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Confidence intervals for rank statistics:
Somers’ D and extensions
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Abstract. Somers’ D is an asymmetric measure of association between two
variables, which plays a central role as a parameter behind rank or nonparametric
statistical methods. Given predictor variable X and outcome variable Y , we may
estimate DY X as a measure of the effect of X on Y , or we may estimate DXY as a
performance indicator of X as a predictor of Y . The somersd package allows the
estimation of Somers’ D and Kendall’s τa with confidence limits as well as p-values.
The Stata 9 version of somersd can estimate extended versions of Somers’ D not
previously available, including the Gini index, the parameter tested by the sign
test, and extensions to left- or right-censored data. It can also estimate stratified
versions of Somers’ D, restricted to pairs in the same stratum. Therefore, it is
possible to define strata by grouping values of a confounder, or of a propensity
score based on multiple confounders, and to estimate versions of Somers’ D that
measure the association between the outcome and the predictor, adjusted for the
confounders. The Stata 9 version of somersd uses the Mata language for improved
computational efficiency with large datasets.

Keywords: snp15 6, somersd, Somers’ D, Kendall’s τa, Harrell’s c, ROC area, Gini
index, population-attributable risk, rank correlation, rank-sum test, Wilcoxon test,
sign test, confidence intervals, nonparametric methods, propensity score

1 Introduction

Many authors have argued that so-called nonparametric methods are based on popu-
lation parameters and that these parameters should be estimated with sample statis-
tics and confidence limits, instead of following the traditional practice of calculating
p-values only for the sample statistic. Examples include Kendall and Gibbons (1990),
Wolfe and Hogg (1971), and Kerridge (1975). In a more recent paper (Newson 2002),
the package somersd, introduced in Newson (2000a), was demonstrated as a way of es-
timating these parameters in Stata. Its name is derived from the parameter Somers’ D,
which plays a central role. Somers’ D is defined in terms of Kendall’s τa, is in turn
used in defining the Hodges–Lehmann median difference and the Theil median slope,
and has many applications and extensions of its own. Not all these extensions were
implemented in the then-current version of somersd, which at the time was written in
Stata 6.

The release of Stata 9 in 2005 included the C-like compilable matrix programming
language Mata, which made possible a major upgrade of the somersd package, with

c© 2006 StataCorp LP snp15 6



310 Confidence intervals for rank statistics

improvements in computational efficiency that were sometimes spectacular. These im-
provements made it practical to extend the definitions of Somers’ D (and Kendall’s τa)
to include left- and right-censored data and within-strata and within-cluster versions
of the parameters. Therefore, somersd can now estimate the parameters behind the
sign test (see [R] signrank) and the Gehan–Breslow test for censored outcomes (Gehan
1965; Breslow 1970), Harrell’s c index for censored outcomes (Harrell et al. 1982; Har-
rell, Lee, and Mark 1996), and the Gini index (Cowell 1995; Jenkins 1999), all of which
are special cases and/or transformations of Somers’ D. We can also now estimate pa-
rameters measuring the association between an outcome variable, Y , and an exposure
variable, X, adjusted for one or more confounders, by defining strata using these con-
founders and then stratifying by these strata. The inability to adjust an association for
confounders is traditionally viewed as a major weakness of rank methods, as is their
perceived inability to generate confidence intervals. Both weaknesses are often cited as
reasons for not using rank methods, despite their strengths of robustness to outliers and
to modeling and distributional assumptions (Kirkwood and Sterne 2003).

In this article, I first redefine Kendall’s τa and Somers’ D in section 2 and then
describe the current version of the program somersd in section 3. In section 4, I present
in detail, for reference purposes, the methods and formulas that somersd now uses. In
section 5, I demonstrate a range of examples and applications.

2 What is Somers’ D?

Somers’ D is defined in terms of Kendall’s τa (Kendall and Gibbons 1990), whose pop-
ulation value is traditionally defined as

τXY = E {sign(X1 − X2) sign(Y1 − Y2)}
where (X1, Y1) and (X2, Y2) are bivariate random variables sampled independently from
the same population and E[·] denotes expectation. This definition can be generalized
to possibly left- or right-censored, stratified, clustered, or weighted data as follows.
Suppose that 4-variate observations (Xi, Ri, Yi, Si) are sampled from an arbitrary pop-
ulation, using an arbitrary sampling scheme. The Ri are censorship indicators for the
corresponding Xi, and the Si are censorship indicators for the corresponding Yi. These
censorship indicators are negative for left censorship (where the true value of the indi-
cated variable is known to be equal to or less than its recorded value), positive for right
censorship (in which the true value of the indicated variable is known to be equal to or
greater than its recorded value), and zero for noncensorship (in which the true value is
known to be equal to the recorded value). We define a censored sign difference for two
values, u and v, with respective censorship indicators p and q, as

csign(u, p, v, q) =

⎧⎨⎩ 1, if u > v and p ≥ 0 ≥ q
−1, if u < v and p ≤ 0 ≤ q
0, otherwise

(1)

Given two observations (Xi, Ri, Yi, Si) and (Xj , Rj , Yj , Sj), we will call the product of
csign(Xi, Ri,Xj , Rj) and csign(Yi, Si, Yj , Sj) the concordance–discordance difference for
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the two observations, and we will say that the two observations are concordant if this
product is 1, discordant if the product is −1, and neither concordant nor discordant if
the product is 0. We can now redefine Kendall’s τa as

τXY = E {csign(Xi, Ri,Xj , Rj) csign(Yi, Si, Yj , Sj)} (2)

or (in words) as the mean concordance–discordance difference. This expectation can be
defined by using weights specific to the observations and/or restrictions to subsets of
pairs of observations, defined in terms of the sampling scheme.

The population value of Somers’ D (Somers 1962) is defined as

DY X =
τXY

τXX
(3)

Therefore, τXY is the difference between two probabilities, namely, the probability that
the larger of the two X values is associated with the larger of the two Y values and
the probability that the larger X value is associated with the smaller Y value. DY X is
the difference between the two corresponding conditional probabilities, given that the
two X values are known to be unequal. Somers’ D is related to Harrell’s c index (see
Harrell et al. [1982] and Harrell, Lee, and Mark [1996]) by D = 2c − 1.

2.1 Interpretations of Somers’ D

Somers’ D usually measures an association between a predictor variable, X, and an
outcome variable, Y . Applications of Somers’ D fall into two classes:

• We may use DY X as an effect size, measuring the effect of X on Y .

• We may also use DXY as a predictor performance indicator, measuring the per-
formance of X as a predictor of Y .

