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Abstract. Studying behavior in economics, sociology, and statistics often involves
fitting models in which the response variable depends on a dummy variable—also
known as a regime-switch variable—or in which the response variable is observed
only if a particular selection condition is met. In either case, standard regression
techniques deliver inconsistent estimators if unobserved factors that affect the re-
sponse are correlated with unobserved factors that affect the switching or selection
variable. Consistent estimators can be obtained by maximum likelihood estimation
of a joint model of the outcome and switching or selection variable. This article
describes a “wrapper” program, ssm, that calls gllamm (Rabe-Hesketh, Skrondal,
and Pickles, GLLAMM Manual [University of California–Berkeley, Division of Bio-
statistics, Working Paper Series, Paper No. 160]) to fit such models. The wrapper
accepts data in a simple structure, has a straightforward syntax, and reports out-
put that is easily interpretable. One important feature of ssm is that the log
likelihood can be evaluated using adaptive quadrature (Rabe-Hesketh, Skrondal,
and Pickles, Stata Journal 2: 1–21; Journal of Econometrics 128: 301–323).

Keywords: st0107, endogenous switching, sample selection, binary variable, count
data, ordinal variable, probit, Poisson regression, adaptive quadrature, gllamm,
wrapper, ssm

1 Introduction

Endogenous switching (ES) and sample selection (SS) are among the most common
problems in economics, sociology, and statistics. ES is a concern whenever the de-
pendent variable of a model is a function of a binary regime switch, whereas SS is
a concern whenever the response variable is observed only if a selection condition is
met. In either case, problems arise because standard regression techniques result in
biased and inconsistent estimators if unobserved factors affecting the response are cor-
related with unobserved factors affecting the switch/selection process (Heckman 1978,
1979). Studies on smoking and drinking behavior, for instance, suggest that completing
a higher-education degree may be endogenous because impatient individuals are both

c© 2006 StataCorp LP st0107



286 ML estimation of endogenous switching and sample selection models

more likely to engage in health-damaging behavior and less likely to invest in human
capital accumulation (Miranda and Bratti 2006). Similarly, given that women who do
not work have no wage information, estimating female wage equations is based on sam-
ples of women who actually do work. Therefore, unobserved factors affecting wage and
participation status may be correlated, and consistent estimation requires using an SS

model (Vella 1998).

For strictly continuous outcome variables, simple two-stage regression strategies have
been developed to address these problems (Heckman 1978, 1979). For binary, count,
and ordinal responses, however, accounting for SS or ES is essentially complicated by the
fact that a nonlinear model is used to fit the data. Then two-stage procedures analogous
to the Heckman (1979) method are only approximate and no appropriate distribution
results for the estimators are available. Hence, inference based on such procedures
may lead to wrong conclusions (Heckman 1978; de Ven and Praag 1981; Wooldridge
2002). Maximum likelihood (ML) techniques or two-stage method of moments is there-
fore needed.

Stata’s [R] heckman and [R] heckprob commands provide ML estimation for linear
and probit regression with SS, respectively. However, there are currently no analogous
commands for ordinal or count outcomes. Stata has several commands ([R] ivreg,
[R] ivprobit, [R] ivtobit) for ML estimation of models with continuous endogenous
regressors and has one command ([R] treatreg) for a continuous outcome with an en-
dogenous dummy variable (the ES problem). However, there are currently no commands
for noncontinuous outcomes with an endogenous dummy variable.

The Stata program gllamm (Rabe-Hesketh, Skrondal, and Pickles 2004a) can be
used to fit switching or selection models for all sorts of outcomes by ML (see also
Rabe-Hesketh, Skrondal, and Pickles 2002a). However, preparing the data and spec-
ifying the correct syntax require much expertise. Perhaps because of the lack of readily
available and easy-to-use software, ES and SS issues are often ignored whenever the
outcome variable is a count or an ordinal response.

This article describes a “wrapper” program, ssm, that calls gllamm to fit the model.
The wrapper accepts data in a simple structure, has a straightforward syntax, and
reports easily interpretable output. One important feature of gllamm is that the log
likelihood can be evaluated using adaptive quadrature (Rabe-Hesketh, Skrondal, and
Pickles 2002b, 2005). Another gllamm wrapper, cme for covariate measurement error
models, is described in Rabe-Hesketh, Skrondal, and Pickles (2003).

2 Binary variables

We start by discussing the case where the main outcome, y, is a dichotomous variable.
By assumption, the switching/selection variable, S, is also a binary variable.
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2.1 The ES problem

In the ES problem, the response yi of the ith individual is always observed. Moreover,
yi is assumed to depend on the endogenous dummy Si and a K × 1 vector of explana-
tory variables (including the constant term), xi. Similarly, the endogenous dummy Si

depends on an L × 1 vector of explanatory variables (including the constant term), zi.
No exclusion restrictions are needed to identify the model (Heckman 1978; Wilde 2000).
As a consequence, vectors xi and zi may contain identical elements. It is good practice,
however, to specify at least one exclusion restriction.

The model can be formulated as a system of equations for two latent (i.e., unob-
served) responses. In particular, yi is assumed to be generated as

y∗
i = x′

iβ + θSi + ui

yi =
{

1 if y∗
i > 0

0 otherwise

(1)

where y∗
i represents a latent continuous variable, β represents a K × 1 vector of param-

eters to be estimated, θ ∈ R is the coefficient associated with the endogenous dummy,
and ui is a residual term. A similar latent response model is specified for the switching
dummy,

S∗
i = z′iγ + vi

Si =
{

1 if S∗
i > 0

0 otherwise

(2)

where, as before, S∗
i represents a latent continuous variable, γ an L × 1 vector of

parameters, and vi a residual term.

