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Abstract. We describe specification and estimation of a multinomial treatment
effects negative binomial regression model. A latent factor structure is used to
accommodate selection into treatment, and a simulated likelihood method is used
for estimation. We describe its implementation via the mtreatnb command.
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1 Introduction

We develop a treatment-effects model that can be used to analyze the effects of an
endogenous multinomial treatment (when exactly one treatment is chosen from a set of
more than two choices) on a nonnegative integer–valued outcome. Although economet-
ric models for count data are well developed and have many uses (Cameron and Trivedi
1998), there are few extensions of such models to accommodate endogenous regressors.
Extensions of treatment-effects models to multinomial treatment indicators are also not
well developed for nonlinear models in general. We specify the model with a latent
factor structure that allows for idiosyncratic influences on treatment choice to affect
outcomes, thus enabling us to make a distinction between selection on unobservables
and selection on observables. The multinomial treatment variable is assumed to have
a multinomial logit structure, and the outcome is assumed to follow a negative bino-
mial distribution conditional on treatment. We use a negative binomial distribution to
accommodate overdispersion, which is a typical feature of count outcomes.

In this context, introducing latent factors into the equations for treatment and out-
come has two main advantages over other ways of generating correlated errors. First,
the appropriately normalized latent factors have a natural interpretation as proxies for
unobserved covariates since they enter into the equations in the same way as observed
covariates, and the associated factor loadings can be interpreted in much the same way
as coefficients on observed covariates can. Second, the latent factors can be used gen-
erally to combine conditional and marginal distributions to generate joint distributions
despite the fact that these joint distributions typically do not have a closed-form rep-
resentation. Thus if you wanted to use distributions other than the multinomial logit
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and/or the negative binomial, the same structure and principles would apply. A po-
tential disadvantage is that correlation between endogenous variables induced by latent
factors is subject to an upper bound less than one.

We (forthcoming) develop such a model in which the multinomial treatment variable
arises from the choice of type of health insurance plan and the outcome measures medical
care usage, e.g., number of visits to the doctor and number of hospital stays. We (2005)
and Deb et al. (forthcoming) describe other applications of this model. Lee (1983)
proposed a two-step method for a model with multinomial treatment and outcome with
exponential mean, which is an alternative, computationally simpler approach, but at the
cost of inefficiency. Also, whereas the latent factor approach can easily be adapted to
models with alternative statistical structures for treatment and outcome, Lee’s approach
requires that the formulas be worked out case by case.

This paper is organized as follows. In section 2, we describe the simultaneous-
equations model and the estimation methods. Section 3 describes the syntax for the
command mtreatnb. We describe an empirical example in section 4 and provide some
computational guidance based on our experience in section 5.

2 Methods

2.1 Model specification

Each individual i chooses one treatment from a set of three or more choices, which
typically includes a control group, implying a multinomial choice model. Let EV∗

ij

denote the indirect utility that we would obtain by selecting the jth treatment, j =
0, 1, 2, . . . , J and

EV∗
ij = z′iαj + δj lij + ηij

where zi denotes exogenous covariates with associated parameters αj and ηij , which are
independently and identically distributed error terms. Also EV∗

ij includes a latent factor
lij that incorporates unobserved characteristics common to individual i’s treatment
choice and outcome. The lij are assumed to be independent of ηij . Without loss of
generality, let j = 0 denote the control group and EV∗

i0 = 0.

Let dj be binary variables representing the observed treatment choice and di =
(di1, di2, . . . , diJ ). Also let li = (li1, li2, . . . , liJ ). Then the probability of treatment can
be represented as

Pr(di|zi, li) = g(z′iα1 + δ1li1, z′iα2 + δ2li2, . . . , z′iαJ + δJ liJ )

where g is an appropriate multinomial probability distribution. Specifically, we assume
that g has a mixed multinomial logit (MMNL) structure, defined as

Pr(di|zi, li) =
exp(z′iαj + δj lij)

1 +
∑J

k=1 exp(z′iαk + δklik)
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The outcome is a count variable; i.e., yi = 0, 1, 2, . . . . The expected outcome equa-
tion for individual i, i = 1, . . . , N, is formulated as

E(yi|di,xi, li) = x′
iβ +

J∑
j=1

γjdij +
J∑

j=1

λj lij

where xi is a set of exogenous covariates with associated parameter vectors β and γj

denoting the treatment effects relative to the control. E(yi|di,xi, li) is a function of
each of the latent factors lij ; i.e., the outcome is affected by unobserved characteristics
that also affect selection into treatment. When λj , the factor-loading parameter, is pos-
itive (negative), treatment and outcome are positively (negatively) correlated through
unobserved characteristics; i.e., there is positive (negative) selection, with γ and λ the
associated parameter vectors, respectively.