Examples of the first class usually involve a binary X variable, indicating that an
individual is a member of Group A instead of Group B. They are usually motivated by
the possibility that we can intervene to change the group membership of an individual
and thereby possibly to change the outcome. Somers’ D can then be interpreted, rightly
or wrongly, as the difference between two probabilities, namely, the probability that we
will increase the outcome of a Group A individual by transferring it to Group B and the
probability that we will increase the outcome of a Group B individual by transferring it
to Group A. This interpretation will arguably be more credible if Somers’ D is restricted
to comparisons within strata of individuals that are similar to others in the same stra-
tum. Typical examples of the first class include applying the Gehan–Breslow–Wilcoxon
test (Gehan 1965; Breslow 1970) to survival outcome data from a randomized clinical
trial, or the estimation of a difference in two proportions of successful binary outcomes
(which is a trivial case of Somers’ D) from binary-outcome data from a randomized
clinical trial.
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Examples of the second class may involve censored or uncensored Y variables, al-
though the X variables are uncensored. They are usually motivated by the aim of
comparing the performance of a predictor, X, with the performance of another predic-
tor, W , by comparing DXY with DWY . Typical examples are discussed in Harrell et al.
(1982) and Harrell, Lee, and Mark (1996), which use the c-transformation of Somers’ D.
An important special case of Harrell’s c is the area under the receiver operator charac-
teristic (ROC) curve for binary Y variables (see [R] roc, Hanley and McNeil [1982], or
Newson [2002]).

The predictor performance indicator DXY has the desirable property that a larger
DXY cannot be secondary to a smaller DWY . To understand this point, assume that
observations (Wi,Xi, Yi, Si) are sampled by some sampling scheme from some popula-
tion and that the Si are censorship indicators for the corresponding outcome variables,
Yi. Define the conditional expectation

Z(wi, xi, wj , xj) = E { csign(Yj , Sj , Yi, Si) |Wi = wi,Xi = xi,Wj = wj ,Xj = xj }

for any wi and wj in the range of W values and any xi and xj in the range of X values.
Stating that a positive relationship between Xi and Yi is caused entirely by a monotonic
positive relationship between both variables and Wi is equivalent to stating that

Z(wi, xi, wj , xj) ≥ 0 whenever wi ≤ wj and xj ≤ xi (4)

However, if (4) holds, then τWY − τXY is nonnegative, and therefore so is DWY −DXY .
This conclusion follows by an argument similar to (7) and (8) of Newson (2002), which
can be generalized trivially to sampling and/or weighting schemes involving nonindepen-
dence and/or stratification, as long as the weights are nonnegative. The denominator
τY Y , common to DWY and DXY , is simply the proportion of pairs of Y values whose
csign, defined by (1), is not set to zero by censored and/or tied Y values. Therefore,
DXY is arguably a better indicator of predictor performance than τXY , because DXY is
expressed on a scale from −1 for the best possible negative predictor of Y to +1 for the
best possible positive predictor of Y , given the level of discreteness and/or censorship
existing between the Y values in that particular population.

3 The program somersd

3.1 Syntax

somersd
[
varlist

] [
if
] [

in
] [

weight
] [

, taua tdist

transf(transformation name) cenind(cenind list) cluster(varname)

cfweight(expression) funtype(functional type) wstrata(varlist)

bstrata(varlist | n) notree level(#) cimatrix(new matrix)
]
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where transformation name is one of

iden | z | asin | rho | zrho | c
and functional type is one of

wcluster | bcluster | vonmises
and cenind list is a list of variable names and/or zeros.

fweights, iweights, and pweights are allowed; see [U] 11.1.6 weight. They are
treated as described in Interpretation of weights and Methods and formulas below.

bootstrap, by, jackknife, statsby, and svy jackknife are allowed; see
[U] 11.1.10 Prefix commands.

3.2 Description

somersd calculates the rank order statistics Somers’ D and Kendall’s τa, with confidence
limits. Somers’ D or τa is calculated for the first variable of varlist as a predictor of each
of the other variables in varlist , with estimates and jackknife variances and confidence
intervals output and saved in e() as if for the parameters of a model fit. It is possible to
use lincom to output confidence limits for differences between the population Somers’ D
or Kendall’s τa values.

3.3 Options

taua causes somersd to calculate Kendall’s τa. If taua is not typed, somersd calculates
Somers’ D.

tdist specifies that the estimates are assumed to have a t distribution with N − 1
degrees of freedom, where N is the number of clusters if cluster() is specified or
the number of observations if cluster() is not specified.

transf(transformation name) specifies that the estimates are to be transformed, defin-
ing estimates for the transformed population value. iden (identity or untrans-
formed) is the default. z specifies Fisher’s z (the hyperbolic arctangent), asin
specifies Daniels’ arcsine, rho specifies Greiner’s ρ (Pearson correlation estimated
using Greiner’s relation), zrho specifies the z transform of Greiner’s ρ, and c spec-
ifies Harrell’s c. If the first variable of varlist is a binary indicator of a disease and
the other variables are quantitative predictors for that disease, then Harrell’s c is the
area under the ROC curve. somersd recognizes the transformation names arctanh
and atanh as synonyms for z, arcsin and arsin as synonyms for asin, sinph as a
synonym for rho, zsinph as a synonym for zrho, and roc and auroc as synonyms
for c. It also recognizes unambiguous abbreviations for transformation names, such
as id for iden or aur for auroc.

cenind(cenind list) specifies a list of left- or right-censorship indicators, corresponding
to the variables mentioned in the varlist . Each censorship indicator is either a
variable name or a zero. If the censorship indicator corresponding to a variable
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is the name of a second variable, then this second variable is used to indicate the
censorship status of the first variable. The status is assumed to be left censored (at
or below its stated value) in observations in which the second variable is negative,
right censored (at or above its stated value) in observations in which the second
variable is positive, and uncensored (equal to its stated value) in observations in
which the second variable is zero. If the censorship indicator corresponding to a
variable is a zero, then the variable is assumed to be uncensored. If cenind() is
unspecified, then all variables in the varlist are assumed to be uncensored. If the list
of censorship indicators specified by cenind() is shorter than the list of variables
specified in the varlist , then the list of censorship indicators is completed with the
required number of zeros on the right.

cluster(varname) specifies the variable that defines sampling clusters. If cluster()
is defined, then the variances and confidence limits are calculated assuming that
the data represent a sample of clusters from a population of clusters rather than a
sample of observations from a population of observations.