Typically, a bivariate normal distribution is assumed for ui and vi. To fit the model
in gllamm, we must use a shared random effect, εi, to induce the dependence between
ui and vi,

ui = λεi + τi (3)
vi = εi + ζi (4)

Here εi, τi, and ζi are independently normally distributed with mean 0 and variance 1,
and λ is a free parameter (a factor loading). The covariance matrix of the residuals is
given by

Cov{(ui, vi)′} ≡ Σ =
(

λ2 + 1 λ
λ 2

)
so that the correlation is

ρ =
λ√

2(λ2 + 1)

There is only one free parameter, λ, which is identified because the data provide in-
formation on the correlation, ρ. There are, however, no free parameters for the variances
since these are not identified for probit models.
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The above parameterization differs from that usually used for bivariate probit models
where the variances are set to 1. To convert the above model to the usual parameter-
ization, we can think of dividing (1) for y∗

i by
√

λ2 + 1 and (2) for S∗
i by

√
2; i.e., we

must rescale all the estimated regression coefficients and use the delta method to obtain
correct standard errors.

Si is exogenous in (1) if ρ = 0. Consistent estimators of β and θ are then obtained
by fitting model (1) with ordinary probit regression; see [R] probit. If ρ �= 0, however,
this approach delivers inconsistent estimators because Si is correlated with ui via the
unobserved heterogeneity term εi. The presence of this bias is why one should use an
ES model if Si is suspected to be endogenous.

We may want to specify a logit model for yi instead of a probit model. This task
requires the error term ui to be distributed as a logistic variate with variance π2/3.
However, in gllamm the shared random effect εi in (3) and (4) can be specified only as
normal or discrete, so that even if τi has a logistic distribution, ui will not unless λ = 0.
The main difference between probit and logit models is in the scaling of the parameters
due to the difference in the residual variance (1 for probit and π2/3 for logit). An
approximate logit model can therefore be obtained by specifying a logistic distribution
for τi and changing the scale factor for β and θ from 1/

√
λ2 + 1 to

√
π2/3/

√
λ2 + π2/3.

To fit the model in gllamm, all responses (yi and Si) must be stacked in one variable,
qji. Viewing the main response (j = 1) and the switching dummy (j = 2) as clustered
within individuals, define the dummies d1ji = 1 if j = 1 and d2ji = 1 if j = 2. Then
specify qji as having a Bernoulli (or binomial) distribution for both j = 1 and j = 2.
Finally, specify a model for the conditional mean of qji, E(qji|εi) ≡ πji as

ηji = gj (πji) = d1ji (x′
iβ + θSi + λεi) + d2ji (z′iγ + εi) (5)

where gj(·) represents the link function for response qji. As discussed before, g2(·) is
restricted to be the probit link, whereas g1(·) can be either the probit link or the logit
link.

The model is fitted by ML. To evaluate the likelihood, the unobserved heterogeneity
term, εi, must be integrated out. To do so, gllamm uses either ordinary Gauss–Hermite
quadrature or adaptive quadrature (Rabe-Hesketh, Skrondal, and Pickles 2005). In each
iteration of a Newton–Raphson algorithm, adaptive quadrature modifies the locations
and weights of the Gauss–Hermite quadrature points by using the posterior distribution
of εi. The procedure delivers locations that are centered at the mean of the posterior
distribution and spread out according to the posterior standard deviation. Adaptive
quadrature has proven to achieve good accuracy with fewer points than Hermite–Gauss
quadrature—possibly a major advantage whenever computing power is a relevant issue
(Rabe-Hesketh, Skrondal, and Pickles 2002b). After estimation, a simple likelihood-
ratio test can be used to test the null hypothesis that ρ = 0.
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2.2 The SS problem

In the SS problem, the main outcome variable yi is observed only if a selection condition
(Si = 1) is met. The researcher always observes whether an individual has been selected
to the sample (Si = 1) or not (Si = 0).

The SS model for dichotomous variables can easily be written as a system of equations
for two latent variables, just like those presented in (1) and (2). Simply write

y∗
i = x′

iβ + λεi + τi (6)
S∗

i = z′iγ + εi + ζi (7)

Equation (6) differs from (1) only by the absence of Si (the coefficient of Si would not
be identified since Si = 1 whenever yi is observed).

A mixed-response variable qji may be created as in section 2.1. The model is as
before except that Si is omitted:

ηji = gj (πji) = d1ji (x′
iβ + λεi) + d2ji (z′iγ + εi) (8)

If λ = 0 (so that ρ = 0), the individuals are randomly selected to the sample and
consistent estimators of β are obtained by estimating (6) using ordinary probit or logit
regression.

3 Ordinal variables

In several contexts, the researcher must fit ES or SS models to ordinal variables. In
those cases, the variable of interest, y, takes on H response categories yh, h = 1, . . . , H.
Moreover, categories are ordered,

y1 < y2 < · · · < yH

but the difference between any pair of categories has no cardinal interpretation. Exam-
ples of ordinal variables include responses to health status questions (excellent, good,
bad), opinions of a candidate in an election (strongly support, neutral, strongly op-
posed), and answers to job satisfaction questions (highly satisfied, satisfied, nonsatis-
fied).

As for dichotomous variables, latent variable models can be used here. In particular,
the latent response y∗

i for the ith individual is assumed to be determined according to

y∗
i = x′

iβ + θSi + λεi + τi (9)

in an ES problem, or according to

y∗
i = x′

iβ + λεi + τi (10)

in an SS framework. As before, λ, εi, and τi represent a factor loading, an unobserved
heterogeneity term, and a random error, respectively. However, unlike (1) and (6), the
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vector of explanatory variables, xi, in (9) and (10) does not include the constant term.
Instead, a threshold model determines the observed response,

yi =

⎧⎪⎪⎨⎪⎪⎩
y1 if −∞ < y∗

i ≤ κ1

y2 if κ1 < y∗
i ≤ κ2

...
...

...
yH if κH−1 < y∗

i ≤ ∞
where κs, s = 1, . . . , H−1 represent threshold parameters. The model for the switching
or selection dummy remains as in (7).

