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Abstract. This paper investigates using maximum simulated likelihood (MSL)
estimation for random-effects dynamic probit models with autocorrelated errors.
It presents and illustrates a new Stata command, redpace, for this estimator.
The paper also compares using pseudorandom numbers and Halton sequences of
quasirandom numbers for MSL estimation of these models.
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1 Introduction

This paper examines estimation of dynamic probit models, specifically models in which
the outcome probability depends on the outcome in the previous period. The presence
of omitted individual heterogeneity, in the form of individual-specific effects, causes
an “initial conditions” problem and renders the standard random-effects (RE) probit
estimator inconsistent.

If the latent equation time-varying error terms are serially uncorrelated, the model
can under certain conditions be estimated consistently by a maximum likelihood esti-
mator proposed by Heckman (1981). Evaluation of the likelihood in this case can be
based on the same Gauss–Hermite quadrature approximation for the resulting integral
as is used in standard RE probit estimators, such as that in Stata’s xtprobit command.
I also provide a new Stata routine for the Heckman estimator of this model.

If the error terms are autocorrelated, the Heckman estimator is inconsistent. Ex-
tending it to the autocorrelated case involves higher-dimensional integrals. Maximum
simulated likelihood (MSL) is a natural estimator to use. This paper describes and
implements in Stata an MSL estimator for the RE dynamic probit model with autocor-
related errors. I give an empirical illustration and investigate the issue of the required
number of simulations.

c© 2006 StataCorp LP st0106



M. B. Stewart 257

2 An RE dynamic probit model

The equation for the latent dependent variable is specified as

y∗
it = γyit−1 + x′

itβ + αi + uit (1)

(i = 1, . . . , N ; t = 2, . . . , T ), where y∗
it is the latent dependent variable and yit is the

observed binary outcome variable, defined as follows,

yit =
{

1 if y∗
it ≥ 0

0 else

and where xit is a vector of explanatory variables and uit ∼ N(0, σ2
u). The subscript i

indexes individuals and the subscript t indexes periods. N is taken to be large, but T is
typically small and regarded as fixed, so that asymptotics are on N alone. Even when
the errors uit are assumed serially independent, the composite error term, vit = αi +uit,
will be correlated over time because of the individual-specific time-invariant αi terms.
The individual-specific RE specification adopted implies equicorrelation between the vit

in any two (different) periods:

λ = Corr(vit, vis) =
σ2

α

σ2
α + σ2

u

t, s = 2, . . . , T ; t �= s

The standard (uncorrelated) RE model also assumes αi uncorrelated with xit. In-
stead, following Mundlak (1978) and Chamberlain (1984), correlation between αi and
the observed characteristics in the model can be allowed by assuming a relationship be-
tween α and either the time means of the x variables or a combination of their lags and
leads. For example, αi = x′

ia + ζi, where ζi are independently and identically normally
distributed and independent of xit and uit for all i, t. This relationship simply has the
effect of adding time means or lags and leads to the set of explanatory variables. To
simplify the notation, the original form (1) will be used here with the understanding
that these additional terms are subsumed into the x vector for the correlated RE model.

Since y is a binary variable, we require a normalization. A convenient one is that
σ2

u = 1. If uit is normally distributed, the transition probability for individual i at time
t, given αi, is then given by

Pr (yit|xit, yit−1, αi) = Φ {(γyit−1 + x′
itβ + αi)(2yit − 1)}

Estimation of the model requires an assumption about the initial observations, yi1,
and in particular about their relationship with the αi. The assumption giving rise to
the simplest form of model for estimation is to take the initial conditions, yi1, to be
exogenous. However, even if the start of the y process coincides with the start of the
observation period for each individual and the entire history of the y process is observed,
which is not generally the case, the assumption of independence between yi1 and αi is
very strong. For example, in the union membership illustration used below, even if each
individual were observed from labor market entry onward, the assumption would require
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an individual’s union status in the first job to be unrelated to her individual-specific
factor αi. Under this assumption, a standard RE probit program (such as xtprobit)
can be used, since the likelihood can be decomposed into two independent factors and
the joint probability for t = 2, . . . , T maximized without reference to that for t = 1. If,
however, the initial conditions are correlated with the αi, as would usually be expected,
this method of estimation will tend to overstate the degree of state dependence, γ.