We assume that f is the negative binomial-2 density,

f(yi|di,xi, li) =
Γ(yi + ψ)

Γ(ψ)Γ(yi + 1)

(
ψ

µi + ψ

)ψ (
µi

µi + ψ

)yi

where µi = E(yi|di,xi, li) = exp(x′
iβ + d′

iγ + l′iλ) and ψ ≡ 1/α (α > 0) is the overdis-
persion parameter.

As in the standard multinomial logit model, the parameters in the MMNL are iden-
tified only up to a scale. Therefore, a normalization for the scale of the latent factors
without loss of generality is required. We assume δj = 1 for each j but allow the user to
change this constant in mtreatnb. Also, although the model is identified when zi = xi,
including some variables in zi that are not included in xi is usually preferable; i.e.,
identification via exclusion restrictions is the preferred approach.

2.2 Estimation

The joint distribution of treatment and outcome variables, conditional on the common
latent factors, can be written as the product of the marginal density of treatment and
the conditional density of

Pr(yi,di|xi, zi, li) = f(yi|di,xi, li) × Pr(di|zi, li)

= f(x′
iβ + d′

iγ + l′iλ) × g(z′iα1 + δ1li1, . . . , z′iαJ + δJ liJ )

The problem in estimation arises because the lij are unknown. We assume that
the lij are independently and identically distributed draws from the standard normal
distribution so their joint distribution h can be integrated out of the joint density; i.e.,

Pr (yi,di|xi, zi) =∫ {
f (x′

iβ + d′
iγ + l′iλ) × g (z′iα1 + δ1li1, . . . , z′iαJ + δJ liJ)

}
h (li) dli

(1)
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The main computational problem, given suitable specifications for f , g, and hj , is
that the integral (1) does not have, in general, a closed-form solution. But this difficulty
can be addressed by using simulation-based estimation (Gouriéroux and Monfont 1996)
by noting that

Pr(yi,di|xi, zi) = E
{
f(x′

iβ + d′
iγ + l′iλ) × g(z′iα1 + δ1li1, . . . , z′iαJ + δJ liJ )

}
≈ 1

S

S∑
s=1

{
f(x′

iβ + d′
iγ + l̃′isλ) × g(z′iα1 + δ1 l̃i1s, . . . , z′iαJ + δJ l̃iJs)

}
where l̃is is the sth draw (from a total of S draws) of a pseudorandom number from the
density h. The simulated log-likelihood function for the data is given by

ln l(yi,di|xi, zi) ≈
N∑

i=1

ln
[

1
S

S∑
s=1

{
f(x′

iβ + d′
iγ + l̃′isλ)×

g(z′iα1 + δ1 l̃i1s, . . . , z′iαJ + δJ l̃iJs)
}]

Provided that S is sufficiently large, maximization of the simulated log likelihood is
equivalent to maximizing the log likelihood.

We have found that standard simulation methods produce extremely slow conver-
gence of the simulated likelihood function. Therefore, we adapt an acceleration tech-
nique that uses quasirandom draws based on Halton sequences described in Bhat (2001)
and Train (2003). Gates (2006) describes an implementation in Mata. Halton sequences
have two desirable properties vis-à-vis pseudorandom draws. First, they are designed to
give more even coverage over the domain of the mixing distribution. Second, the sim-
ulated probabilities are negatively correlated over observations. This negative correla-
tion reduces the variance in the simulated likelihood function. Under suitable regularity
conditions, the integration error using pseudorandom sequences is in the order of N−1

compared with pseudorandom sequences where the convergence rate is N−1/2 (Bhat
2001). A discussion of our experience with different choices of S is given in section 5.

We recommend that the covariance of the MSL estimates be obtained by using the
robust sandwich formula; i.e., we recommend using the robust option. The sandwich
formula appropriately accounts for uncertainty due to simulation chatter for finite S
(McFadden and Train 2000). Hessian and outer-product formulas for the covariance
are only asymptotically (in S) appropriate.

(Continued on next page)
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3 The mtreatnb command

3.1 Syntax

mtreatnb depvar
[
indepvars

] [
if
] [

in
] [

weight
]
, mtreatment(depvar mt

indepvars mt) simulationdraws(#)
[
basecategory(# or string)

prefix(string) robust cluster(varname) scale(#) startpoint(#)

altfactors(string) altstart(string) maximize options verbose
]

fweights, pweights, iweights, and aweights are allowed.

