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Abstract. We consider inference in the linear regression model with one endoge-
nous variable and potentially weak instruments. We construct confidence sets for
the coefficient on the endogenous variable by inverting the Anderson–Rubin, La-
grange multiplier, and conditional likelihood-ratio tests. Our confidence sets have
correct coverage probabilities even when the instruments are weak. We propose
a numerically simple algorithm for finding these confidence sets, and we present
a Stata command that supersedes the one presented in Moreira and Poi (Stata
Journal 3: 57–70).

Keywords: st0033 2, condivreg, instrumental variables, weak instruments, confi-
dence set, similar test

1 Introduction

We consider inference on the parameter of one endogenous variable in instrumental
variables (IV) regression with potentially weak instruments. Most empirical applications
rely on inference based on the asymptotic normal approximation of the t statistic. That
is, they perform tests for significance of the coefficient by comparing the t statistic with
quantiles of the normal distribution, and they use the conventional Wald-type confidence
intervals. However, in many empirically relevant situations, the correlation between the
instruments and the endogenous regressor is weak, and the normal approximation of
the t statistic performs poorly (Nelson and Startz 1990). As a result, the conventional
test of significance on the parameter of the endogenous variable has incorrect size, and
the Wald-type confidence interval has low coverage probability.

Andrews and Stock (2005) and Stock, Wright, and Yogo (2002) give excellent sur-
veys of the literature devoted to finding tests about the coefficient β on the single
included endogenous regressor that are valid in the presence of potentially weak instru-
ments. The class of tests robust to weak identification includes the Anderson–Rubin
(AR) test (Anderson and Rubin 1949), the Lagrange multiplier (LM; score) test pro-
posed by Kleibergen (2002) and Moreira (2001), and the conditional likelihood-ratio
test suggested by Moreira (2003).

Confidence set construction is a well-known dual problem to hypothesis testing. If
we have a procedure for testing the hypothesis H0 : β = β0 with correct size even in
the presence of weak instruments, then we can construct a confidence region for the
parameter that is also robust to weak instruments by inverting the test. That is, a

c© 2006 StataCorp LP st0033 2



336 Weak instruments

value β0 belongs to a confidence set if and only if the hypothesis H0 : β = β0 cannot
be rejected.

Moreira and Poi (2003) introduced the Stata commands condivreg and condtest
implementing the AR, score, conditional likelihood-ratio, and conditional Wald tests.
They also provided the command condgraph, which performed a series of tests H0 :
β = β0, where β0 belongs to a fine grid. The user could then construct the robust
confidence set by finding the area of acceptance for the given test.

However, that procedure has several drawbacks. First, performing the conditional
likelihood-ratio and the conditional Wald tests for even modestly large datasets could
take several hours and is not very accurate. Both tests are based on Moreira’s condi-
tional approach, and the critical value functions for these tests are simulated from the
conditional distribution of the test statistic under the null hypothesis. The simulations
are computationally intensive and not always accurate.

The second obstacle is that finding a confidence set by grid testing is implementable
only if we can a priori restrict possible values of the coefficient to belong to a bounded
set. In most applications, we cannot make such a restriction. Gleser and Hwang (1987)
and Dufour (1997) showed that if the parameter set is not bounded and we can have
arbitrary weak instruments, then every almost-sure finite confidence set has zero cov-
erage probability. That is, a confidence region robust to weak instruments must be
infinite with positive probability, making a grid search unfeasible in practice. Even if
we do restrict the parameter space to be bounded, grid testing can be extremely time
consuming.

Fortunately, several valuable results have been obtained in the past few years.
Andrews, Moreira, and Stock (2006) found a way to perform the conditional likelihood-
ratio test without having to perform simulations. They also showed that the conditional
Wald test has extremely low power against a large range of alternatives and that its
power curve can be nonmonotonic. Andrews, Moreira, and Stock (2006) recommended
not using the Wald test in practice. Mikusheva (2005) proposed algorithms that allow
one to construct confidence sets by quickly and accurately inverting the AR, score, and
conditional likelihood-ratio tests without having to use a grid search.