3 Heckman’s estimator for serially independent errors

The approach to the initial conditions problem proposed by Heckman (1981) involves
specifying a linearized reduced-form equation for the initial value of the latent variable,

y∗
i1 = z′i1π + ηi

(i = 1, . . . , N), where zi1 is a vector of exogenous instruments (and includes xi1) and
ηi is correlated with αi, but uncorrelated with uit for t ≥ 2. Using an orthogonal
projection, we can write it as follows:

ηi = θαi + ui1

(θ > 0), with αi and ui1 independent of one another. We also assume that ui1 satisfies
the same distributional assumptions as uit for t = 2, . . . , T . (Any change in error
variance will also be captured in θ.) The linearized reduced form for the latent variable
for the initial period is therefore specified as

y∗
i1 = z′i1π + θαi + ui1

(i = 1, . . . , N), where z will include period 1 values of x variables, typically together
with presample variables as instruments.1

The joint probability of the observed binary sequence for individual i given αi, in
the Heckman approach, assuming serially independent uit, is thus

Φ {(z′i1π + θαi)(2yi1 − 1)}
T∏

t=2

Φ {(γyit−1 + x′
itβ + αi)(2yit − 1)}

For a random sample of individuals, the likelihood to be maximized is then given by∏
i

∫
α∗

[
Φ
{
(z′i1π + θσαα∗)(2yi1 − 1)

} T∏
t=2

Φ
{
(γyit−1 + x′

itβ + σαα∗)(2yit − 1)
}]

dF (α∗)

where F is the distribution function of α∗ = α/σα. Under the normalization used,
σα =

√
λ/(1 − λ). If α is taken to be normally distributed, the integral over α∗ can be

evaluated using Gaussian–Hermite quadrature (Butler and Moffitt 1982). See Stewart
(forthcoming) for an application of the estimator in investigating the dynamics of the
conditional probability of unemployment. A Stata program for this estimator of the
random-effects dynamic probit model, redprob, can be downloaded from the author’s
web site, http://www2.warwick.ac.uk/fac/soc/economics/staff/faculty/stewart/.

1. Wooldridge (2005) has proposed an alternative conditional maximum-likelihood estimator for the
case of serially independent errors being considered in this section.
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4 Models with autocorrelated errors

If the error term uit is autocorrelated, reflecting, for example, correlation between tran-
sitory shocks, this complicates estimation considerably. Extending the Heckman es-
timator to this case involves T -dimensional integrals of normal densities. Simulation
estimators provide a feasible way to address this problem. I present here an MSL es-
timator (Gouriéroux and Monfont 1996 and Cameron and Trivedi 2005), based on the
GHK algorithm of Geweke, Hajivassiliou, and Keane (Keane 1994). The MSL estimation
routine provides a consistent estimator of the vector of parameters as the number of sim-
ulation draws tends to infinity (and is asymptotically equivalent to the ML estimator).
Strictly speaking, for the simulation error to disappear asymptotically, the number of
simulation draws needs to increase at a rate greater than the square root of the sample
size.

The model used in the program described here is as described above but with uit fol-
lowing either a first-order autoregressive [AR(1)] process or a first-order moving-average
[MA(1)] process. The variance–covariance matrix, Ω, of vi = (vi1, . . . , viT )′, will now
be a function of λ, θ, and one more parameter. The error vector can be written as
vi = Cηi, with ηi ∼ N(0, I) and C the lower-triangular Cholesky decomposition of Ω
(i.e., such that CC ′ = Ω). The GHK algorithm then uses the fact that the probabil-
ity of an observed sequence of y’s can be written as the product of recursively defined
conditional probabilities.

Using the Cholesky decomposition, we can write the latent equations as

y∗
it = µit +

t∑
j=1

ctjηij

where µit = γyit−1 + x′
itβ for t ≥ 2 and µi1 = z′i1π. The probability of an observed

sequence of y’s is given by

Pri = Φ{(yi1 − 1)ai1} ×
∫ Ui1

Li1

Φ{(yi2 − 1)ai2}φ(ηi1)dηi1

×
∫ Ui1

Li1

∫ Ui2

Li2

Φ{(yi3 − 1)ai3}φ(ηi1)φ(ηi2)dηi2dηi1

× · · ·

where ai1 = µi1/c11, ai2 = (µi2 + c21ηi1)/c22, ai3 = (µi3 + c31ηi1 + c32ηi2)/c33, etc., and
(Lit, Uit) = (−ait,∞) if yit = 1 or (−∞,−ait) if yit = 0. For a sequence of length T , this
probability will be the product of T such terms. As can be seen from this expression,
simulation of the probabilities requires draws from a truncated normal. If ξit is a draw
from a standard uniform distribution, then the required draws from a truncated normal
are constructed as Φ−1{(1 − ξit)Φ(Lit) + ξitΦ(Uit)}.
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The steps in the GHK simulator for this model are as follows (for the rth draw):

1. Calculate ai1 = µi1/c11.

2. Draw ξr
i1 from a standard uniform and calculate ηr

i1 = Φ−1{(1 − ξr
i1)Φ(Li1) +

ξr
i1Φ(Ui1)} and ar

i2 = (µi2 + c21η
r
i1)/c22.