The mixed-response model supposes that qji is distributed as a multinomial variate
if j = 1 and as a Bernoulli variate if j = 2. For the dichotomous response Si (j = 2), the
linear predictor ηi determines the conditional probability of a ‘1’ response. In contrast,
for the ordinal response yi (j = 1), the category-specific linear predictors determine the
cumulative probabilities

Pr(yi > h|εi,xi, Si) ≡ ϑhi =
H∑

s=h+1

πsi, h = 1, . . . , H − 1

where πsi represents the conditional probability that yi equals s.

For ES, the linear predictor can then be written as

ηjhi = d1ji (x′
iβ + θSi − κh + λεi) + d2ji (z′iγ + εi)

where h = 1, . . . , H − 1 when j = 1 and h = 0 when j = 2 [since Pr(Si = 1|εi, zi) =
Pr(Si > 0|εi, zi)] with κ0 = 0. As before, a probit link is always used for g2(·), and the
researcher can specify g1(·) either as the ordered probit link or as the ordered logit link.

The SS model excludes the selection dummy Si from the list of conditioning variables
in the equation of the expected value of qji when j = 1. That is,

ηjhi = d1ji (x′
iβ − κh + λεi) + d2ji (z′iγ + εi)

In both SS and ES, thresholds {κ1, . . . , κH−1} are estimated along with the param-
eters β, θ, and γ. As in the binary case, the parameters β, θ, and γ must be rescaled
after estimation to account for the increased variance in (1) and (7) or (6) and (7),
depending on whether an ES or an SS model is being fitted. A simple likelihood-ratio
test can be used to test the null hypothesis that ρ = 0.

4 Count variables

We turn now to discuss how the model can be adapted to allow for a count variable.
Unlike ordinal responses, count variables can in principle take an infinite number of dis-
crete values, 0, 1, . . . ,∞, and there is a clear cardinal interpretation of the gap between
any pair of such values. Examples of count variables include completed fertility, number
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of car accidents, number of visits to a doctor in a month, and number of alcohol units
consumed during a week.

Since the variable of interest is a count, a latent variable model is not suitable. We
suppose instead that the count yi follows a Poisson distribution,

Pr (yi;µi) =
µyi

i exp (−µi)
yi!

so that a log-linear model for the mean, µi, can be specified. In the ES model, we write

ln (µi) = x′
iβ + θSi + εi (11)

whereas in SS the assumption is

ln (µi) = x′
iβ + εi (12)

The interpretation of β, θ, and εi remain as in previous sections, and the vector of ex-
planatory variables, xi, contains the constant term. For the switching/selection model,
we write

S∗
i = z′iγ + λεi + ζi

Si =
{

1 if S∗
i > 0

0 otherwise

(13)

As usual, ζi ∼ N(0, 1) and independent of εi. The model is identified by functional form
(Kenkel and Terza 2001). Therefore, vectors xi and zi may contain the same elements.

Unlike models for binary and ordinal variables, here the researcher does not need to
set the variance of the unobserved heterogeneity term εi to a constant. The variance
of εi determines the amount of overdispersion in the counts (see below) and is hence
identified. We therefore have another parameter, σ2 = Var(εi). The total variance in
the switching/selection model is then λ2σ2 + 1. Clearly, this a reparameterization of
the models described by Terza (1998), where this variance is set to 1. We can convert
our estimates to that parameterization by dividing the regression coefficients in the
switching/selection model by

√
λ2σ2 + 1.

Miranda (2004) describes how these models can be fitted using full information ML

methods outside the gllamm context—see help espoisson.

Although a Poisson distribution is used, the variance of the count y, given the
covariates, is not necessarily equal to the conditional mean. In fact, the model allows
for overdispersion (Winkelmann 2000). In general,

Var (yi|xi, Si) = E {Var(yi|εi,xi, Si)} + Var {E (yi|εi,xi, Si)}

Hence, after some manipulation of (11) and using the normality assumption for εi,

Var (yi|xi, Si) = E (yi|εi,xi, Si)
[
1 + E (yi|εi,xi, Si) {exp(σ2) − 1}]
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which implies that if σ �= 0 the model exhibits overdispersion. Unlike models in sections
2 and 3, the factor loading λ is introduced in the switching/selection equation here; see
(13). This parameterization is convenient in the count data context because it allows
the model to exhibit overdispersion (σ �= 0) even when Si is found to be exogenous
(ρ = 0).

The equivalent mixed-response model is obtained by assuming that qji is distributed
as a Poisson variate with a log link g1(·) if j = 1 and as a binomial variate with a probit
link g2(·) if j = 2. As usual, in an ES model the linear predictor is

ηji = d1ji (x′
iβ + θSi + εi) + d2ji (z′iγ + λεi)

whereas in an SS model qji has conditional mean

ηji = d1ji (x′
iβ + εi) + d2ji (z′iγ + λεi)

5 The ssm command

Syntax for ssm

ssm depvar
[
indepvars

] [
if
] [

in
] [

weight
]
, switch(varname = varlist)

family(familyname) link(linkname)
[
quadrature(#) selection noconstant

adapt robust commands nolog trace from(matrix)
]

fweights and pweights are allowed; see [U] 11.1.6 weight.

The outcome model is specified by

depvar
[
indepvars

]
, family(familyname) link(linkname)

This model is fitted in gllamm as a generalized linear model that contains an endogenous
dummy among its observed covariates and an unobserved or latent random term. The
switch model is a binary probit model that contains an unobserved random term that
is correlated with the unobserved random term in the outcome model. The switching
equation is specified by switch(varname = varlist), where varname is the name of the
endogenous dummy and varlist is a set of explanatory variables.