We introduce a new version of condivreg that implements the advances mentioned
above. All condivreg users should upgrade to this newer version.

The paper is organized as follows. Section 2 contains a brief overview of the model
and definitions of the AR, the score, and the conditional likelihood-ratio tests. Section
3 provides algorithms for inverting these tests to construct weak-instrument robust
confidence sets. Section 4 describes the syntax of condivreg and gives an example of
its usage.
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2 Tests robust to weak instruments

Here we introduce notations and give a brief overview of the tests that are robust to weak
instruments. The model contains a structural equation and a reduced-form equation
for one endogenous regressor:

y1 = y2β + Xγ1 + u (1)
y2 = Zπ + Xξ + v2 (2)

Vectors y1 and y2 are n × 1 endogenous variables; X is an n × p matrix of exogenous
regressors; Z is an n × k matrix of instrumental variables; and β ∈ R, γ1, ξ ∈ Rp,
and π ∈ Rk are unknown parameters. We assume without loss of generality that
Z′X = 0. The n×2 matrix of errors [u : v2] is independently and identically distributed
(i.i.d.) across rows, each row being normally distributed with mean zero and nonsingular
covariance matrix.

We also consider the corresponding system of reduced-form equations obtained by
substituting (2) into (1):

y1 = Zπβ + Xγ + v1

y2 = Zπ + Xξ + v2

where
γ = γ1 + ξβ and v1 = u + βv2

The reduced-form errors are assumed to be i.i.d. normal with zero mean and covariance
matrix Ω. We assume Ω to be known. Andrews, Moreira, and Stock (2006) showed
that for unknown Ω, asymptotically valid tests can be obtained by replacing Ω with a
consistent estimator of Ω. Andrews, Moreira, and Stock (2004) also pointed out that
the assumption of normality can be taken away at the cost of having only asymptotically
valid rather than exactly valid tests. Here by “asymptotically valid” we mean having
asymptotically correct size both in weak- and strong-instrument asymptotics. For defi-
nitions of these two types of asymptotics, see Andrews, Moreira, and Stock (2004).

We are interested in testing the hypothesis H0 : β = β0. We require the testing
procedure to have correct size when the instruments are weak as well as when they are
strong.

Let us define the following two statistics:

S(β0) = (Z′Z)−1/2Z′Yb0(b′
0Ωb0)−1/2

and
T(β0) = (Z′Z)−1/2Z′YΩ−1a0(a′

0Ω
−1a0)−1/2

where b0 = (1,−β0)′, a0 = (β0, 1)′, and Y = [y1 : y2].
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Moreira (2003) showed that S(β0) and T(β0) are independent, normally distributed
vectors. Under the null hypothesis, the distribution of T(β0) depends on the value of the
nuisance parameter π, but, importantly, the distribution of S(β0) does not. Although
the marginal distribution of a test statistic may depend on π and thus T(β0), the
conditional distribution of that test statistic—given that T(β0) = t, its value based
on the sample data—does not depend on π at all. As discussed by Gleser and Hwang
(1987) and Dufour (1997), the true levels of the usual Wald tests deviate arbitrarily from
their nominal levels when π cannot be bounded away from the origin. By conditioning
on T(β0) = t, we obtain test statistics whose distributions under the null hypothesis do
not depend on π and therefore do not suffer from such size distortions.

We also define the matrix Q as

Q(β0) = {S(β0) : T(β0)}′{S(β0) : T(β0)} =
{

QS(β0) QST (β0)
QST (β0) QT (β0)

}
where QS(β0) = S(β0)′S(β0), QT (β0) = T(β0)′T(β0), and QST (β0) = S(β0)′T(β0). For
simplicity, we will henceforth refer to S and T, with their dependence on β0 implied.

The AR test rejects the null hypothesis H0 : β = β0 at significance level α if the
statistic

AR(β0) = S′S = QS(β0)

exceeds the (1 − α) quantile of the χ2 distribution with k degrees of freedom.