3. Draw ξr
i2 from a standard uniform and calculate ηr

i2 = Φ−1{(1 − ξr
i2)Φ(Lr

i2) +
ξr
i2Φ(Ur

i2)} and ar
i3 = (µi3 + c31η

r
i1 + c32η

r
i2)/c33.

4. Repeat this step successively for the remaining periods.

The simulated likelihood is then given by

L∗ =
N∏

i=1

(
1
R

R∑
r=1

[
Φ{(2yi1 − 1)ai1}

T∏
t=2

Φ{(2yit − 1)ar
it}
])

Two models with first-order autocorrelation are considered here. In the first model,
as considered by Hyslop (1999) and Stewart (forthcoming), uit is specified as a first-order
autoregressive process,

uit = ρuit−1 + εit

with −1 < ρ < 1. Here the variance–covariance matrix of vi is given by

Ω =

⎡⎢⎢⎢⎢⎢⎣
θ2σ2

α + 1
θσ2

α + ρ σ2
α + 1

θσ2
α + ρ2 σ2

α + ρ σ2
α + 1

...
...

...
. . .

θσ2
α + ρT−1 σ2

α + ρT−2 σ2
α + ρT−3 · · · σ2

α + 1

⎤⎥⎥⎥⎥⎥⎦
where σ2

α = λ/(1 − λ). The model is estimated by MSL as outlined above.

In the second model, uit is specified as a first-order moving-average process:

uit = εit − µεit−1

Here the variance–covariance matrix of vi is given by

Ω =

⎡⎢⎢⎢⎢⎢⎣
θ2σ2

α + 1
θσ2

α − ω σ2
α + 1

θσ2
α σ2

α − ω σ2
α + 1

...
...

...
. . .

θσ2
α σ2

α σ2
α · · · σ2

α + 1

⎤⎥⎥⎥⎥⎥⎦
where σ2

α = λ/(1 − λ) and ω = µ/(1 + µ2). Again the model is estimated by MSL.
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The basic estimator uses R pseudorandom number draws (from a standard uniform),
which are assumed to be independent. Efficiency of the estimator can be improved by
using variance reduction methods that use dependent draws. The best known is anti-
thetic sampling. Here for each draw ξ from the standard uniform distribution, we also
use (1 − ξ). Hence, the R random draws consist of R/2 antithetic pairs, (ξr, 1 − ξr).
Antithetic sampling can reduce the variance of the MSL estimator, but this reduction
is not guaranteed. This idea can be extended by using segments of the unit interval in
conjunction with the antithetics. The subdivision provided by this “symmetric system-
atic sampling” gives more even coverage, but there is a tradeoff between coverage and
randomness (see Train 2003, 221–224).

Another approach to improving the efficiency of the estimator is to replace the
pseudorandom numbers with quasirandom numbers. These systematic sequences are
constructed to provide better coverage of the domain of the distribution. One of the
simplest is Halton sequences. A detailed treatment of these is given in Train (2003).
See Cappellari and Jenkins (2006) for a Stata program. In certain situations, using
these sequences produces variance reduction and hence improves efficiency. To put this
another way, a particular level of efficiency can be achieved with fewer draws and hence
reduce computer time. The evidence of Train (2003) and others for mixed logit models
suggests that the number of draws required can be reduced considerably by using Halton
sequences. However, Train (2003) warns that Halton draw results need to be viewed
with caution and describes some anomalous findings. The program described below
gives both pseudorandom draws (with and without antithetics) and Halton draws as
options. The comparison is discussed further in the context of the empirical illustration
in section 6.