ES models are the default specification. SS models are obtained when the outcome is
observed only if a selection condition is met and the selection dummy does not enter
the outcome model. SS models are fitted when the selection option is used.
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The following families and links are accepted:

Family Link

poisson log
binomial logit

probit
ologit
oprobit

Options

switch(varname = varlist) specifies the switching equation, where varname is the
name of the endogenous dummy and varlist is a set of explanatory variables.

family(familyname) specifies the distribution of depvar.

link(linkname) specifies the link function.

quadrature(#) specifies the number of quadrature points to be used.

selection requests that an SS model be fitted instead of the default ES model.

noconstant specifies that the linear predictor has no intercept term, thus forcing it
through the origin on the scale defined by the link function.

adapt specifies that adaptive quadrature is to be used instead of the default ordinary
quadrature.

robust specifies that the Huber/White/sandwich estimator of variance is to be used.
If pweights are specified, robust is implied.

commands displays the commands necessary to prepare the data and fits the model in
gllamm instead of fitting the model with ssm. These commands can be copied into
a do-file and should work without further editing. The do-file will change the data.

nolog suppresses the iteration log.

trace requests that the estimated coefficient vector be printed at each iteration. Also
all the output produced by gllamm with the trace option is produced.

from(matrix) specifies a matrix of starting values.
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6 Estimation using ssm and gllamm

6.1 Sample selection in a probit model

To exemplify using ssm in analyzing dichotomous responses, we discuss a probit model
with sample selection here. We use simulated data. For each observation, three inde-
pendent random draws from a standard normal distribution are taken to create an un-
observed individual heterogeneity term, εi, and two uncorrelated random disturbances,
τi and ζi. Four more independent random draws from a standard normal distribution
are obtained to generate a set of control variables, x1–x4. Finally, (1) and (6) are used
together with a set of reasonable but arbitrary parameters to generate the binary re-
sponse y and the selection variable sel. We suppose that y is a function of x1 and x2
and that the selection mechanism depends on x1, x2, x3, and x4.

To test the behavior of ssm, we generated several other datasets in which the values
of the true parameters varied. ssm always produced satisfactory results. To illustrate
the procedure, an example of a do-file is reproduced here.

begin do-file
set seed 12345678
set obs 3500
local lambda = 0.4
gen double ve = invnormal(uniform())
gen double zeta = invnormal(uniform())
gen double tau = invnormal(uniform())
gen double x1=invnormal(uniform())
gen double x2=invnormal(uniform())
gen double x3=invnormal(uniform())
gen double x4=invnormal(uniform())
replace x3 = (x3>0)
replace x4 = (x4>0)
gen double selstar = 0.58 + 0.93*x1 + 0.45*x2 - 0.64*x3 + 0.6*x4 + ///

(ve + zeta)/sqrt(2)
gen sel = (selstar>0)
gen double ystar = 0.17 + 0.30*x1 + 0.11*x2 + ///

(‘lambda’*ve + tau)/sqrt(1+‘lambda’^2)
gen y = (ystar>0)
replace y =. if sel==0

end do-file

The variance of the two composite errors ui and vi—see (3) and (4)—has been set
to unity to obtain the usual parameterization for probit models.

Fitting a probit model—see [R] probit—for the observed sample yields the following
results:
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. probit y x1 x2 if sel==1

Iteration 0: log likelihood = -1395.5862
Iteration 1: log likelihood = -1365.6029
Iteration 2: log likelihood = -1365.5542
Iteration 3: log likelihood = -1365.5542

Probit regression Number of obs = 2210
LR chi2(2) = 60.06
Prob > chi2 = 0.0000

Log likelihood = -1365.5542 Pseudo R2 = 0.0215

y Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .2442101 .0331065 7.38 0.000 .1793225 .3090978
x2 .0829626 .0289254 2.87 0.004 .0262699 .1396553

_cons .351067 .0304893 11.51 0.000 .2913091 .4108249

Two inferences can be drawn from this output table. First, the estimated coefficient
of x1 is considerably below its true value of 0.30. This result is in line with the fact that
the true value of λ—and therefore ρ—is positive, so the econometrician should expect
a negative bias. Second, the estimate for the constant is clearly positively biased.

To fit a probit sample selection model with ssm, the selection option is required
together with a binomial family and a probit link.

. ssm y x1 x2, s(sel = x1 x2 x3 x4) q(16) family(binom) link(probit) sel adapt
(output omitted )

Sample Selection Probit Regression
(Adaptive quadrature -- 16 points)

Number of obs = 3500
Wald chi2(6) = 1021.27

Log likelihood = -2915.0225 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
x1 .3770491 .0509866 7.40 0.000 .2771172 .4769811
x2 .1400234 .0331205 4.23 0.000 .0751083 .2049384

_cons .1274961 .0735357 1.73 0.083 -.0166311 .2716234

selection
x1 .9681283 .0342559 28.26 0.000 .900988 1.035269
x2 .4240503 .027396 15.48 0.000 .370355 .4777455
x3 -.5845267 .0519791 -11.25 0.000 -.6864038 -.4826495
x4 .6702432 .0528234 12.69 0.000 .5667113 .7737751

_cons .4499317 .0430671 10.45 0.000 .3655217 .5343416

rho .3929739 .11401 3.45 0.001 .0832102 .5465965

Likelihood ratio test for rho=0: chi2(1)= 9.95 Prob>=chi2 = 0.002

This model can also be fitted by using the official heckprob command (see [R] heck-
prob). heckprob reports the following:
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. heckprob y x1 x2, select(sel = x1 x2 x3 x4)
(output omitted )

Probit model with sample selection Number of obs = 3500
Censored obs = 1290
Uncensored obs = 2210

Wald chi2(2) = 55.48
Log likelihood = -2915.022 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y
x1 .3770487 .0509867 7.40 0.000 .2771166 .4769808
x2 .1400232 .0331206 4.23 0.000 .0751081 .2049382