The LM (score) test accepts the null hypothesis if the statistic

LM(β0) = (S′T)(T′T)−1(T′S) =
Q2

ST (β0)
QT (β0)

is less than the (1 − α) quantile of the χ2 distribution with 1 degree of freedom.

The conditional likelihood-ratio test is based on the conditional approach proposed
by Moreira (2003). He suggested a whole class of tests that use, instead of one fixed
critical value, critical values that are functions of the data. The conditional likelihood-
ratio test uses the statistic



A. Mikusheva and B. P. Poi 339

LR(β0) =
1
2

(
QS(β0) − QT (β0) +[
{QS(β0) + QT (β0)}2 − 4

{
QS(β0)QT (β0) − Q2

ST (β0)
}]1/2

)
and critical values mα(QT ), which are functions of QT (β0). For every α, the critical
value mα(qT ) is chosen in such a way that the conditional probability of the LR statistic
exceeding mα(qT ) given that QT = qT is equal to α:

P {LR > mα(qT ) |QT = qT } = α

The conditional likelihood-ratio test accepts the null hypothesis H0 : β = β0 if LR(β0) <
mα{QT (β0)}.

Previously, the critical value function mα(qT ) was determined by simulation. The
main problem with this approach is that for an acceptable level of accuracy, one needs
many simulations. Andrews, Moreira, and Stock (2006) suggested another way of im-
plementing the conditional likelihood-ratio test by calculating the conditional p-value
of the test. Let us define a p-value function, p(m; qT ), by the following conditional
probability:

p(m; qT ) = P (LR > m|QT = qT )

Then the conditional likelihood-ratio test accepts the hypothesis H0 : β = β0 at the α
significance level if

p{LR(β0);QT (β0)} > α

Andrews, Moreira, and Stock (2006) proved that the function p(m; qT ) is equal to

p(m; qT ) = 1 − 2K

∫ 1

0

P

(
χ2

k <
qT + m

1 + qT s2
2/m

)
(1 − s2

2)
(k−3)/2ds2 (3)

where K = Γ(k/2)/[π1/2Γ{(k − 1)/2}] and Γ(·) is the gamma function. They also
suggested a method of calculating the conditional p-value of the test by performing
numerical integration. Their procedure achieves high accuracy and is fast.

The three tests described above have correct size for weak instruments. However,
they possess different power properties. The AR test is robust to misspecifications of
(2) and can be used as an overidentification test. The score test should probably not be
used in practice, since it is dominated by the conditional likelihood-ratio test. But for
historical reasons, we include it in the command accompanying this article. According
to Andrews, Moreira, and Stock (2006), the conditional likelihood-ratio test is nearly
optimal in a class of invariant similar tests. It possesses better power properties than
the AR and score tests for many parameters.
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3 Confidence sets based on tests robust to weak instru-
ments

This section describes algorithms for construction of confidence sets for the coefficient on
the single endogenous regressor β by inverting the AR , score, and conditional likelihood-
ratio tests.

Given tests that are robust to weak instruments, we can construct confidence sets by
inverting these tests. One way to find the acceptance region for a given test is to perform
grid testing. However, such an algorithm works only if the area of search is bounded,
that is, when the parameter space is bounded or we have some knowledge about the
form of the set and its approximate location. In most empirical applications, we cannot
a priori restrict the parameter space to be bounded. In general, we also cannot restrict
the area for a grid search since a confidence set with correct coverage probability in
a case with arbitrary weak instruments has infinite length with a positive probability.
The inability to use a grid search leads to the necessity of finding an algorithm to invert
tests.

By definition, the AR confidence set is

CAR
α (Y,X,Z) = {β0 : QS(β0) < χ2

1−α,k}
=

[
β0 : b′

0{Y′Z(Z′Z)−1Z′Y − χ2
1−α,kΩ}b0 < 0

]
which can be found by solving a quadratic inequality. As a result, the AR confidence
region CAR

α (Y,X,Z) can have four possible forms:

• a finite interval, CAR
α (Y,X,Z) = [x1, x2];

• a union of two infinite intervals, CAR
α (Y,X,Z) = (−∞, x1] ∪ [x2,+∞);

• the whole line, CAR
α (Y,X,Z) = (−∞,+∞); or

• an empty set, CAR
α (Y,X,Z) = ∅.