5 The redpace command

5.1 Syntax

redpace depvar varlist (varlistinit)
[
if
] [

in
] [

, i(varname) t(varname)

rep(#) seed(#) seg(#) halton primes(matname) drop(#)

from(matname) mavg noauto
]

The lagged dependent variable must be constructed by the user and must appear as the
first variable in varlist. The user must ensure that both this variable and depvar are
binary 0/1 variables. varlist should also contain the variables in x. varlistinit should
contain the variables in z.

redpace requires a balanced panel; that is, the number of “time” observations, T , for
each cross-section unit must be the same. This balance is checked by the program.

The parameters λ, θ, and ρ (in the AR(1) model) are constrained by using transfor-
mations. Logit, log, and arc-hyperbolic tangent transformations are used, respectively.
The transformed parameters that are estimated are therefore ln{λ/(1− λ)}, ln(θ), and
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(1/2) ln{(1+ρ)/(1−ρ)}. The estimates of the original parameters and their approximate
asymptotic standard errors are presented after convergence using diparm.

5.2 Options

i(varname) specifies the variable name that contains the cross-section identifier, corre-
sponding to index i.

t(varname) specifies the variable name that contains the time-series identifier, corre-
sponding to index t.

rep(#) specifies the number of replications or draws, R.

seed(#) specifies the initial value of the pseudorandom number seed to be used by
the uniform() function. Use the seed() option to ensure reproducibility of results.
The number specified must be an integer. The default is seed(81234567), but this
option is ignored if halton is specified.

seg(#) specifies symmetric systematic sampling (with antithetics) to be used and spec-
ifies the number of segments of the unit interval that are to be used. seg(2) provides
antithetic sampling. The default value is seg(1) (i.e., standard sampling). If seg()
is specified, the number of replications, R, must be a multiple of the number of
segments, and the number of segments must be a multiple of 2.

halton specifies that Halton quasirandom sequences be used rather than pseudoran-
dom numbers, which is the default. This option requires the program mdraws
(Cappellari and Jenkins 2006).

primes(matname) specifies a 1 × (T − 1) matrix containing the prime numbers to be
used for the Halton sequences. This option is ignored if halton is not specified. The
numbers specified must be integers. The user must ensure that they are primes.

drop(#) specifies the number of initial elements of the Halton sequence to be dropped
for burn in. This option is ignored if halton is not specified. The default is drop(0).

from(matname) specifies a matrix containing starting values for the parameters of the
model. Use this option to check that a global maximum has been found. It also
can be used to reduce the required number of iterations or to restart a previously
halted run. The default uses a pooled probit for t ≥ 2 and separate probit for the
initial-period reduced form.

mavg specifies that the first-order moving-average model should be used. The default is
the first-order autoregressive model.

noauto specifies that the model without autocorrelated errors (i.e., the Heckman model
of section 3) is to be estimated by MSL. This option is useful for comparing with the
Gaussian–Hermite quadrature estimates of the same model to see if the value of R
chosen is large enough in that case.
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6 Example using Stata Reference Manual data

This section gives an example of using the command and the output produced from the
union data (http://www.stata-press.com/data/r9/union.dta) used in [XT] xtprobit to
model the probability of union membership. The data are for U.S. young women and
are from the National Longitudinal Survey of Youth. A subsample of the dataset is
used: (1) only data from 1978 onward are used, (2) the data for 1983 are dropped, and
(3) only those individuals observed in each of the remaining six waves are kept.

. use http://www.stata-press.com/data/r9/union
(NLS Women 14-24 in 1968)

. sort idcode year

. drop if year<78
(10136 observations deleted)

. drop if year==83
(2194 observations deleted)

. by idcode: gen nwaves=_N

. keep if nwaves==6
(9076 observations deleted)

This code gives N = 799 individuals observed in each of T = 6 waves and hence a
sample size of NT = 4,794. Here the observations for 85 and 87 are implicitly treated
as if they were for 84 and 86, respectively, which would give six waves at regular 2-year
intervals.

In addition to the lagged dependent variable, the model used includes age (age in
current year), grade (years of schooling completed), and south (1 if resident in south).
These variables are contained in x in the specification of the model given above. The
vector z also contains the variable not smsa (1 if living outside a standard metropolitan
statistical area). This variable has a significant negative effect on the probability of
union membership in the initial-period reduced form, whether estimated as a separate
probit or as part of the full model.