_cons .1274969 .0735357 1.73 0.083 -.0166303 .2716242

sel
x1 .9681283 .0342559 28.26 0.000 .9009881 1.035269
x2 .4240503 .027396 15.48 0.000 .3703551 .4777456
x3 -.584527 .0519791 -11.25 0.000 -.6864041 -.4826498
x4 .6702436 .0528234 12.69 0.000 .5667116 .7737755

_cons .4499316 .0430671 10.45 0.000 .3655216 .5343416

/athrho .4153096 .1348318 3.08 0.002 .1510442 .679575

rho .3929717 .1140101 .1499059 .591243

LR test of indep. eqns. (rho = 0): chi2(1) = 9.95 Prob > chi2 = 0.0016

The estimates and standard errors from smm and heckprob are nearly identical. Both
output tables show that after controlling for selection all coefficients are close to their
true values. Further, a positive correlation coefficient ρ is correctly detected.1

6.2 Sample selection for an ordinal response

Following the strategy of the previous subsection, we use simulated data to illustrate
how ssm estimates sample selection models for ordinal variables—our previous work
(Miranda and Rabe-Hesketh 2005) also discussed this example. Equations (2) and (10)
are used to generate the ordinal response ordvar and the selection variable sel.

As before, x1–x4 are included in the selection equation, whereas the main response,
ordvar, depends only on x1 and x2. To generate the data, section 6.1’s do-file needs
minor changes. Namely, a set of thresholds for the ordinal model should be specified.
Here a set of values for the true parameters were chosen such that a reasonable number
of observations fall in each of the five categories of ordvar. The modified do-file is

1. heckprob reports a Wald test for the exclusion of all explanatory variables in the equation for the
main response. In contrast, ssm reports a Wald test for the exclusion of all explanatory variables in
both main and selection/switch equations.
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begin do-file
set seed 12345678
set obs 3500
local lambda = 0.4
gen double ve = invnormal(uniform())
gen double zeta = invnormal(uniform())
gen double tau = invnormal(uniform())
gen double x1=invnormal(uniform())
gen double x2=invnormal(uniform())
gen double x3=invnormal(uniform())
gen double x4=invnormal(uniform())
gen double selstar = 0.58 + 0.93*x1 + 0.45*x2 - 0.64*x3 + 0.6*x4 + ///

(ve + zeta)/sqrt(2)
gen sel = (selstar>0)
gen double ystar = 0.30*x1 + 0.11*x2 + ///

(‘lambda’*ve + tau)/sqrt(1+‘lambda’^2)
gen ordvar = 0
qui replace ordvar=1 if ystar>-0.40 & ystar<=0.17
qui replace ordvar=2 if ystar>0.17 & ystar<=0.45
qui replace ordvar=3 if ystar>0.45 & ystar<=0.80
qui replace ordvar=4 if ystar>0.80 & ystar<=1.25
qui replace ordvar=5 if ystar>1.25
replace ordvar=. if sel==0

end do-file

Fitting an ordered probit model (see [R] oprobit) to the observed sample (i.e.,
individuals for which sel = 1), ignoring potential selection bias, produces the following
results:

. oprobit ordvar x1 x2 if sel==1
(output omitted )

Ordered probit regression Number of obs = 2193
LR chi2(2) = 110.98
Prob > chi2 = 0.0000

Log likelihood = -3768.4917 Pseudo R2 = 0.0145

ordvar Coef. Std. Err. z P>|z| [95% Conf. Interval]

x1 .2433844 .0255461 9.53 0.000 .193315 .2934538
x2 .1169096 .0230642 5.07 0.000 .0717045 .1621147

/cut1 -.5533054 .0302867 -.6126662 -.4939446
/cut2 .0136767 .0287603 -.0426924 .0700458
/cut3 .2849928 .0291054 .2279473 .3420383
/cut4 .6502736 .0306374 .5902255 .7103217
/cut5 1.096861 .0345433 1.029157 1.164564

From this table, the reader can easily conclude that the estimated coefficient of x1
is below its true value of 0.30, just like in the example of section 6.1. As before, this
negative bias in the “slope” coefficients is what the econometrician should expect given a
positive ρ. In contrast with the results of section 6.1, however, estimates of the cutpoints
are negatively rather than positively biased. Again this outcome is expected because
cutpoints and constant are parameterized differently in ordered probit and probit.
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To fit a sample selection model for an ordinal response, one needs a binomial family
and an oprobit link. The selection option should also be specified.

. ssm ordvar x1 x2, s(sel = x1 x2 x3 x4) q(16) adapt family(binom) link(oprobit)
> selection

(output omitted )

Sample Selection Ordered Probit Regression
(Adaptive quadrature -- 16 points)

Number of obs = 3500
Wald chi2(6) = 1165.04

Log likelihood = -5175.5765 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

ordvar
x1 .3154251 .0292514 10.78 0.000 .2580934 .3727568
x2 .1470225 .0236525 6.22 0.000 .1006644 .1933806

selection
x1 .9573865 .0356374 26.86 0.000 .8875385 1.027234
x2 .4217439 .0286755 14.71 0.000 .365541 .4779468
x3 -.5968153 .0303954 -19.64 0.000 -.6563892 -.5372414
x4 .6372245 .0308598 20.65 0.000 .5767403 .6977087

_cons .5448698 .0288654 18.88 0.000 .4882947 .6014449

aux_ordvar
_cut1 -.4012285 .0460499 -8.71 0.000 -.4914846 -.3109724
_cut2 .1583415 .0419442 3.78 0.000 .0761324 .2405506
_cut3 .4265045 .0409127 10.42 0.000 .3463171 .5066919
_cut4 .7873888 .0404785 19.45 0.000 .7080523 .8667253
_cut5 1.229029 .0420109 29.26 0.000 1.146689 1.311369

rho .3181846 .0688199 4.62 0.000 .1624427 .4320025

After controlling for nonrandom selection, the coefficients on x1 and x2 in the ordinal
probit are more in line with their true values. Similarly, ρ is estimated to be 0.32, a
number reasonably close to the true parameter value of ρ = 0.26 = 0.4/

√
2(0.42 + 1).