The possibility of obtaining an infinite confidence set is a necessary condition for
having a procedure robust to weak instruments. If instruments are weak, then the data
contain little information about the coefficient of interest, resulting in infinite confidence
sets. The AR test’s ability to produce an empty confidence set is more confusing. It
says that no value of the parameter is compatible with the data or that the model itself
is rejected. An empty confidence set can happen even when the data were generated
from the model (false rejection of the model).

By definition, the score confidence set is

CLM
α (Y,X,Z) = {β0 : LM(β0) < χ2

1−α,1}
Finding the score region is equivalent to solving an inequality of the fourth power, which
always has a solution in radicals because of Cardano’s formula. However, there is a way
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to rewrite the LM statistic in a way that requires solving two quadratic inequalities
instead.

Let M and N denote the maximal and minimal eigenvalues of the matrix Q(β0),
respectively. Mikusheva (2005) showed that both M and N do not depend on β0 and
that the LM statistic has the following form:

LM(β0) = −{M − QT (β0)} {N − QT (β0)}
QT (β0)

Then the score confidence region is the set

CLM
α (Y,X,Z) =

[
β0 : −{M − QT (β0)} {N − QT (β0)}

QT (β0)
< χ2

1−α,1

]
The confidence set can be found in two steps. In the first step, we solve for the values

of QT (β0) satisfying the inequality above. We have an ordinary quadratic inequality
with respect to QT . In the second step, we find the score confidence set for β0 by
solving inequalities of the form {β0 : QT (β0) < q1} ∪ {β0 : QT (β0) > q2}. As a result of
this procedure, the score confidence region CLM

α (Y,X,Z) for more than one instrument
can have three possible forms:

• a union of two finite intervals, CLM
α (Y,X,Z) = [x1, x2] ∪ [x3, x4];

• a union of two infinite intervals and one finite interval,
CLM

α (Y,X,Z) = (−∞, x1] ∪ [x2, x3] ∪ [x4,+∞); or

• the whole line, CLM
α (Y,X,Z) = (−∞,+∞).

The confidence set is never empty. It always contains the limited information max-
imum likelihood (LIML) estimator. The score confidence set always contains the points
that minimize the p-value of the AR test and the conditional p-value of the conditional
likelihood-ratio test. The distribution of the length of the score confidence set first-order
stochastically dominates the distribution of the length of the conditional likelihood con-
fidence set. That is, the score test tends to produce longer confidence sets than the
conditional likelihood-ratio test. Because of these last two features, we do not recom-
mend using the score confidence set in practice.

The main difficulty with finding an analytically tractable way of inverting the con-
ditional likelihood-ratio test is that both the test statistic LR(β0) and the critical value
function mα{Qt(β0)} depend not only on data but also on the null value of the param-
eter β0. Mikusheva (2005) proved that the conditional likelihood-ratio confidence set is
equal to the set

CCLR
α (Y,X,Z) = {β0 : QT (β0) > C}

where C is a solution to the equation p(M − C;C) = α, where again M is the max-
imal eigenvalue of the matrix Q(β0) and the function p was defined in (3). Thus the
conditional likelihood-ratio confidence set can be found as a solution to a quadratic
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inequality. As a result, the conditional likelihood-ratio confidence region CCLR
α (Y,X,Z)

can have three possible forms:

• a finite interval, CCLR
α (Y,X,Z) = [x1, x2];

• a union of two infinite intervals, CCLR
α (Y,X,Z) = (−∞, x1] ∪ [x2,+∞); or

• the whole line, CCLR
α (Y,X,Z) = (−∞,+∞).

The conditional likelihood-ratio confidence set is never empty; it always contains the
LIML estimator.