The output from the redpace program using pseudorandom numbers without anti-
thetics and R = 500 to fit the AR(1) model is as follows:

. sort idcode year

. by idcode: gen tper = _n

. by idcode: gen Lunion = union[_n-1]
(799 missing values generated)

. mat bstart1 = ( 1.322202, -.0234323, -.0363382,
> -.3695182, .0803734, .0108658, -.0133834, -.7548028,
> -.4195162, -.8910983, .0756969, -.3512991, .2041694)

. mat colnames bstart1 = union:Lunion union:age union:grade union:south
> union:_cons rfper1:age rfper1:grade rfper1:south
> rfper1:not_smsa rfper1:_cons logitlam:_cons atar1:_cons
> ltheta:_cons
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. redpace union Lunion age grade south (age grade south not_smsa),
> i(idcode) t(tper) rep(500) seed(945430778) from(bstart1)
Pseudo-random number draws: # of replications = 500
Seed set to 945430778
Standard sampling

(output omitted )

RE Dynamic Probit Model with AR1 errors Number of obs = 4794
Wald chi2(4) = 155.53

Log likelihood = -1854.0621 Prob > chi2 = 0.0000

union Coef. Std. Err. z P>|z| [95% Conf. Interval]

union
Lunion 1.322202 .1537599 8.60 0.000 1.020838 1.623566

age -.0234323 .008068 -2.90 0.004 -.0392452 -.0076194
grade -.0363382 .0199431 -1.82 0.068 -.0754259 .0027495
south -.3695182 .0991797 -3.73 0.000 -.5639069 -.1751295
_cons .0803735 .400068 0.20 0.841 -.7037454 .8644924

rfper1
age .0108658 .024266 0.45 0.654 -.0366946 .0584262

grade -.0133834 .0333403 -0.40 0.688 -.0787291 .0519623
south -.7548028 .1667058 -4.53 0.000 -1.08154 -.4280655

not_smsa -.4195162 .1659528 -2.53 0.011 -.7447778 -.0942547
_cons -.891098 .8482112 -1.05 0.293 -2.553561 .7713655

/logitlam .075697 .28295 0.27 0.789 -.4788748 .6302688
/atar1 -.3512991 .0650661 -5.40 0.000 -.4788263 -.2237719
/ltheta .2041693 .1742898 1.17 0.241 -.1374323 .545771

lambda .5189152 .0706363 7.35 0.000 .3825179 .6525504
ar1 -.3375271 .0576535 -5.85 0.000 -.4453032 -.2201101

theta 1.226506 .2137674 5.74 0.000 .8715933 1.725939

The estimate of γ is positive and highly significant. The three x variables all have
negative effects on the conditional probability of union membership. The effects of
age and south are significant at the 1% level, that of grade at the 10% level. The
estimate of λ implies that 52% of the composite error variance is attributed to that
in the individual-specific effects. The estimate of θ is significantly greater than 0 and
insignificantly different from 1. The estimate of ρ is significantly negative, implying
that successive realizations of uit are negatively correlated.

Table 1 gives alternative estimators for the model. The first estimates presented are
simple pooled probit estimates. These estimates ignore the cross-correlation between the
composite error term in different periods for the same individual, which gives an estimate
of γ of 1.88, larger than for the other estimators in the table. The estimates of the β
coefficients are all smaller and less significant than for the other estimators. However,
care must be taken with such comparisons. The RE models and the pooled probit model
use different normalizations. The RE models use a normalization of σ2

u = 1, whereas
the pooled probit estimator uses σ2

v = 1. When making comparison with pooled probit
estimates, RE model estimates need to be multiplied by an estimate of σu/σv =

√
1 − λ.
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Table 1: Estimates for different models

Pooled RE probit redprob redpace redpace
probit (xtprobit) quadrature no auto with AR(1)
(SE) (SE) (SE) MSL (SE) MSL (SE)

Parameter [1] [2] [3] [4] [5]

γ 1.8849 1.1507 0.6344 0.6350 1.3222
(0.0525) (0.1421) (0.0983) (0.0985) (0.1538)

Age −0.0087 −0.0240 −0.0286 −0.0285 −0.0234
(0.0058) (0.0086) (0.0092) (0.0092) (0.0081)

Grade −0.0145 −0.0387 −0.0539 −0.0532 −0.0363
(0.0103) (0.0207) (0.0269) (0.0268) (0.0199)

South −0.1685 −0.3692 −0.4883 −0.4903 −0.3695
(0.0519) (0.1034) (0.1239) (0.1241) (0.0992)

Constant −0.6986 0.1788 0.5633 0.5609 0.0804
(0.2474) (0.4183) (0.4799) (0.4795) (0.4001)

λ 0.5228 0.6996 0.6991 0.5189
(0.0730) (0.0345) (0.0346) (0.0706)

θ 0.8641 0.8613 1.2265
(0.1095) (0.1089) (0.2138)

ρ −0.3375
(0.0577)

No. of obs. 3,995 3,995 4,794 4,794 4,794
Model lnL −1,573.64 −1,563.18 −1,860.22 −1,859.96 −1,854.06
Total lnL −1,982.06 −1,971.60 −1,860.22 −1,859.96 −1,854.06

Note: redpace estimates given are based on 500 replications.