As expected, a likelihood-ratio test for ρ = 0 rejects the null hypothesis at a significance
level of 1%.

6.3 ES for a count

We use data from Kenkel and Terza (2001) to illustrate estimating an ES model with
count data. In fact, we follow the simplified example discussed in chapter 14 of Skrondal
and Rabe-Hesketh (2004). The data are a subsample of 2,467 individuals from the
1990 National Health Interview Survey core questionnaire and special supplements. All
subjects are males who currently drink and have been told that they have hypertension.
Kenkel and Terza are interested in studying the determinants of the number of alcoholic
beverages consumed in the last 2 weeks, drinks. In particular, 687 individuals (28%)
have been advised by a physician to reduce drinking, and the main objective is to
estimate the causal effect of receiving such advice.
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The main challenge of estimating the causal effect of advice on drinking is that ad-
vice may be endogenous: unobservables in the drinking equation may be correlated with
unobservables in the advice equation. Kenkel and Terza point out, for example, that
“health-minded individuals may have a higher than average propensity to seek advice,
and a simultaneously higher than average propensity to avoid unhealthy behaviors like
heavy drinking” (2001, 168). Neglecting the potential self-selection to treatment (ad-
vice) in the drinking equation may therefore result in biased and inconsistent estimators.
The count drinks also appears to exhibit overdispersion since its unconditional mean
is 15, whereas its unconditional variance is 23.

The ES Poisson model described in section 4 is used. The variables in the drinking
equation are the following:

1. advice. Dummy variable for individual having been advised to reduce consump-
tion of alcoholic beverages.

2. black. Dummy variable for individual being black.

3. hieduc. Dummy variable for individual having more than 12 years of education.

For the advice model, besides black and hieduc, the following controls are included:

1. hlthins. Dummy variable for individual having health insurance.

2. regmed. Dummy variable for individual having a registered source of medical care.

3. heart. Dummy variable for individual suffering from heart disease.

Now if advice is assumed to be exogenous in the drinking equation, one may use the
standard poisson command to fit the model; see [R] poisson.

. poisson drinks advice black hieduc

Iteration 0: log likelihood = -32939.15
Iteration 1: log likelihood = -32939.148

Poisson regression Number of obs = 2467
LR chi2(3) = 2450.86
Prob > chi2 = 0.0000

Log likelihood = -32939.148 Pseudo R2 = 0.0359

drinks Coef. Std. Err. z P>|z| [95% Conf. Interval]

advice .473367 .010918 43.36 0.000 .4519682 .4947659
black -.3096865 .0168905 -18.33 0.000 -.3427913 -.2765817

hieduc -.1826093 .0107983 -16.91 0.000 -.2037736 -.1614451
_cons 2.650541 .0084928 312.09 0.000 2.633896 2.667187

Similarly, the advice equation would be fitted by a simple probit model; see [R] pro-
bit.
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. probit advice black hieduc hlthins regmed heart

Iteration 0: log likelihood = -1459.2504
Iteration 1: log likelihood = -1419.953
Iteration 2: log likelihood = -1419.9041
Iteration 3: log likelihood = -1419.9041

Probit regression Number of obs = 2467
LR chi2(5) = 78.69
Prob > chi2 = 0.0000

Log likelihood = -1419.9041 Pseudo R2 = 0.0270

advice Coef. Std. Err. z P>|z| [95% Conf. Interval]

black .3031406 .0780889 3.88 0.000 .1500891 .4561921
hieduc -.2520195 .0560241 -4.50 0.000 -.3618247 -.1422143
hlthins -.2708712 .0704249 -3.85 0.000 -.4089013 -.132841
regmed .1801329 .0738763 2.44 0.015 .0353379 .3249278
heart .1661613 .0757854 2.19 0.028 .0176246 .314698
_cons -.4785404 .0849039 -5.64 0.000 -.644949 -.3121318

If advice is endogenous in the drinking equation, ssm may be used to fit the required
ES model.
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. ssm drinks advice black hieduc, s(advice = black hieduc hlthins regmed heart)
> adapt q(16) family(poiss) link(log)

(output omitted )
Iteration 13: log likelihood = -10254.332

Adaptive quadrature has converged, running Newton-Raphson
Iteration 0: log likelihood = -10254.332
Iteration 1: log likelihood = -10254.332
Iteration 2: log likelihood = -10254.328
Iteration 3: log likelihood = -10254.328

Endogenous Switch Poisson Regression
(Adaptive quadrature -- 16 points)

Number of obs = 2467
Wald chi2(8) = 476.70

Log likelihood = -10254.328 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

drinks
advice -2.413655 .2324534 -10.38 0.000 -2.869255 -1.958054
black .1102961 .1445246 0.76 0.445 -.172967 .3935592

hieduc -.284437 .0990839 -2.87 0.004 -.4786378 -.0902362
_cons 2.326277 .0944165 24.64 0.000 2.141224 2.511329

switch
black .3240436 .0777796 4.17 0.000 .1715984 .4764888

hieduc -.2139965 .0555348 -3.85 0.000 -.3228428 -.1051503
hlthins -.1753961 .0556584 -3.15 0.002 -.2844846 -.0663076
regmed .2066055 .0566274 3.65 0.000 .0956179 .3175932
heart .2724067 .0608324 4.48 0.000 .1531774 .3916361
_cons -.5990554 .0721062 -8.31 0.000 -.7403808 -.4577299

sigma 2.249851 .0908619 24.76 0.000 2.071765 2.427937
rho .8440512 .0153186 55.10 0.000 .8140272 .8740752

Likelihood ratio test for rho=0: chi2(1)= 3099.76 Prob>=chi2 = 0.000

If ρ = 0 there is exogenous switching (EXS). Then the log likelihood of the ES model
is simply the sum of the log likelihood of a Poisson model for drinks and a probit model
for advice, which implies that EXS is nested within ES and a likelihood-ratio test can be
used for testing ρ = 0. The likelihood-ratio test comparing the EXS with the ES model
is highly significant (χ2

1 = 3, 099.76, p < 0.0001).