4 Stata implementation

We have enhanced the condivreg command introduced by Moreira and Poi (2003) to
reflect the advances made in the literature since it was introduced. condivreg users
should upgrade to the new version. Among the changes are the following:

1. The results of the tests are presented by reporting (conditional) p-values rather
than test statistics and their corresponding critical values. The conditional p-value
for the conditional likelihood-ratio test is calculated by numerical integration as
proposed by Andrews, Moreira, and Stock (2006) rather than by simulation.

2. The option to conduct tests by using the conditional Wald procedure was removed
because of its extremely poor power properties.

3. The new version of condivreg contains an option to perform tests of the parameter
on the endogenous regressor. Thus the condtest command of Moreira and Poi
(2003) is deprecated.

4. We implemented algorithms for producing the conditional likelihood-ratio, score,
and AR confidence sets within condivreg. Thus the condgraph command of
Moreira and Poi (2003) is deprecated.

5. Since the conditional likelihood-ratio test possesses better power properties than
the AR and the score tests for many parameters, condivreg always reports the
conditional likelihood-ratio confidence set and p-value. The results for the AR and
score tests are available by specifying the corresponding option.

6. The LIML estimate of the parameter on the endogenous variable is reported along
with the conditional likelihood-ratio results, even when the main results are ob-
tained via two-stage least squares (2SLS).
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4.1 Syntax

condivreg depvar
[
indepvars

]
(endogvar = varlistiv)

[
if
] [

in
] [

,[
2sls | liml ] noconstant noinstconstant ar lm interval level(#)

test(#)
]

by, rolling, statsby, and xi are allowed; see [U] 11.1.10 Prefix commands.

4.2 Options

2sls requests that the 2SLS estimator be used; this option is the default.

liml requests that the LIML estimator be used. 2sls and liml are mutually exclusive.

noconstant indicates that no constant term is to be included in the regression equation.
The default is to include a constant term.

noinstconstant indicates that no constant term is to be included in the first-stage
regression of the endogenous variable on the instruments and exogenous variables.
Stata’s ivreg command excludes a constant from both equations if its noconstant
option is specified. Usually one will not want to specify noinstconstant unless
noconstant is also specified, but we give the user the option to experiment. By
default, a constant term is included.

ar provides the coverage-corrected confidence set and size-corrected p-value based on
the AR test statistic.

lm provides the coverage-corrected confidence set and size-corrected p-value based on
the LM (score) test statistic.

interval displays the confidence interval, which is the minimal convex interval con-
taining the coverage-corrected confidence set.

level(#) specifies the confidence level, as a percentage, for confidence intervals. The
default is level(95) or as set by set level; see [U] 23.5 Specifying the width
of confidence intervals.

test(#) contains the hypothesized value of the endogenous variable’s coefficient. The
default is test(0).

4.3 Remarks

condivreg fits a linear regression of depvar on indepvars and endogvar using varlistiv
(along with indepvars) as instruments for endogvar via the 2SLS or LIML estimator. The
command reports the usual output of the IV regression in the same form as ivreg. In
particular, it reports the conventional t statistic, p-values, and conventional Wald-type
interval. The p-value and confidence set for the parameter on the endogenous regressor
could be incorrect if instruments are weak. Also, condivreg reports the conditional
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likelihood-ratio confidence region and p-value, both of which are robust to potentially
weak instruments.

4.4 Example

For illustrative purposes, we use the same dataset and regression specification as that
in [R] ivreg and in Moreira and Poi (2003).

. use http://www.stata-press.com/data/r9/hsng2
(1980 Census housing data)

. condivreg rent pcturban (hsngval = faminc reg2-reg4), ar lm

Instrumental variables (2SLS) regression

First-stage results Number of obs = 50
F( 2, 47) = 42.66

F( 4, 44) = 13.30 Prob > F = 0.0000
Prob > F = 0.0000 R-squared = 0.5989
R-squared = 0.6908 Adj R-squared = 0.5818
Adj R-squared = 0.6557 Root MSE = 22.862

rent Coef. Std. Err. t P>|t| [95% Conf. Interval]

hsngval .0022398 .0003388 6.61 0.000 .0015583 .0029213
pcturban .081516 .3081528 0.26 0.793 -.5384074 .7014394