cfweight(expression) specifies an expression giving the cluster frequency weights.
These cluster frequency weights must have the same value for all observations in
a cluster. If cfweight() and cluster() are both specified, then each cluster in the
dataset is assumed to represent a number of identical clusters equal to the cluster
frequency weight for that cluster. If cfweight() is specified and cluster() is un-
specified, then each observation in the dataset is treated as a cluster and assumed
to represent a number of identical 1-observation clusters equal to the cluster fre-
quency weight. For more details on the interpretation of weights, see Interpretation
of weights below.

funtype(functional type) specifies whether the Somers’ D or Kendall’s τa function-
als estimated are ratios of between-cluster, within-cluster, or von Mises function-
als. These three functional types are specified by the options funtype(bcluster),
funtype(wcluster), and funtype(vonmises), respectively. If funtype() is not
specified, then funtype(bcluster) is assumed and between-cluster functionals are
estimated. The within-cluster Somers’ D is a generalization of the confidence in-
terval corresponding to the sign test (see [R] signrank). The Gini coefficient is a
special case of the clustered von Mises Somers’ D. For more details, see Methods
and formulas.

wstrata(varlist) specifies a list of variables whose value combinations are the W strata.
If wstrata() is specified, then somersd estimates stratified Somers’ D or Kendall’s
τa parameters, applying only to pairs of observations within the same W stratum.
These parameters can be used to measure associations within strata, such as asso-
ciations between an outcome and an exposure within groups defined by values of a
confounder or by values of a propensity score based on multiple confounders.

bstrata(varlist | n) specifies the B strata. If bstrata() is specified, then somersd
estimates Somers’ D or Kendall’s τa parameters specific to pairs of observations
from different B strata. These B strata are either combinations of values of a list
of variables (if varlist is specified) or the individual observations (if n is specified).
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B-strata will not often be required. However, if we are estimating the within-cluster
Kendall’s τa (using the options taua funtype(wcluster)), then the additional op-
tion bstrata( n) will ensure that the within-cluster Kendall’s τa can take the whole
range of values from −1 (for complete discordance within clusters) to +1 (for com-
plete concordance within clusters).

notree specifies that somersd does not use the default search tree algorithm based on
Newson (2006) but instead uses a trivial algorithm, which compares every pair of
observations and requires much more time with large datasets. This option is rarely
used except to compare performance.

level(#) specifies the confidence level, as a percentage, for confidence intervals of the
estimates; see [R] level.

cimatrix(new matrix) specifies an output matrix to be created, containing estimates
and confidence limits for the untransformed Somers’ D, Kendall’s τa, or Greiner’s ρ
parameter. If transf() is specified, then the confidence limits will be asymmetric
and based on symmetric confidence limits for the transformed parameters. This
option (like level()) may be used in replay mode as well as in nonreplay mode.

If a varlist is supplied, then all options are allowed. If not, then somersd replays the
previous somersd estimation (if available), and the only options allowed are level()
and cimatrix().

3.4 Interpretation of weights

somersd inputs up to two weight expressions, which are the ordinary Stata weights
given by the weight and the cluster frequency weights given by the cfweight() option.
Internally, somersd defines and uses three distinct sets of weights, which are the cluster
frequency weights, the observation frequency weights, and the importance weights.

The cluster frequency weights must be the same for different observations in a cluster
and imply that each cluster in the input dataset represents a number of identical clusters
equal to the cluster frequency weight in that cluster. If cluster() is not specified, then
the individual observations are clusters, and the cluster frequency weight implies that
each 1-observation cluster represents a number of identical 1-observation clusters equal
to the cluster frequency weight. The cluster frequency weights are given by cfweight()
if that option is specified, are set to one if cfweight() is unspecified and cluster() is
specified, are equal to the ordinary Stata weights if neither cluster() nor cfweight()
is specified and the ordinary Stata weights are fweights, and are equal to one otherwise.

The observation frequency weights are summed over all observations in the input
dataset to produce the number of observations reported by somersd and returned in the
estimation result e(N) and are not used in any other way. They are set by cfweight()
if that option is specified and the ordinary Stata weights are not fweights, are equal to
the ordinary Stata weights if cfweight() is unspecified and the ordinary Stata weights
are fweights, are equal to the product of the cfweight() expression and the ordinary
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Stata weights if cfweight() is specified and the ordinary Stata weights are fweights,
and are equal to one otherwise.

The importance weights are used as described in Methods and formulas below. They
are equal to the ordinary Stata weights if these are specified and either cluster() or
cfweight() is specified, are equal to the ordinary Stata weights if neither of these
two options is specified and the ordinary Stata weights are specified as pweights or
iweights, and are equal to one otherwise.

3.5 Saved results

somersd saves the following results in e():

Scalars
e(N) number of observations e(df r) residual degrees of freedom
e(N clust) number of clusters

Macros
e(cmd) somersd e(param) parameter (somersd or taua)
e(parmlab) parameter label in output e(tdist) tdist if specified
e(depvar) name of X variable e(clustvar) name of cluster variable
e(vcetype) title used to label Std. Err. e(wtype) weight type
e(wexp) weight expression e(cfweight) cfweight() expression
e(funtype) funtype() option e(wstrata) wstrata() option
e(bstrata) bstrata() option e(predict) program called by predict
e(transf) transf() option e(tranlab) transformation label in output
e(properties) b V

Matrices
e(b) coefficient vector e(V) variance–covariance matrix

Functions
e(sample) marks estimation sample

e(depvar) is (confusingly) the X variable, or predictor variable, in the conventional
terminology for defining Somers’ D. somersd is also different from most estimation
commands in that its results are not designed to be used by predict.

4 Methods and formulas

This section is intended mainly as a reference for the extensive family of methods and
formulas used by the somersd program. Less mathematically minded readers may skip
or skim through this section and progress to the Examples section.

Somers’ D and Kendall’s τa, in their various forms, can be expressed as ratios of
sample means, Hoeffding U statistics, or von Mises V statistics, depending on the func-
tional type specified by the funtype() option. somersd works by jackknifing the original
means, U statistics, and V statistics (Arvesen 1969) and by using Taylor polynomials to
derive variances for the ratios. Normalizing and/or variance-stabilizing transformations
may then be applied.
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We assume the general case where the observations are clustered, which becomes the
familiar unclustered case when there is 1 observation per cluster, and that there are N
clusters in the sample, sampled from a common population. We assume that there are
one or more indexed W strata (defaulting to one all-inclusive W stratum if wstrata()
is not specified). Two slightly different versions of the notation will be used, depending
on whether the user has specified B strata using the bstrata() option.