3.2 Options

mtreatment(depvar mt indepvars mt) specifies the variables for the multinomial treat-
ment equation. depvar mt must have more than two and less than 10 categories. This
option is an integral part of specifying the treatment-effects model and is required.

simulationdraws(#) specifies the number of simulation draws per observation and is
required. These draws are based on Halton sequences.

basecategory(# or string) is the value or label of depvar that will be the base cate-
gory in the multinomial treatment equations.

prefix(string) lets you choose a prefix other than I for the indicator variables created
from the multinomial treatment variable. The default is a set of indicator variables
starting with I. When you use mtreatnb, it drops all previously created indicator
variables starting with the prefix specified in the prefix() option or with I by
default.

robust uses the robust or sandwich estimator of variance. The default is the traditional
calculation based on the information matrix.

cluster(varname) adjusts standard errors for intragroup correlation.

scale(#) lets you choose the standard deviation of the normally distributed quasiran-
dom variables. The default is scale(1).

startpoint(#) lets you choose the starting point in the Halton sequence from which
the quasirandom variates are generated. The default is startpoint(20).

altfactors(string) lets you choose the starting values for the parameters associated
with the latent factors. Specify these values as comma-separated numbers. The
default starting values are zeros.

altstart(string) lets you choose the starting values for all parameters. Specify these
values as comma-separated numbers.

maximize options control the maximization process. Because latent class models have
complicated likelihood functions, difficult may be a useful option if the default
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setup is unsatisfactory. The other maximize options are seldom used. altfactors
and altstart may also be useful to generate alternative starting values if the default
setup is unsatisfactory.

verbose lets you display iteration logs and estimates tables for the mixed multinomial
logit and negative binomial regressions, which are estimated to create starting values.
The default is that this output is not displayed.

4 Example

To illustrate the method, we use data from the 2001 Medical Expenditure Panel Survey,
a representative survey of the noninstitutionalized population in the United States with
wide scope and excellent information on demographic characteristics, health status,
employment status, and earnings, and a wide variety of measures of health care usage.
Our sample consists of 5,033 persons who are aged between 25 and 59 years, privately
insured, and employed but not self-employed. The outcome variable is the number
of doctor visits in a year (docvis) and the multinomial treatment variable describes
the type of health insurance plan (instype) and takes three values: fee-for-service
(ffs)—the control, health maintenance organizations (hmo), and other managed-care
(omc) organizations. Exogenous covariates include age, gender, race, education, and
health status. Characteristics of the person’s employer (firmsize, govtjob) enter only
the treatment equations and serve as exclusion restrictions or instruments. Maximum
simulated likelihood estimates using mtreatnb with S = 400 are given below.

(Continued on next page)
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. use http://urban.hunter.cuny.edu/~deb/Stata/mepssmall.dta

. mtreatnb docvis age female minority education nchroniccond,
> mtreat(instype age female minority education nchroniccond firmsize govtjob)
> sim(400) basecat(ffs) robust

Fitting mixed multinomial logit regression for treatments:

Fitting negative binomial regression for outcome:

Fitting full model for treatments and outcome:

Iteration 0: log pseudolikelihood = -17454.622 (not concave)
(output omitted )

Iteration 14: log pseudolikelihood = -17235.09

Multinomial treatment-effects NB regression Number of obs = 5033
Wald chi2(21) = 1868.79

Log pseudolikelihood = -17235.09 Prob > chi2 = 0.0000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

omc
age -.0108416 .0493525 -0.22 0.826 -.1075707 .0858875

female .0240614 .0900778 0.27 0.789 -.1524879 .2006107
minority .0889349 .1052808 0.84 0.398 -.1174117 .2952816
education .0345643 .0183949 1.88 0.060 -.001489 .0706176

nchroniccond .0557137 .0581656 0.96 0.338 -.0582888 .1697161
firmsize .0081583 .0023237 3.51 0.000 .0036041 .0127126
govtjob -.4257763 .1176419 -3.62 0.000 -.6563502 -.1952024

_cons -1.460597 .3354336 -4.35 0.000 -2.118035 -.8031592

hmo
age -.0614867 .0409451 -1.50 0.133 -.1417376 .0187642

female .1171071 .0748347 1.56 0.118 -.0295662 .2637805
minority .4006916 .0854049 4.69 0.000 .2333011 .5680822
education .0123691 .0142317 0.87 0.385 -.0155244 .0402626

nchroniccond -.0497685 .0518889 -0.96 0.337 -.1514689 .0519319
firmsize .0087538 .0019555 4.48 0.000 .004921 .0125865
govtjob -.0055707 .0927711 -0.06 0.952 -.1873987 .1762573