_cons 120.7065 15.70688 7.68 0.000 89.10834 152.3047

Instrumented: hsngval
Instruments: pcturban faminc reg2 reg3 reg4
Confidence set and p-value for hsngval are based on normal approximation

Coverage-corrected confidence sets and p-values
for Ho: _b[hsngval] = 0

LIML estimate of _b[hsngval] = .0026686

Test Confidence Set p-value

Conditional LR [ .002018, .0037495] 0.0000
Anderson-Rubin empty 0.0000
Score (LM) [-.0007683, -.0004471] U [ .0019973, .003808] 0.0000

The first half of the output looks similar to the output of command ivreg, except
that condivreg also reports the first-stage regression’s F statistic and R2. The infer-
ential statistics in the coefficient table are based on the typical normal-approximation
procedures. Here the instruments are strong and the approximation is accurate. How-
ever, for weak instruments these statistics can cause misleading inference.

The command also provides statistics that are valid whether the instruments are
weak or strong. The LIML estimator, the conditional likelihood-ratio test for significance,
and the conditional likelihood-ratio confidence set are always reported by default. The
AR and the score tests and confidence sets are reported if options ar and lm are included.
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The conditional likelihood-ratio confidence set is not much different from the one
based on the normal approximation, though it is shifted toward the LIML estimator
relative to the conventional Wald interval. The score confidence set consists of two
finite intervals, which is the only possible form of the bounded score confidence set
when the number of instruments is greater than 1. Both the conditional likelihood-ratio
and score confidence sets contain the LIML estimator.

Here the AR confidence set is empty; that is, no value of the parameter is compatible
with the model. The AR test can produce empty confidence sets (i.e., it rejects the
model) even if the model is correct.

By default, the command reports p-values for the test of H0: β = 0. However, the
test() option can be used to conduct tests of H0: β = β0 for other values of β0. For
example, here we test H0 : β = 0.003:

. condivreg rent pcturban (hsngval = faminc reg2-reg4), ar lm test(0.003)
(output omitted )

5 Saved results

condivreg saves the following in e():

Scalars
e(N) number of observations e(df r first) first-stage residual degrees of
e(df m) model degrees of freedom freedom
e(df r) residual degrees of freedom e(r2 first) first-stage R-squared
e(F) model F statistic e(r2 a first) first-stage adjusted R-squared
e(H0 b) value of β under null e(b instd liml)LIML estimate of β
e(r2) R-squared e(level) confidence level
e(r2 a) adjusted R-squared e(p LR) conditional LR test p-value
e(rmse) root mean squared error e(p AR) AR test p-value
e(mss) model sum of squares e(p LM) LM test p-value
e(rss) residual sum of squares e(LR xi) see below
e(F first) first-stage F statistic e(AR xi) see below
e(df m first)first-stage model degrees e(LM xi) see below

of freedom

Macros
e(cmd) condivreg e(model) 2SLS or LIML
e(LR type) see below e(instd) instrumented variable
e(AR type) see below e(insts) instruments
e(LM type) see below e(exog) included exogenous variables
e(cons) noconstant or not set e(depvar) dependent variable
e(instcons) flag constant among e(properties) b V

instruments

Matrices
e(b) coefficient vector e(V) variance–covariance matrix

Functions
e(sample) marks estimation sample

The macros e(LR type), e(AR type), and e(LM type) indicate the form of the conditional
likelihood-ratio, AR , and score (LM) confidence regions, respectively:
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type Confidence region

1 ∅
2 [x1, x2]
3 (−∞,∞)
4 (−∞, x1] ∪ [x2,∞)
5 (−∞, x1] ∪ [x2, x3] ∪ [x4,∞)
6 [x1, x2] ∪ [x3, x4]

For the conditional likelihood-ratio confidence region, only types 2–4 are possible. For
the AR confidence region, types 1–4 are possible. For the score (LM) confidence region,
all but type 1 are possible. The finite endpoints x1, x2, x3, and x4 are saved in the
scalars e(test x1), e(test x2), e(test x3), and e(test x4), respectively, where test is LR,
AR, or LM.
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