If there are no B strata, then we define wfgi, Xfgi, Yfgi, Rfgi, and Sfgi to be
the importance weight, X value, Y value, X-censorship indicator, and Y -censorship
indicator, respectively, for the ith observation belonging to the gth W stratum in the
fth cluster. Not every possible index combination fgi will correspond to an observation,
so all summation over index combinations will be over index combinations corresponding
to an observation. For index combinations fgi and jkm corresponding to observations,
we can define

vfgi,jkm = wfgiwjkm

t
(XY )
fgi,jkm = vfgi,jkm csign(Xfgi, Rfgi,Xjkm, Rjkm) csign(Yfgi, Sfgi, Yjkm, Sjkm)

We will use the plus-substitution notation to define (for instance)

vfgi,jk+ =
∑
m

vfgi,jkm, t
(XY )
fgi,jk+ =

∑
m

t
(XY )
fgi,jkm

vfgi,j++ =
∑

k

vfgi,jk+, t
(XY )
fgi,j++ =

∑
k

t
(XY )
fgi,jk+

and any other sums over any other indices. For clusters f and j, we define

φ
(V )
fj =

∑
g

vfg+,jg+, φ
(XY )
fj =

∑
g

t
(XY )
fg+,jg+ (5)

That is, φ
(V )
fj is the sum of pairwise importance weights, and φ

(XY )
fj is the sum of

pairwise importance–weighted concordance–discordance differences, belonging to pairs
of observations, in the same W stratum, of which the first observation is in cluster f

and the second observation is in cluster j. The quantities φ
(V )
fj and φ

(XY )
fj are known as

kernels in the terminology of chapter 5 of Serfling (1980) and are defined for any pair
of clusters.

If the user has defined B strata, then we define the kernels φ
(V )
fj and φ

(XY )
fj by

a slightly different formula. We define wfghi, Xfghi, Yfghi, Rfghi, and Sfghi to be
the importance weight, X value, Y value, X-censorship indicator, and Y -censorship
indicator, respectively, for the ith observation belonging to cluster f , W stratum g, and
B stratum h. For index combinations fghi and jklm corresponding to observations, we
define
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vfghi,jklm = wfghiwjklm

t
(XY )
fghi,jklm = vfghi,jklm csign(Xfghi, Rfghi,Xjklm, Rjklm)

csign(Yfghi, Sfghi, Yjklm, Sjklm)

and for clusters f and j we define

φ
(V )
fj =

∑
g

vfg++,jg++ −
∑

g

∑
h

vfgh+,jgh+

φ
(XY )
fj =

∑
g

t
(XY )
fg++,jg++ −

∑
g

∑
h

t
(XY )
fgh+,jgh+

(6)

This time, φ
(V )
fj is the sum of products of importance weights, and φ

(XY )
fj is the sum of

pairwise importance–weighted concordance–discordance differences, belonging to pairs
of observations, in the same W stratum and different B strata, of which the first obser-
vation is in cluster f and the second observation is in cluster j. If the user has specified
bstrata( n), then every observation is in its own B stratum, and the second terms in
the φ

(V )
fj and φ

(XY )
fj of (6) will then contain only pairs in which an observation is paired

with itself.

The kernels φ
(V )
fj and φ

(XY )
fj of (5) or (6) can be “averaged” over their indices to

produce parameters denoted as V and TXY , respectively. Kendall’s τa and Somers’ D
are defined as ratios of these averages by

τXY = TXY /V, DY X = TXY /TXX = τXY /τXX (7)

The way in which the kernels are averaged depends on the funtype() option. If the
user specifies funtype(wcluster), then V and TXY are within-cluster averages. If the
user specifies funtype(bcluster) (the default), then V and TXY are between-cluster
averages. If the user specifies funtype(vonmises), then V and TXY are overall averages.
We always estimate the population parameters V and TXY by using sample statistics
V̂ and T̂XY as point estimates, and we estimate the sampling variances of these point
estimates by using a jackknife method, with pseudovalues denoted ψ

(V )
j and ψ

(XY )
j for

the jth cluster.

If the user specifies funtype(wcluster), then somersd estimates the parameters

V = E
(
φ

(V )
jj

)
, TXY = E

(
φ

(XY )
jj

)
These functionals are population means of within-cluster kernels, and their point esti-
mates are the corresponding sample means

V̂ = N−1
N∑

j=1

φ
(V )
jj , T̂XY = N−1

N∑
j=1

φ
(XY )
jj (8)
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and the jackknife pseudovalues for the jth cluster are given by

ψ
(V )
j = φ

(V )
jj , ψ

(XY )
j = φ

(XY )
jj (9)

If the user has specified funtype(bcluster) (the default) or funtype(vonmises),
then somersd estimates the parameters

V = E
(
φ

(V )
fj

)
, TXY = E

(
φ

(XY )
fj

)
(10)

for f �= j. These parameters are known as Hoeffding functionals (Hoeffding 1948) if
clusters f and j are assumed to be sampled without replacement and as von Mises func-
tionals (von Mises 1947) if clusters f and j are assumed to be sampled with replacement.
If the population from which the clusters are sampled is infinite, then the population
Hoeffding functional is equal to the corresponding population von Mises functional.

If the user specifies funtype(bcluster), or does not specify a funtype() option,
then the point estimates of the population Hoeffding functionals are the corresponding
sample Hoeffding functionals, or U statistics in the terminology of Hoeffding (1948),
Serfling (1980), Serfling (1988), and Lee (1990). They are defined as V̂ = T̂XY = 0 if
N = 1, and otherwise as

V̂ =
φ

(V )
++ −∑N

j=1 φ
(V )
jj

N(N − 1)
, T̂XY =

φ
(XY )
++ −∑N

j=1 φ
(XY )
jj

N(N − 1)
(11)

The jackknife pseudovalues for the jth cluster are given by ψ
(V )
j = ψ

(XY )
j = 0 if N = 1,

by
ψ

(V )
j = φ

(V )
j+ − φ

(V )
jj , ψ

(XY )
j = φ

(XY )
j+ − φ

(XY )
jj (12)

if N = 2, and otherwise as

ψ
(V )
j = (N − 1)−1

(
φ

(V )
++ −

N∑
k=1

φ
(V )
kk

)

− (N − 2)−1

{
φ

(V )
++ −

N∑
k=1

φ
(V )
kk − 2

(
φ

(V )
j+ − φ

(V )
jj

)}

ψ
(XY )
j = (N − 1)−1

(
φ

(XY )
++ −

N∑
k=1

φ
(XY )
kk

)