The seed used is 945430778.

redprob and xtprobit estimates given are based on 24 quadrature points.

For the pooled probit and RE probit columns, the total log likelihood is the sum of

the model log likelihood (for t ≥ 2; 3995 observations) and that for a simple probit

for the initial-period reduced form (t = 1; 799 observations).

The xtprobit estimates in the next column allow individual-specific effects but
take the initial condition to be exogenous. Using this estimator considerably reduces
the estimate of γ. Allowing for the different normalizations, the scaled estimate of
the coefficient on lagged union membership is 0.7949, less than half the pooled probit
estimate. The estimated coefficients on the x variables are all more significant than
the pooled probit estimates and, even after rescaling for the different normalizations,
larger (in absolute value). The restriction λ = 0 reduces this RE probit specification to
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the pooled probit without the random individual-specific effects. This restriction, i.e.,
the absence of individual-specific effects, can be tested by comparing columns [1] and
[2]. However, adjustment to the standard test is required since the parameter vector
under the null hypothesis lies on the boundary of the parameter space, and the standard
asymptotic theory of classical tests is not applicable in such boundary situations. (See
Godfrey 1988 and Andrews 2001.) The quasilikelihood-ratio statistic for this restriction
equals 20.92. The limiting distribution of the test statistic is equal to one-half of the
distribution function of a χ2(1) random variable plus one-half. Thus for example the 1%
asymptotic critical value for the quasilikelihood-ratio test is given by the 98th percentile
of a χ2(1) random variable, 5.412 (display invchi2(1,0.98)). The p-value for this
quasilikelihood-ratio test statistic can be calculated as chi2tail(1,q)/2, where q is
the test statistic. Here the p-value is zero to several decimal places. The hypothesis
λ = 0 is strongly rejected.

The third column gives the results from using the Heckman estimator of section 3
(using the program redprob). This estimator allows for the endogeneity of the initial
conditions but assumes no autocorrelation in the uit. Using this estimator reduces the
estimate of γ compared with the xtprobit estimates and further increases the absolute
value in the β slope coefficients. Exogeneity of the initial conditions in the RE model
can be viewed as resulting from imposing θ = 0 on this model. Here too, testing
this hypothesis must allow for its being on the boundary of the parameter space. The
quasilikelihood-ratio statistic, comparing columns [2] and [3], is 222.76. The p-value,
calculated as above, is zero to several decimal places. The hypothesis θ = 0 is strongly
rejected.

The fourth column gives the corresponding estimates using MSL estimation instead
of Gaussian–Hermite quadrature and using the same pseudorandom number draws as
used for the AR(1) model in the final column. There is reasonably close agreement with
the previous column, suggesting that 500 replications is sufficient for the MSL estimator
at least in the no-autocorrelation case.

The final column of the table reproduces the estimates from the Stata output given
above for the AR(1) model. Compared with the model without autocorrelation, the esti-
mate of γ doubles. The increase in γ̂ is to be expected since ρ̂ < 0. When the estimates
are scaled relative to σv rather than σu, the increase is even more marked. The esti-
mates of the β slope coefficients decline slightly in absolute value when autocorrelation
is introduced and are close to the corresponding xtprobit estimates. The hypothesis
of no autocorrelation is strongly rejected. The transformed parameter atar1 has a z
ratio of −5.40 and hence gives a Wald χ2(1) test statistic of 29.2. The likelihood-ratio
test statistic [also χ2(1)] is 11.8. The RE probit model with AR(1) errors in column [5]
clearly dominates the other columns of table 1.

To investigate the number of replications required for the MSL estimator, the same
model was estimated (with the same initial seed) for different values of R. Table 2 gives
the estimates of the main parameters of interest in the model (γ, λ, ρ) and the value of
the maximized log simulated likelihood. The estimates change relatively little once R
is greater than about 100. The same is true for the maximized log simulated likelihood.
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The maximized log simulated likelihood is not monotonic in R. How much accuracy
one demands of the parameter estimates is a matter of judgment. On the basis of this
particular seed, the 500 replications used initially seems sufficient.