The output table also reports an estimate for the standard deviation of εi. Though in
a preliminary examination the econometrician may test for σ = 0 on the basis of a simple
t statistic, a boundary-value likelihood-ratio test should be used—such a procedure will
properly account for the fact that under the null σ lies on the boundary of the parameter
space. Given that whenever σ = 0 the model collapses to an EXS framework, the χ2

reported by ssm can be used for these purposes. The test statistic is distributed as
a 50:50 mixture of a χ2

0 and a χ2
1 variate (Chernoff 1954; Self and Liang 1987). Here

σ = 0 is rejected at all conventional levels of significance.

Comparing results, the reader may learn that if the endogeneity of advice is ne-
glected, advice appears to increase the consumption of alcoholic beverages by
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{exp(0.47) − 1} × 100 = 60%. However, once potential self-selection is allowed, ad-
vice appears to reduce consumption by {exp(−2.4)− 1}× 100 = −91%. A similar story
applies to variable black, whose coefficient goes from negative and significant in the
Poisson regression to positive and insignificant in the ES Poisson regression.

These results show that neglecting the potential endogeneity of a dummy variable
may result in serious bias. In extreme cases like the one discussed here, the bias can be
large enough to reverse the sign of one or more coefficients.

6.4 The commands option

For researchers who like to have full control and fit the model using gllamm directly, the
commands option of ssm provides support by helping the user to prepare the data and
issuing the appropriate gllamm command. The commands option causes ssm to return
an output do-file that the researcher can then run to fit the corresponding model with
gllamm. The user should save the data before running the output do-file, as the data
will be changed irreversibly. Using the simulated data of section 6.2 with the commands
option, ssm generates the following output:

begin do-file

* Select sample

mark touse

* Deal with frequency weights

gen one=1
collapse (sum) wt2=one, by(ordvar x1 x2 sel x1 x2 x3 x4 touse)
gen id=_n
#delimit ;
keep id ordvar x1 x2 sel x1 x2 x3 x4 wt2 touse;
#delimit cr

* Expand data

gen vartype1=1
gen vartype2=2
reshape long vartype, i(id)
gen cv=cond(vartype==1,1,0)
gen end=cond(vartype==2,1,0)
gen cons_c=cv
gen cons_d=end
gen cons=1

* Create new variables

gen x1_c=x1
gen x2_c=x2
gen x1_d=x1
gen x2_d=x2
gen x3_d=x3
gen x4_d=x4
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* Replace zeros where needed

replace x1_c =0 if cv==0
replace x2_c =0 if cv==0
replace x1_d =0 if end==0
replace x2_d =0 if end==0
replace x3_d =0 if end==0
replace x4_d =0 if end==0

* Response

gen resp=ordvar
replace resp=sel if end==1

* Select relevant sample

#delimit ;
markout touse resp x1_c x2_c x1_d x2_d x3_d x4_d cons_d;
keep if touse;
#delimit cr

* Initial values

#delimit ;
matrix startv = (.2434, .1169, .9548, .4197, -.5959, .6386,
.544, -.5533, .01368, .285, .6503, 1.097, .5, .5);
#delimit cr

* Estimation

eq fac: end cv
constraint def 1 [id1_1]end=1

* call gllamm:
#delimit ;
gllamm resp x1_c x2_c x1_d x2_d x3_d x4_d cons_d, i(id) weight(wt)
constraints(1) from(startv) long family(binom binom) nrf(1)
link(oprobit probit) fv(vartype) lv(vartype)
eq(fac) adapt nip(16) copy;
#delimit cr

end do-file

The do-file starts by selecting the sample. Then frequency and probability weights
are dealt with. To maximize speed, the data are collapsed and frequency weights are
adjusted so that the total likelihood of the sample remains unchanged—this process
does not reduce the number of observations in this example. Next the data are re-
shaped to long form and the variable vartype is generated. vartype indicates whether
an observation contains information for the main response, vartype = 1, or for the
selection/switch variable. After the data are reshaped, each individual in the sample
will contribute 2 observations, one corresponding to the ordinal variable ordvar and the
other corresponding to the SS variable. Two dummy variables, cv and end, are created
to indicate the groups defined by vartype. Finally, a constant term for each equation
and an overall constant are created.

Once the data have been reshaped, a set of new variables is generated to reflect
that controls in the main equation (indexed by the suffix c) may be different from
the controls in the selection/switch equation (indexed by the suffix d). Next zeros
are replaced in c variables if vartype = 2 to reflect that c controls affect only the
likelihood of the ordinal response. A similar approach is taken with the d variables.
This step concludes data preparation. ssm then provides the user with a set of starting
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values in matrix startv. The starting values for the ordinal response are obtained by
regressing ordv on x1 and x2, using the observed sample and an ordered probit model.
Similarly, starting values for the selection equation are obtained on the basis of a probit
model of sel on x1–x4.

The following lines in the do-file deal with the dependent variable resp, which is
simply defined as ordvar if vartype = 1 and sel otherwise.

Next the gllamm model is set up. First, an equation, fac, specifies that a random
intercept, εi, at level 2 will interact with the dummies end and cv. By default, the
factor loading for the first variable is set to 1. Second, the variance of εi is constrained
to one by specifying constraint.

The user is now ready to call gllamm. After the estimation command, the response
variable and all controls are listed—first controls for the ordinal response and then
controls for the selection variable. Only the constant term for the selection model has
been included because gllamm should be left free to fit the cutpoints in the ordered
probit model. After listing the dependent and independent variables, the reader should
indicate the name of the variable that indexes individuals by using the i() option. Then
the weight(), constraints(), and from() options take care of specifying, respectively,
the variable containing frequency weights, the name of any constraint imposed on the
parameters (here constraint 1), and a matrix of initial values. The long option allows
gllamm to accept a matrix of initial values with entries for parameters constrained by
constraint 1.