− (N − 2)−1

{
φ

(XY )
++ −

N∑
k=1

φ
(XY )
kk − 2

(
φ

(XY )
j+ − φ

(XY )
jj

)}
(13)
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If the user specifies funtype(vonmises), then the point estimates of the population
von Mises functionals are the corresponding sample von Mises functionals, or V statistics
in the terminology of Riedwyl (1988) and of chapter 5 of Serfling (1980). They are
defined as

V̂ = N−2φ
(V )
++ , T̂XY = N−2φ

(XY )
++ (14)

and the jackknife pseudovalues for the jth cluster are given by

ψ
(V )
j = φ

(V )
jj , ψ

(XY )
j = φ

(XY )
jj (15)

if N = 1, and otherwise by

ψ
(V )
j = N−1φ

(V )
++ − (N − 1)−1

(
φ

(V )
++ − 2φ

(V )
j+ + φ

(V )
jj

)

ψ
(XY )
j = N−1φ

(XY )
++ − (N − 1)−1

(
φ

(XY )
++ − 2φ

(XY )
j+ + φ

(XY )
jj

) (16)

The estimates and jackknife pseudovalues of (8)–(16) can all be expressed in terms
of the φ

(V )
jj , φ

(V )
j+ , φ

(XY )
jj , and φ

(XY )
j+ . Newson (2006) devised an algorithm to calculate

these quantities, using binary search trees, that requires an amount of computation
time of order Nobs log Nobs, where Nobs is the number of observations. somersd uses
a version of this algorithm unless the user specifies the notree option, in which case
somersd uses a trivial algorithm, which compares all pairs of observations and requires
an amount-of-time quadratic in Nobs. The difference in performance can be spectacular
in large datasets (Nobs > 1,000).

The parameters we really want to estimate are Kendall’s τa and/or Somers’ D,
defined by (7). These formulas are equivalent to the familiar formulas (2) and (3). To
estimate them, we use the jackknife method on V and TXY and use appropriate Taylor
polynomials. somersd calculates correlation measures for one variable X with a set of
Y variates (Y (1), . . . , Y (p)). (The X variate may have a censorship indicator R, and the
Y variates may have censorship indicators (S(1), . . . , S(p)).) It calculates, in the first
instance, the covariance matrix for V̂ , T̂XX , and T̂XY (i) for 1 ≤ i ≤ p by using the
jackknife influence matrix Υ, which has N rows labeled by the cluster subscripts, and
p + 2 columns labeled (in Stata fashion) by the names V , X, and Y (i) for 1 ≤ i ≤ p.
This matrix is defined by

Υ (j, V ) = ψ
(V )
j −ψ̄(V ), Υ (j,X) = ψ

(XX)
j −ψ̄(XX), Υ

(
j, Y (i)

)
= ψ

(XY (i))
j −ψ̄(XY (i))

where the quantities

ψ̄(V ) = N−1
N∑

k=1

ψ
(V )
k , ψ̄(XX) = N−1

N∑
k=1

ψ
(XX)
k , ψ̄(XY (i)) = N−1

N∑
k=1

ψ
(XY (i))
k

are the mean pseudovalues. (These mean pseudovalues are equal to the corresponding
point estimates unless funtype(vonmises) is specified, in which case the mean pseu-
dovalue is equal to the corresponding Hoeffding U statistic.) The jackknife covariance
matrix is equal to
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Ĉ = {N(N − 1)}−1 Υ′Υ

The estimates for Kendall’s τa and Somers’ D, for variables Y and X, are defined by

τ̂XY = T̂XY /V̂ , D̂Y X = T̂XY /T̂XX

unless the denominators of these expressions are zero, in which case the numerators
must also be zero, and somersd therefore sets the estimates and their covariances to
zero. If the denominator is nonzero, then the covariance matrix is defined with Taylor
polynomials. For Somers’ D, we define the p × (p + 2) matrix of estimated derivatives
Γ̂(D), whose rows are labeled by the names Y (1), . . . , Y (p), and whose columns are labeled
by V,X, Y (1), . . . , Y (p). This matrix is defined by

Γ̂(D)
(
Y (i),X

)
= ∂D̂Y (i)X/∂T̂XX = −T̂XY (i)/T̂ 2

XX

Γ̂(D)
(
Y (i), Y (i)

)
= ∂D̂Y (i)X/∂T̂XY (i) = 1/T̂XX

all other entries being 0. For Kendall’s τa, we define a (p+1)×(p+2) matrix of estimated
derivatives Γ̂(τ), whose rows are labeled by X,Y (1), . . . , Y (p), and whose columns are
labeled by V,X, Y (1), . . . , Y (p). This matrix is defined by

Γ̂(τ) (X,V ) = ∂τ̂XX/∂V̂ = −T̂XX/V̂ 2

Γ̂(τ) (X,X) = ∂τ̂XX/∂T̂XX = 1/V̂

Γ̂(τ)
(
Y (i), V

)
= ∂τ̂XY (i)/∂V̂ = −T̂XY (i)/V̂ 2

Γ̂(τ)
(
Y (i), Y (i)

)
= ∂τ̂XY (i)/∂T̂XY (i) = 1/V̂

all other entries again being 0. The estimated dispersion matrices of the Somers’ D and
τa estimates are therefore Ĉ(D) and Ĉ(τ), respectively, defined by

Ĉ(D) = Γ̂(D) Ĉ Γ̂(D) ′, Ĉ(τ) = Γ̂(τ) Ĉ Γ̂(τ) ′ (17)

4.1 Transformations

The transf() option offers a choice of transformations. Since these are available both
for Somers’ D and for Kendall’s τa, we will denote the original estimate as θ (which can
stand for D or τ) and the transformed estimate as ζ. They are summarized in table 1,
together with their derivatives, dζ/dθ.
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Table 1: Transformations provided by the transf() option of somersd

transf() Transform name ζ(θ) dζ/dθ

iden Untransformed θ 1

z Fisher’s z arctanh θ =
(
1 − θ2

)−1

1
2 log{(1 + θ)/(1 − θ)}

asin Daniels’ arcsine arcsin θ
(
1 − θ2

)−1/2

rho Greiner’s ρ sin(π
2 θ) π

2 cos(π
2 θ)

zrho Greiner’s ρ arctanh sin(π
2 θ) π

2 cos(π
2 θ){1 − sin(π

2 θ)2}−1

(z transformed)
c Harrell’s c (θ + 1)/2 1/2

(All these expressions are defined for θ = 0, but some are undefined for θ = 1 or
θ = −1, and in those cases somersd enters a substitute θ argument very close to 1
or −1.) If transf() is specified, then somersd displays and saves the transformed
estimates and their estimated covariance, instead of the untransformed versions. If Ĉ(θ)

is the covariance matrix for the untransformed estimates given by (17), and Γ̂(ζ) is the
diagonal matrix whose diagonal entries are the dζ/dθ estimates specified in the table,
then the transformed parameter and its covariance matrix are