Table 2: MSL estimates for AR(1) model for different numbers of replications

R γ (SE) λ (SE) ρ (SE) ln(SL)

20 1.376 (0.147) 0.479 (0.070) −0.328 (0.053) −1,859.84
50 1.341 (0.154) 0.502 (0.072) −0.329 (0.057) −1,858.15
100 1.312 (0.152) 0.521 (0.069) −0.329 (0.057) −1,854.22
200 1.318 (0.154) 0.519 (0.070) −0.334 (0.058) −1,853.80
500 1.322 (0.154) 0.519 (0.071) −0.338 (0.058) −1,854.06
1,000 1.316 (0.156) 0.521 (0.071) −0.335 (0.059) −1,854.31

Note: MSL based on pseudorandom numbers. The seed used is 945430778.

On a 2.4-GHz Pentium 4 Windows XP machine running Stata/SE 9.0, this model
with 500 replications took 15 hours, 37 minutes for four iterations to convergence. Run
times are close to proportional to R.

Another useful approach to investigating the number of replications required is to
examine the MSL estimates based on different seeds. Of course this type of exercise is
almost limitless. The limited exercise conducted here examined the MSL estimates for
10 different seeds (themselves randomly chosen). The 10 seeds were selected to avoid
overlaps of the sequences as follows:

. set obs 10

. set seed 987654321

. gen long s=int((uniform()+10-_n)*100000000)

Table 3 gives the resulting 10 seeds. The estimates of the main parameters of interest
in the AR(1) model (γ, λ, ρ) and the value of the maximized log simulated likelihood
using R = 500 based on each of these 10 seeds are given in table 3. The estimate of
γ varies between 1.301 and 1.333, a range of 0.032, slightly more than 2% of the mean
estimate. The estimates of λ have a range of 0.015 and those of ρ a range of 0.012. These
ranges seem relatively small. However, the maximized log simulated likelihood varies
between −1,853.55 and −1,855.72 across the 10 seeds. This gap of 2.17 is probably
rather more than one would want to see.
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Table 3: MSL estimates for AR(1) model for R = 500 and different seeds (pseudorandom
numbers)

Row Seed γ (SE) λ (SE) ρ (SE) ln(SL)

1 945430778 1.322 (0.154) 0.519 (0.071) −0.338 (0.058) −1,854.06
2 862683501 1.318 (0.155) 0.520 (0.071) −0.335 (0.059) −1,854.74
3 700921694 1.323 (0.156) 0.518 (0.072) −0.336 (0.058) −1,855.72
4 642850439 1.301 (0.156) 0.528 (0.070) −0.329 (0.060) −1,854.51
5 594203018 1.326 (0.155) 0.516 (0.072) −0.337 (0.058) −1,855.58
6 480067244 1.304 (0.156) 0.527 (0.070) −0.331 (0.060) −1,853.85
7 366110265 1.327 (0.153) 0.517 (0.070) −0.338 (0.058) −1,855.34
8 241963761 1.322 (0.152) 0.520 (0.070) −0.338 (0.057) −1,854.53
9 177063593 1.333 (0.154) 0.513 (0.072) −0.341 (0.058) −1,855.51
10 80102774 1.321 (0.153) 0.520 (0.070) −0.339 (0.058) −1,853.55

Table 4 shows the variation in the estimates of the key parameters across the 10
seeds for different values of R. Required accuracy is a matter of judgment, but the gaps
between the minimum and maximum estimates for R ≤ 100 might be viewed as greater
than acceptable.
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Table 4: Variation in MSL parameter estimates across different seeds (pseudorandom
numbers)

Parameter Mean Min Max Std. dev.

R = 20
γ 1.388 1.249 1.489 .0646
λ 0.475 0.423 0.531 .0287
ρ −0.334 −0.378 −0.270 .0277

R = 50
γ 1.356 1.289 1.451 .0466
λ 0.497 0.451 0.521 .0211
ρ −0.336 −0.372 −0.299 .0196

R = 100
γ 1.343 1.310 1.383 .0241
λ 0.506 0.486 0.521 .0114
ρ −0.338 −0.350 −0.329 .0075

R = 200
γ 1.333 1.311 1.372 .0182
λ 0.513 0.492 0.524 .0091
ρ −0.338 −0.350 −0.333 .0059

R = 500
γ 1.320 1.301 1.333 .0100
λ 0.520 0.513 0.528 .0046
ρ −0.336 −0.341 −0.329 .0036

Note: All statistics calculated across 10 seeds.