Finally, the do-file defines the family and link functions to be used. Since a mixed-
response model is being fitted, gllamm needs two entries in its family() option. The
first entry will indicate how resp is distributed when vartype = 1 and the second entry
will indicate how resp is distributed when vartype = 2. Since resp is distributed as a
multinomial if vartype = 1 and as a binomial if vartype = 2, a binomial family is used
in both cases. Next the link function is specified. As expected, an oprobit link is used
when vartype = 1, and a probit link is used when vartype = 2. Options fv() and lv()
specify that vartype defines what family and link is to be used with each observation.
Option eqs() specifies the name of the equations that the user has previously defined
to allow interactions between covariates and latent variables. Finally, option nrf()
establishes the number of random effects at each level, here 1. The options nip(16)
and adapt indicate that 16 quadrature points are to be used initially to evaluate the
log likelihood and that an adaptive quadrature approach should be implemented. For
more information on gllamm syntax, see Rabe-Hesketh, Skrondal, and Pickles (2002b,
2004a) and Rabe-Hesketh and Skrondal (2005).
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Running the do-file generated by ssm produces the following gllamm output:

number of level 1 units = 5693
number of level 2 units = 3500

Condition Number = 18.02148

gllamm model with constraints:
( 1) [id1_1]end = 1

log likelihood = -5175.576549003807

Coef. Std. Err. z P>|z| [95% Conf. Interval]

resp
x1_c .3532042 .0456895 7.73 0.000 .2636545 .4427539
x2_c .1646317 .0301073 5.47 0.000 .1056225 .223641
x1_d 1.353949 .0503989 26.86 0.000 1.255169 1.452729
x2_d .596436 .0405533 14.71 0.000 .516953 .6759189
x3_d -.8440244 .0429856 -19.64 0.000 -.9282747 -.7597741
x4_d .9011716 .0436424 20.65 0.000 .8156341 .9867092

cons_d .7705623 .0408218 18.88 0.000 .6905529 .8505716

_cut11
_cons -.4492848 .0365023 -12.31 0.000 -.520828 -.3777417

_cut12
_cons .1773062 .0545316 3.25 0.001 .0704263 .2841862

_cut13
_cons .4775877 .0670557 7.12 0.000 .346161 .6090145

_cut14
_cons .881696 .085523 10.31 0.000 .7140739 1.049318

_cut15
_cons 1.376232 .1098664 12.53 0.000 1.160898 1.591567

Variances and covariances of random effects
------------------------------------------------------------------------------

***level 2 (id)

var(1): 1 (0)

loadings for random effect 1
end: 1 (fixed)
cv: .50387535 (.13665217)

------------------------------------------------------------------------------

Estimates for c variables are coefficients on controls for the ordinal response, whereas
estimates for d variables are coefficients on controls for the selection dummy. Compared
with usual probit estimates, the c coefficients have increased by a factor of

√
1 + λ̂2 and

the d coefficients have increased by a factor of
√

2. Similarly, all cutpoints increased by
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a factor of
√

1 + λ̂2. The user must rescale the coefficients before interpreting results;
otherwise, marginal effects will be mistakenly large. At the bottom of the output table,
gllamm contains a panel with the estimates of variances and covariances of the random
effects. There it is noted that variable id identifies level-2 units—in this case, individ-
uals. Then the variance of the random intercept at level 2 is listed. Here the variance
has been restricted to one. Finally, estimates for the factor loadings are reported. As
discussed earlier, the factor loading for end has been set to unity to ensure that the
model is properly identified. Finally, the factor loading for the dummy cv is reported.
This coefficient is the estimate for λ in (10). According to gllamm output λ̂ = 0.50 with
a standard error of 0.14. Clearly, the gllamm point estimate for λ is fairly close to its
true value of 0.4, and the true population parameter falls well inside the estimated 95%
confidence interval.

7 Summary and discussion

The ssm wrapper fits a wide range of models that handle two common problems en-
countered in applied work: ES and SS. Simple two-stage regression strategies to fit these
kinds of models are available whenever the outcome is a strictly continuous variate. For
dichotomous, ordinal, and count variables, however, things are complicated by a nonlin-
ear model’s being fitted to the data. Then two-stage Heckman-like procedures are only
approximate and no valid asymptotic results are available to perform inference. For
these reasons either ML estimation or two-stage method of moments is needed. In prac-
tice, however, ES and SS issues are commonly ignored whenever the outcome variable is a
count or an ordinal response because commercial software does not provide a packaged
solution that suits the average user. This article describes a wrapper program, ssm,
that calls gllamm to fit the model by ML. The wrapper accepts data in the usual wide
format, has a straightforward syntax, and reports output that is easily interpretable.

gllamm can fit many types of models (Rabe-Hesketh, Skrondal, and Pickles [2004b];
Skrondal and Rabe-Hesketh [2004]). The generality of the framework, however, means
that users can find it difficult to specify models. gllamm wrappers like ssm offer a
tailored alternative for relatively common but unsupported problems. Using ssm limits
the user’s control and consequently the ability to introduce modifications. The loss of
freedom, however, is compensated for by easier model implementation. To minimize
restrictions imposed to the user, the commands option has been created. This option
causes ssm to produce a do-file output that helps the user to prepare the data and specify
the model for gllamm. The user can modify such a do-file to introduce variations in the
fitted model—for instance, to define more parameter constraints.

In the past, the speed of gllamm has been a major concern. Since 2003, however, the
speed of the program has improved significantly because large sections of gllamm were
converted to internal Stata code. Though speed may remain a problem when fitting
complicated models in gllamm, computation time was acceptable for all the examples
discussed here.
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