview or fintplot - detail, respectively.
The following description will concentrate on the fintplot - detail dialog box; however,
the fintplot - overview dialog box may be used the same way. The dataset used in the
analysis must be stset before using this dialog box if the Cox proportional hazards
model is to be used and the covariate levels need to be binary. The user may decide
on sensible binary levels for the covariates that are of further interest by first using the
fintplot - overview dialog. The program also allows logistic regression by checking the
Logistic regression box in the Main tab.

The fintplot - detail dialog allows both by() and if to be executed separately or at
the same time. Variables used for the by() option of the program must be discrete and
can be entered in the by tab under Separate by observations. If the Cox proportional
hazards model is chosen, the program also allows stratification. The variable to be used
for stratification must be entered in the by tab under Stratify by observations. Under
the if/in tab, the Create... button allows easier construction of the logical argument.
The confidence level may be set before running the program in the usual way—typing
set level #. Finally, if the log scale is preferred for the forest plot, one needs to check
the box for Log scale in the Main tab. This option will not change the table.

5 Illustration using two cancer trials

The examples given below illustrate the program, using the Glioma and Low Infant
Birth Weight studies. Because tests for interactions were not predefined in the protocol,
interpret the results with caution.

5.1 Forest plot for an interaction of two different covariates with
treatment

The first example was run using the glioma2 dataset described above. More information
on this study is available in an article by Ulm et al. (1989).

Overview

We stset the data before running the main analysis. We use the fintplot - overview
dialog to corroborate our answers from section 2 and run an interaction analysis on
grade of malignancy (grade) and the two categories of the Karnofsky index (Karnofsky1
and Karnofsky2). On the Main tab of the dialog box, select Treatment variable from
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the Variables for test box and enter treatment in the Treatment variable box that
appears; select Covariate 1 from the Variables for test box and enter grade in the
Covariate 1 box that appears; select Covariate 2 from the Variables for test box and
enter Karnofsky1 in the Covariate 2 box that appears; and select Covariate 3 from the
Variables for test box and enter Karnofsky2 in the Covariate 3 box that appears. The
Cox proportional hazards box should already be checked for you. Clicking either OK
or Submit produces the following table and the graph in figure 5:

. fintplotk treatment grade Karnofsky1 Karnofsky2, logistic(0) logscale(0)

OVERALL HAZARD RATIO

Factor lnHR HR [95% Conf. Interval]

overall HR -.10629226 .89916182 .70907197 1.1402114

INTERACTIONS WITH treatment

Factor lnRHR RHR [95% Conf. Interval]

grade .24755585 1.2808909 .74894992 2.1906424
Karnofsky1 -.80227556 .44830765 .27112886 .74127023
Karnofsky2 -.65781756 .51798057 .28376617 .9455104

Analysed using Cox proportional hazards model

Figure 5: Forest plot output for interaction of treatment with three different covariates
from the glioma2 dataset. The interaction terms given are RHR.

From both the graph and table, we arrive at the same results as in section 2. However,
we suggest that the graph using the forest plots is easier to interpret than the Kaplan–
Meier plots because the forest plots provide point estimates as well as corresponding
confidence intervals. Thus the user can discern whether an interaction effect is significant
from looking only at the graph, which is not the case for Kaplan–Meier plots.
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Detail

For this second run, we decided to look at the possible interaction between treatment
(treatment) and two different binary categories of the Karnofsky index (Karnofsky1
and Karnofsky2), as these had been identified as having a significant interaction effect
with treatment. Figure 6 illustrates how we enter the information into the dialog box.

Figure 6: Analysis of two interactions under the Cox model

The treatment variable should always be entered first—select Treatment variable from
the Variables for test box and enter treatment in the Treatment variable box that
appears on the Main tab. Next select Covariate 1 from the Variables for test box and
enter Karnofsky1 in the Covariate 1 box that appears; and select Covariate 2 from the
Variables for test box and enter Karnofsky2 in the Covariate 2 box that appears. Again
the Cox proportional hazards box should already be checked for you. Upon pressing
OK or Submit, we obtain the following output:
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. fintplot treatment Karnofsky1 Karnofsky2, logistic(0) logscale(0)
-> interaction with Karnofsky1

Factor lnHR HR [95% Conf. Interval]

overall HR -.10629226 .89916182 .70907197 1.1402114
Karnofsky1=0 .46974751 1.5995903 1.0625393 2.4080888
Karnofsky1=1 -.44747156 .63924239 .32618748 1.2527484

Factor lnRHR RHR [95% Conf. Interval]

interaction -.80227556 .44830765 .27112886 .74127023

-> interaction with Karnofsky2

Factor lnHR HR [95% Conf. Interval]

overall HR -.10629226 .89916182 .70907197 1.1402114
Karnofsky2=0 .0340827 1.0346702 .79335045 1.349394
Karnofsky2=1 -.82794355 .43694692 .22492848 .84881476

Factor lnRHR RHR [95% Conf. Interval]

interaction -.65781756 .51798057 .28376617 .9455104

Analysed using Cox proportional hazards model

The log-hazard ratios and hazard ratios in both levels of the factor and the overall
hazard ratio calculated without adjustment for covariates are given, as well as confidence
intervals. This output is split into both categories of the Karnofsky index (Karnofsky1
and Karnofsky2). Most importantly, the second table for each categorization gives the
log RHR and RHR for the interaction between treatment and the Karnofsky index. All
coefficients were obtained using table 1.

Figure 7 illustrates the forest plot output by the program for these interactions.
For the plot of treatment and Karnofsky1, the confidence interval for the first level of
Karnofsky1 is too wide for the table. It has been truncated at a value of 2.5. Both
the tables and forest plots show evidence of an interaction between treatment and the
Karnofsky index with an RHR of 0.45 or 0.52 depending on the specification.