ζ̂ = ζ(θ̂), Ĉ(ζ) = Γ̂(ζ) Ĉ(θ) Γ̂(ζ) ′

Fisher’s z transform was originally recommended for the Pearson correlation coefficient
by Fisher (1921) (see also Gayen 1951), but Edwardes (1995) recommended it specif-
ically for Somers’ D on the basis of simulation studies. Daniels and Kendall (1947)
suggested Daniels’ arcsine as a normalizing transform. If transf(z) or transf(asin)
is specified, then somersd prints asymmetric confidence intervals for the untransformed
D or τa parameters, calculated from symmetric confidence intervals for the transformed
parameters using the inverse function θ(ζ). (This feature corresponds to the eform
option of other estimation commands.) Greiner’s ρ (Kendall and Gibbons 1990) is de-
signed to estimate the Pearson correlation coefficient corresponding to the measured τa.
If transf(zrho) is specified, then somersd prints asymmetric confidence intervals for
the untransformed Greiner’s ρ, using the inverse z transform on symmetric confidence
intervals for the z-transformed Greiner’s ρ. Harrell’s c is usually a reparameterization
of Somers’ D and is recommended in Harrell et al. (1982) and Harrell, Lee, and Mark
(1996) as a general measure of the predictive power of a prognostic score arising from a
medical test.
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5 Examples

These examples overlap with those in somersd.pdf, distributed with the somersd pack-
age. This selection concentrates on extensions to Somers’ D not previously available.

5.1 Extensions to paired data

In [R] signrank, the paired Wilcoxon and sign tests are demonstrated on a dataset with
1 observation for each of 12 cars and variables mpg1 and mpg2, representing miles per
gallon for the car when tested with untreated and treated fuel, respectively. Here we
use somersd on the same data to produce confidence intervals corresponding to the two
rank tests for paired data, both of which test hypotheses about versions of Somers’ D.

For the paired Wilcoxon test carried out by signrank, the underlying parameter is
DY X , where Y is the absolute difference between miles per gallon observed under the
two fuel treatments and X is the sign of the difference. We are therefore testing whether
positive differences between mpg1 and mpg2 tend to have higher values than negative
differences. We first do this with signrank, which produces only a p-value, and then
do this with somersd, which gives a confidence interval:

. use http://www.stata-press.com/data/r9/fuel

. signrank mpg2=mpg1

Wilcoxon signed-rank test

sign obs sum ranks expected

positive 8 63.5 38.5
negative 3 13.5 38.5

zero 1 1 1

all 12 78 78

unadjusted variance 162.50
adjustment for ties -1.62
adjustment for zeros -0.25

adjusted variance 160.62

Ho: mpg2 = mpg1
z = 1.973

Prob > |z| = 0.0485

. gen signdiff=sign(mpg2-mpg1)

. gen absdiff=abs(mpg2-mpg1)

(Continued on next page)
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. somersd signdiff absdiff if absdiff!=0, transf(z)
Somers’ D with variable: signdiff
Transformation: Fisher’s z
Valid observations: 11

Symmetric 95% CI for transformed Somers’ D

Jackknife
signdiff Coef. Std. Err. z P>|z| [95% Conf. Interval]

absdiff .7331685 .4568681 1.60 0.109 -.1622765 1.628614

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

absdiff .625 -.1608669 .92586389

. drop signdiff absdiff

signrank gives a p-value of 0.0485. somersd produces a (slightly) higher p-value but
also produces confidence intervals for the z-transformed and untransformed Somers’ D.
In our sample of 12 cars, if we choose a positive treated–untreated difference and a
negative treated–untreated difference at random, then the positive difference is 62.5%
more likely to be the larger of the two than to be the smaller of the two. And, in the
population of cars from which this sample was taken, we are 95% confident that this
difference is between 16% less likely and 93% more likely.

The sign test is based on a within-cluster Somers’ D, where the clusters are cars
and the observations are performance tests (two on each car). Here the underlying
parameter is DY X , where Y is miles per gallon achieved by that car on that test and
X is fuel treatment status (untreated or treated). This time, after calling signtest,
we expand the dataset with 1 observation per car, using reshape, to produce a new
dataset with 1 observation per test and therefore 2 observations per car. The dataset
also contains variables carseq containing the car sequence number, fueltrea equal to
1 for untreated fuel and 2 for treated fuel, and mpg containing miles per gallon. We
use somersd, with the options cluster(carseq) funtype(wcluster), to produce a
confidence interval for Somers’ D:
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. signtest mpg2=mpg1

Sign test

sign observed expected

positive 8 5.5
negative 3 5.5

zero 1 1

all 12 12

One-sided tests:
Ho: median of mpg2 - mpg1 = 0 vs.
Ha: median of mpg2 - mpg1 > 0

Pr(#positive >= 8) =
Binomial(n = 11, x >= 8, p = 0.5) = 0.1133

Ho: median of mpg2 - mpg1 = 0 vs.
Ha: median of mpg2 - mpg1 < 0

Pr(#negative >= 3) =
Binomial(n = 11, x >= 3, p = 0.5) = 0.9673

Two-sided test:
Ho: median of mpg2 - mpg1 = 0 vs.
Ha: median of mpg2 - mpg1 != 0

Pr(#positive >= 8 or #negative >= 8) =
min(1, 2*Binomial(n = 11, x >= 8, p = 0.5)) = 0.2266

. preserve

. gen carseq=_n

. reshape long mpg, i(carseq) j(fueltrea)
(note: j = 1 2)

Data wide -> long

Number of obs. 12 -> 24
Number of variables 3 -> 3
j variable (2 values) -> fueltrea
xij variables:

mpg1 mpg2 -> mpg

. somersd fueltrea mpg, transf(z) cluster(carseq) funtype(wcluster)
Within-cluster Somers’ D with variable: fueltrea
Transformation: Fisher’s z
Valid observations: 24
Number of clusters: 12

Symmetric 95% CI for transformed Somers’ D
(Std. Err. adjusted for 12 clusters in carseq)

Jackknife
fueltrea Coef. Std. Err. z P>|z| [95% Conf. Interval]

mpg .4436516 .3145066 1.41 0.158 -.1727701 1.060073

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

mpg .41666667 -.17107135 .78569191

. restore
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This time signtest produces a p-value of 0.2266. somersd produces a p-value of
0.158 and confidence intervals for the z-transformed and untransformed Somers’ D. We
see that, in this sample of 12 cars with two tests each, if the same car is tested with
untreated and treated fuel, then it is 42% more likely to travel more miles per gallon
with the treated fuel than with the untreated fuel. And, in the population of cars from
which this sample was drawn, a car is between 17% less likely and 79% more likely to
travel farther per gallon on the treated fuel than on the untreated fuel. Therefore, the
high p-value definitely does not indicate proof of the null hypothesis that a car is equally
likely to travel farther on treated or untreated fuel.