Seeds used are given in table 3.

The same model was also estimated using Halton sequences of quasirandom numbers.
To investigate the number of replications required for the MSL estimator, in this case,
the model was estimated using 10 different sets of primes. (Each run requires five
primes since T = 6.) The 10 sets of primes used are given in table 5 together with
the estimates, using R = 100, of the main parameters of interest (γ, λ, ρ) and the value
of the maximized log simulated likelihood. Although not essential, the primes 2 and
5 are not used with this value of R to avoid perfect correlations due to cycles. The
estimates of γ vary between 1.302 and 1.324, a range of 0.022. The estimates of λ have
a range of 0.011 and those of ρ, a range of 0.009. These numbers are all slightly less than
the corresponding ranges for pseudorandom numbers with R = 500. The maximized
log simulated likelihood has a range of 0.97, which is less than half the range for 500
pseudorandom numbers in table 3.
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Table 5: MSL estimates for AR(1) model for R = 100 and different sets of primes (Halton
quasirandom numbers)

Row Primes γ (SE) λ (SE) ρ (SE) ln(SL)

1 (3, 7, 11, 13, 17) 1.305 (0.156) 0.526 (0.070) −0.330 (0.059) −1,854.89
2 (7, 11, 13, 17, 19) 1.322 (0.154) 0.519 (0.070) −0.338 (0.058) −1,854.84
3 (3, 11, 13, 17, 19) 1.312 (0.154) 0.524 (0.070) −0.336 (0.058) −1,854.08
4 (3, 7, 13, 17, 19) 1.322 (0.153) 0.519 (0.070) −0.338 (0.058) −1,854.46
5 (3, 7, 11, 17, 19) 1.324 (0.154) 0.517 (0.071) −0.339 (0.058) −1,854.79
6 (3, 7, 11, 13, 19) 1.314 (0.155) 0.522 (0.071) −0.335 (0.059) −1,854.72
7 (7, 11, 13, 17, 23) 1.313 (0.156) 0.523 (0.071) −0.333 (0.059) −1,855.05
8 (3, 11, 13, 17, 23) 1.302 (0.158) 0.528 (0.071) −0.330 (0.060) −1,854.32
9 (3, 7, 13, 17, 23) 1.318 (0.156) 0.521 (0.071) −0.335 (0.059) −1,854.65
10 (3, 7, 11, 17, 23) 1.316 (0.157) 0.521 (0.072) −0.334 (0.060) −1,855.01

Table 6 shows the variation in the estimates of the key parameters across the 10 sets
of primes for different values of R. Although again subject to judgment, the variation
for R < 100 might be viewed as greater than acceptable, whereas that for R = 100
compares favorably with the results based on 500 pseudorandom numbers.
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Table 6: Variation in MSL parameter estimates across different sets of primes (Halton
quasirandom numbers)

Parameter Mean Min Max Std. dev.

R = 10
γ 1.284 1.242 1.325 0.0283
λ 0.530 0.512 0.549 0.0118
ρ −0.302 −0.325 −0.282 0.0141

R = 20
γ 1.315 1.260 1.368 0.0371
λ 0.517 0.495 0.537 0.0151
ρ −0.327 −0.350 −0.295 0.0180

R = 50
γ 1.335 1.314 1.366 0.0158
λ 0.508 0.493 0.518 0.0082
ρ −0.335 −0.342 −0.329 0.0039

R = 80
γ 1.331 1.314 1.348 0.0135
λ 0.516 0.508 0.523 0.0056
ρ −0.342 −0.350 −0.335 0.0059

R = 100
γ 1.315 1.302 1.324 0.0073
λ 0.522 0.517 0.528 0.0033
ρ −0.335 −0.339 −0.330 0.0032

Note: All statistics calculated across 10 sets of primes.

Sets of primes used are given in table 5.

It may be debated whether comparing the variation in MSL estimates using Hal-
ton sequences of quasirandom numbers across different sets of primes is comparable to
comparing the variation in MSL estimates using pseudorandom numbers across different
seeds. However, subject to this comparability issue, there is evidence that using Halton
sequences reduces the number of replications required. More investigation of this issue
is part of ongoing research.
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