(Continued on next page)
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interaction

overall HR

Karnofsky1=0

Karnofsky1=1

 

0 .5 1 1.5 2 2.5 3
HR / RHR

treatment with Karnofsky1

interaction

overall HR

Karnofsky2=0

Karnofsky2=1

 

0 .5 1 1.5 2 2.5 3
HR / RHR

treatment with Karnofsky2

Forest plot for interactions with treatment

Figure 7: Forest plot for interaction of treatment with two categories of the Karnofsky
index. The interaction term given is the lnRHR. �, overall hazard ratio for treatment
without differentiating by factor; �, estimated hazard ratio in the two groups; •, RHR

for the interaction.

5.2 Forest plot of an interaction of one covariate with treatment
using both by() and log scale options

The data used here (birth.dta) originate from a study of the risk factors associated with
low infant birth weight. Data collection took place at Baystate Medical Center in Spring-
field, Massachusetts, during 1986. Information was gathered on the age of the mother
(age), smoking status during pregnancy (smoke), and the mother’s weight in pounds at
the last menstrual period (lwt). Birth weight in grams was also gathered; however, we
retained only the low birth weight (low) category where 1 = birth weight < 2,500 g.
More information on the analysis of this dataset is given in Hosmer and Lemeshow
(2000).

Hosmer and Lemeshow (2000) suggest splitting lwt into two categories (lwd) where 1
denotes a weight of less than 110 pounds. Furthermore, they have investigated a possible
interaction between smoke and lwd split by age. Hence we create a new variable, age5,
that takes on the value 2 for age > 25 and 1 otherwise.

We will be using logistic regression here. The dialog box is invoked as before. We
need to enter an outcome variable for the events; in the Main tab, select Outcome
variable (logistic) from the Variables for test scroll box and enter low in the Outcome
variable box that appears. Next, select Covariate 1 from the Variables for test scroll
box and enter lwd in the Covariate 1 box that appears; repeat this step to enter the
second covariate, smoke. Furthermore, we check the box for Logistic regression and Log
scale. To split the data by age5, switch to the by tab and enter age5 as a variable
under Separate by observations. Figures 8 and 9 illustrate these steps.
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Figure 8: Input of outcome variable for logistic regression

Figure 9: Use of the by() option
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Once we press the OK or Submit button, we obtain the following output:

. fintplot low lwd smoke, by(age5) logistic(1) logscale(1)
Response variable: low

-> for age5==1

Factor lnOR OR [95% Conf. Interval]

overall OR .5389965 1.7142857 .71798501 4.0930876
smoke=0 .82198005 2.275 .71135751 7.2757016
smoke=1 5.6333333 279.59254 .00766853 10193868

Factor lnROR ROR [95% Conf. Interval]

interaction -.55801451 .57234432 .09691536 3.3800424

Response variable: low

-> for age5==2

Factor lnOR OR [95% Conf. Interval]

overall OR 2.0918641 8.1 2.2292439 29.431503
smoke=0 2.7725887 16 2.4137899 106.05728
smoke=1 21.005128 1.326e+09 1.709e-15 1.028e+33

Factor lnROR ROR [95% Conf. Interval]

interaction -1.5293952 .21666667 .0157211 2.9860787

Analysed using logistic regression

This output can be read in the same way as in the first example. However, here we
have a split by age5. The forest plot is illustrated in figure 10. We can hence illustrate
the potential influence of other variables.
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interaction

overall HR

smoke=0

smoke=1

 

−2.5 −1.5 −.5 0 .5 1.5 2.5 3.5
lnOR / lnROR

for age5==1

interaction

overall HR

smoke=0

smoke=1

 

−2.5 −1.5 −.5 0 .5 1.5 2.5 3.5
lnOR / lnROR

for age5==2

Forest plot with interaction for lwd and smoke

Figure 10: Forest plot using logistic regression, log scale, and by() options for the Low
Infant Birth Weight dataset. Symbols are defined in figure 7.

The output from both the table and the forest plot suggest no evidence of an in-
teraction between smoking and weight at the last menstrual period when we separate
the data by age5. However, because of wide confidence intervals due to the few data
points available for each group, the analysis is not conclusive. Also the estimate of the
log-odds ratio for smoke=1 is off the scale for the forest plot.

6 Conclusions

Analyzing an intervention’s effect in subgroups of patients becomes more and more im-
portant to allow for more individual patient care. Hence we provide a Stata tool to ex-
press such interactions both quantitatively and visually within a 2 × 2 table framework.
It is flexible in the options it provides and operates under either the Cox proportional
hazards or the logistic regression model.

In the presence of a treatment by covariate interaction, one can then determine
whether drug efficacy differs for specific high- or low-risk subgroups. Similarly, in epi-
demiological studies, one may wish to establish whether there is a difference in risk
between smokers and nonsmokers in the development of a certain disease. An often-
mentioned example is a study of Danish porcelain painters, which found that the adverse
effects of cobalt exposure on lung function were more severe among smokers than non-
smokers (Raffn et al. 1988). Such an analysis should always be planned and based on
clinically meaningful subgroups.

The program we presented considers multiplicative interaction effects. However, even
without such a multiplicative effect, if two risk factors are individually important, the
presence of both in the same patient may lead to a level of risk significantly greater than
if either of the risk factors was present alone. These additive effects may be clinically
relevant.
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Our examples have concentrated on medical applications. However, the forest plot
analysis is also applicable in the social sciences. Hout (1984) considers factors influencing
occupational mobility. The main impact is made by socioeconomic background but
other subgroups include autonomy and the degree of specialization. Other potentially
interesting topics include marriage (Mare 1991) and voting behaviors (Bartels 2000).
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