The within-cluster Somers’ D tested by the sign test can easily be generalized to
cases where each car is tested more than one time with each type of fuel.

5.2 Extensions to survival data

Here I demonstrate the cenind() option with a simple set of survival data distributed
by Stata Press, with 1 observation per subject in a drug trial and data on treatment,
age, and survival time. We load the data, tabulate the treatment variable drug, and
finally define the new variables youth (representing number of years to the subject’s
100th birthday) and censind (a censorship indicator equal to 0 for subjects who died
and to 1 for subjects whose survival time is right censored). We also use xtile to split
the sample into three age tertiles.

. use http://www.stata-press.com/data/r9/drugtr, clear
(Patient Survival in Drug Trial)

. tab drug, m

Drug type
(0=placebo) Freq. Percent Cum.

0 20 41.67 41.67
1 28 58.33 100.00

Total 48 100.00

. gen youth=100-age

. gen byte censind=1-died

. tab died censind, m

1 if
patient censind

died 0 1 Total

0 0 17 17
1 31 0 31

Total 31 17 48

. xtile agegp=age, n(3)
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. tab agegp, m

3 quantiles
of age Freq. Percent Cum.

1 18 37.50 37.50
2 16 33.33 70.83
3 14 29.17 100.00

Total 48 100.00

The Wilcoxon–Breslow–Gehan test is demonstrated using Stata in [ST] sts test. It
tests the hypothesis of a zero value of the Somers’ D of survival (as the Y variable) with
respect to membership of a particular group (as the X variable). Using somersd, we
can improve on this test by defining a confidence interval for this Somers’ D parameter:

. sts test drug, wilcoxon

failure _d: died
analysis time _t: studytime

Wilcoxon (Breslow) test for equality of survivor functions

Events Events Sum of
drug observed expected ranks

0 19 7.25 385
1 12 23.75 -385

Total 31 31.00 0

chi2(1) = 22.61
Pr>chi2 = 0.0000

. somersd drug studytime, tr(z) cenind(0 censind)
Somers’ D with variable: drug
Transformation: Fisher’s z
Valid observations: 48

Symmetric 95% CI for transformed Somers’ D

Jackknife
drug Coef. Std. Err. z P>|z| [95% Conf. Interval]

studytime .8297787 .1935732 4.29 0.000 .4503821 1.209175

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

studytime .68035714 .42221306 .83643191

We see (from the Wilcoxon test) that the treated group has fewer deaths, and that
the placebo group has more deaths, than we would expect by chance, assuming pop-
ulation survival distributions to be the same in the two groups. We also see (from
the confidence interval for the untransformed Somers’ D) that, if we sample a subject
at random from each of the two subpopulations (treated and placebo), then the event
that the treated subject survives the placebo subject is 42%–84% more probable than
the event that the placebo subject survives the treated subject. We can also stratify
Somers’ D by age tertile:
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. somersd drug studytime, tr(z) cenind(0 censind) wstrata(agegp)
Somers’ D with variable: drug
Transformation: Fisher’s z
Within strata defined by: agegp
Valid observations: 48

Symmetric 95% CI for transformed Somers’ D

Jackknife
drug Coef. Std. Err. z P>|z| [95% Conf. Interval]

studytime .9729551 .2404965 4.05 0.000 .5015905 1.44432

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

studytime .75 .46336709 .89456394

We see that, if we sample a subject at random from the same age tertile in both
treatment groups (treated and placebo), then it is 46%–89% more likely that the treated
subject survives the untreated subject than vice versa.

The Gehan–Breslow–Wilcoxon Somers’ D is an example of DY X interpreted as a
treatment effect. However, we may also estimate DXY (or the corresponding Harrell’s c)
as a predictor performance indicator. For instance, we can compare treatment and youth
as predictors of survival by using somersd and lincom:

. somersd studytime drug youth, tr(c) cenind(censind)
Somers’ D with variable: studytime
Transformation: Harrell’s c
Valid observations: 48

Symmetric 95% CI for Harrell’s c

Jackknife
studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

drug .7275986 .0367931 19.78 0.000 .6554855 .7997117
youth .6415771 .0528314 12.14 0.000 .5380295 .7451246

. lincom drug-youth

( 1) drug - youth = 0

studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .0860215 .0618354 1.39 0.164 -.0351736 .2072166

We see that active drug treatment and youth are both positive survival indicators,
as they both have values of Harrell’s c greater than 0.5. However, when we use lincom
to estimate the difference between the two Harrell’s c parameters (equal to half the
difference between the corresponding Somers’ D parameters), we find that the confidence
interval for the difference includes zero. From this difference alone, we cannot state that
the active treatment is a more or less positive predictor than being young. However, we
can use the wstrata() option to estimate pooled, stratified Harrell’s c values for youth
and treatment (based only on comparisons within age tertiles) and their difference:



R. Newson 329

. somersd studytime drug youth, tr(c) cenind(censind) wstrata(agegp)
Somers’ D with variable: studytime
Transformation: Harrell’s c
Within strata defined by: agegp
Valid observations: 48

Symmetric 95% CI for Harrell’s c

Jackknife
studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

drug .7630597 .0398266 19.16 0.000 .685001 .8411184
youth .5559701 .0607348 9.15 0.000 .4369321 .6750082

. lincom drug-youth

( 1) drug - youth = 0

studytime Coef. Std. Err. z P>|z| [95% Conf. Interval]

(1) .2070896 .0660029 3.14 0.002 .0777262 .3364529

This time, we see that youth is a less impressive predictor of survival within age
tertiles (as the confidence interval for Harrell’s c contains 0.5) and is a worse predictor
than treatment when predicting survival between subjects in the same age tertile. We
can therefore conclude (strongly) that treatment has an effect that is not entirely caused
by confounding by age.

In this analysis, there is only one confounder. There are often many confounders in
observational studies in real life, making stratified analyses harder. However, a possible
solution might be to define a propensity score, measuring proneness to allocation to a
treatment and dependent on all the confounders, and to use xtile on the propensity
score to define a propensity group variable, which somersd can use as the wstrata()
option. The seminal paper on propensity scores is Rosenbaum and Rubin (1983), but a
good place to start a literature search now might be Imai and van Dyk (2004).

5.3 Scenario effects: The Gini coefficient

Econometricians use the Gini coefficient of inequality (Cowell 1995; Jenkins 1999) as
a measure of the inequality of a distribution of incomes, wealth, or other assets in a
population, on a scale from zero (when everybody has an equal share) to one (when
one person has everything). It is traditionally understood by reference to the Lorenz
curve, which is the set of (X,Y ) points on the unit square such that the richest 100Y
percent of the population have 100X percent of the income (or wealth). The Lorenz
curve is therefore an example of a probability–probability plot, as is the ROC curve
(Hanley and McNeil 1982). The Gini coefficient is equal to the difference between the
area above and below the Lorenz curve. Gini also invented several other coefficients,
which are also referred to in various contexts as “the Gini coefficient” and are discussed
in Goodman and Kruskal (1959).
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The Gini coefficient of inequality is a special case of Somers’ D. Imagine that two
lotteries are organized in a population. In the first lottery each member of the population
has one ticket, whereas in the second lottery each individual buys a number of tickets
proportional to that individual’s income. The first lottery is equivalent to sampling
uniformly from the y-axis of the Lorenz plot, whereas the second lottery is equivalent
to sampling uniformly from the x-axis of the Lorenz plot. The region above the Lorenz
curve corresponds to the event that the second lottery winner is a higher earner than
the first, whereas the region below the Lorenz curve corresponds to the event that the
first lottery winner is a higher earner than the second. Therefore, the Gini coefficient
is a clustered Somers’ D, where the clusters are individuals in the population, the
observations are combinations of individual and lottery (first or second), the Y variate
is income, the X variate is lottery sequence (1 or 2), and the importance weights are
equal for all individuals in the first lottery and proportional to income for all individuals
in the second lottery.

I can illustrate this principle with the womenwage dataset, distributed by Stata Press
and used in [R] intreg. We preserve the data and use the expgen package (an extended
version of expand downloadable from SSC) to replace each observation in the original
dataset (containing 1 observation per woman) with 2 observations (one per woman
per lottery). The new dataset is indexed by the variables womanid (denoting sequence
number of the woman) and lotseq (denoting sequence number of the lottery). We
create an importance variable, pwt, containing probability weights equal for all women
in the first lottery and equal to a woman’s wage (to the nearest kilodollar) in the
second lottery. We then use somersd, using the normalizing and/or variance-stabilizing
z transformation, before restoring the old dataset:

. use http://www.stata-press.com/data/r9/womenwage, clear
(Wages of women)

. preserve

. expgen = 2, oldseq(womanid) copyseq(lotseq)

. lab var lotseq "Lottery sequence number"

. gen pwt = (lotseq==1) + wage*(lotseq==2)

. lab var pwt "Probability weight"

. somersd lotseq wage [pwei=pwt], cluster(womanid) funtype(vonmises) tr(z)
Von Mises Somers’ D with variable: lotseq
Transformation: Fisher’s z
Valid observations: 976
Number of clusters: 488

Symmetric 95% CI for transformed Somers’ D
(Std. Err. adjusted for 488 clusters in womanid)

Jackknife
lotseq Coef. Std. Err. z P>|z| [95% Conf. Interval]

wage .2875044 .0114695 25.07 0.000 .2650246 .3099843

Asymmetric 95% CI for untransformed Somers’ D
Somers_D Minimum Maximum

wage .27983629 .25898919 .30042278

. restore
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We see that, if the women in this dataset organized two lotteries amongst themselves,
and each woman bought one ticket in the first lottery and a number of tickets worth
a constant fraction of her wages in the second lottery, then the second lottery winner
would be 27.98% more likely than the first lottery winner to be the higher earner.
And, if the same lotteries were organized in the population from which these women
were sampled, then the difference would probably be between 25.90% and 30.04%. The
option funtype(vonmises) is necessary because there is a small but nonzero probability
that, by chance, the same woman will win both lotteries, although the other women in
the sample will probably not believe this if it happens.

The Gini coefficient represents a type of treatment-effect Somers’ D, which we might
call a scenario-effect Somers’ D, where the treatment groups are two scenarios, imagined
to happen to the same population. Another example of a scenario-effect Somers’ D is
the population-attributable risk (Gordis 2000), defined by epidemiologists as the dif-
ference between the risk of a disease in the population we can observe and the risk of
disease that would be observed in the same population in an alternative scenario. In the
alternative scenario, we can eliminate an exposure, which is assumed to have a causal
effect on the risk of a disease. To estimate this effect by using somersd, we would use
funtype(vonmises) and expand each individual in a sample into two “scenario individ-
uals”, corresponding to the same individual under the two scenarios, and assign a zero
importance weight to exposed individuals under the second scenario. Sampling proba-
bility weights might be used to standardize the two scenarios to a common distribution
of a stratifying variable, defined by age and/or a propensity score for the exposure.

6 Summary

Somers’ D is an ordinal association measure. It includes, as special cases, a large
family of parameters, which underlie rank or so-called nonparametric methods and are
interpretable as differences between proportions. The Stata 9 version of the somersd
package has added the options cenind(), cfweight(), funtype(), wstrata(), and
bstrata(). These additions allow the user to estimate these special cases, most of
which could not be estimated by the previous Stata 6 version. These differences can be
adjusted for confounding variables, which is not usually easy using rank-based methods.
We may still need to use regression methods to define a propensity score.

Until now, somersd has been limited in its ability to calculate confidence intervals for
rank statistics not interpreted as differences between proportions. Such rank statistics
include the Hodges–Lehmann median difference and the Theil median slope, discussed
in section 6 of Newson (2002), which are expressed in units of a Y variable, or in Y units
per X unit, and are both defined in terms of Somers’ D. The present somersd package
includes cendif, which calculates (albeit inefficiently) a robust confidence interval for
the unstratified Hodges–Lehmann median difference and was introduced in Newson
(2000b). Work is in progress to address these major limitations of the somersd package.
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