_cons -.0542389 .266907 -0.20 0.839 -.577367 .4688893

docvis
_Iomc .9623102 .0677789 14.20 0.000 .8294659 1.095154
_Ihmo .4865105 .0672454 7.23 0.000 .354712 .618309

age .1487909 .0212606 7.00 0.000 .1071208 .190461
female .6417384 .0401551 15.98 0.000 .563036 .7204409

minority -.3204898 .0467591 -6.85 0.000 -.4121359 -.2288436
education .0429977 .0077763 5.53 0.000 .0277564 .0582391

nchroniccond .6808642 .024907 27.34 0.000 .6320474 .7296809
_cons -1.409899 .154162 -9.15 0.000 -1.712051 -1.107747

/lnalpha -1.547348 .1941742 -7.97 0.000 -1.927923 -1.166774
/lambda_omc -1.012026 .0433514 -23.34 0.000 -1.096993 -.927059
/lambda_hmo -.4127126 .0632442 -6.53 0.000 -.536669 -.2887562

alpha .2128115 .0413225 .14545 .3113698

Notes:
1. ffs is the base outcome
2. 400 Halton sequence-based quasirandom draws per observation
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As in the multinomial logit model, there is one equation for each treatment relative
to the control (base). The results show that firmsize, which is one of the variables
excluded from the outcome equation, is significant in both treatment equations. Indi-
viduals who work in larger firms are more likely to choose OMC plans than FFS plans
and HMO plans relative to FFS plans. Also individuals who work in government jobs
are significantly less likely to choose OMC plans than FFS plans. On the other hand,
health status is not a significant determinant of plan choice. The parameter estimates
of the outcome equation can be interpreted in the same fashion as those from a neg-
ative binomial regression. The results show significant treatment effects (as read off
the coefficients on Iomc and Ihmo). Because the conditional mean for the outcome is
exponential, parameter estimates can be interpreted directly in percent changes in the
mean outcome. Therefore, individuals in OMC plans have 96% more visits than those in
FFS plans, whereas those in HMOs have 49% more visits than those in FFS plans. There
is also significant evidence of selection on unobservables. The coefficients on the latent
factors, /lambda omc and /lambda hmo, are both negative, suggesting that individuals
who are more likely to choose either type of managed-care plan relative to FFS, on the
basis of their unobserved characteristics, visit the doctor less often. Other individual
characteristics are also statistically significant in the outcome equation.

It is also often useful to construct the likelihood-ratio test for exogeneity of treat-
ment, which is a test for the joint hypothesis that the λs are equal to zero; i.e.,
/lambda omc = 0 and /lambda hmo = 0. The constrained log likelihood can be cal-
culated as the sum of the log-likelihood values of the MMNL and the negative binomial
regressions. This log likelihood, and that of the unconstrained model, is available via
ereturn. Stata’s lrtest is not appropriate for the likelihood-ratio test. In general,
the likelihood-ratio statistic for exogeneity follows a χ2(q) distribution, where q is the
number of λ parameters or, equivalently, the number of treatment equations. In our
application, q = 2.

. *** likelihood-ratio test of exogeneity ***

. scalar LR = 2*(e(ll) - e(ll_exog))

. scalar p = 1-chi2(2,LR)

. display LR
439.06408

. display p
0

The result shows that the null hypothesis of exogeneity is overwhelmingly rejected.

5 Using mtreatnb: More remarks

Estimation using MSL is computationally intensive. Iteration times in mtreatnb in-
crease linearly in the number of simulation draws and multiplicatively in the number of
equations. The algorithm is relatively insensitive to the number of covariates, assuming
that they are numerically well behaved. Estimation of the model described above took
22 minutes on a PC with an Intel Pentium 1.8-GHz processor and 512 MB of RAM.
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The literature indicates that S should increase faster than
√

N, but this assertion
does not give explicit guidance in choosing S. In practice, a small number of draws (often
50–100) works well for models such as the mixed multinomial logit and multinomial
probit. However, our experience with models with endogenous regressors is that many
more draws are required for similar precision (typically one order of magnitude more
draws). Except for syntax checking and perhaps preliminary trial runs, we recommend
using as large an S as appears computationally reasonable.

In principle, the parameters of the model are identified even if the regressors in
the treatment equations are identical to those used in the outcome equation. In prac-
tice, however, we recommend using exclusion restrictions; i.e., include regressors in the
treatment equations that do not enter the outcome equation.

In the default mtreatnb setup, an MMNL model and a negative binomial regression
(using nbreg), which assumes exogenous treatment, are fitted first. Parameter estimates
from these models along with zeros for the λ parameters are used as starting values. As
a by-product, the sum of the two maximized log likelihoods is available via ereturn.
Also, although we have found this setup to be generally reliable, users may sometimes
wish to specify their own starting values for λs or for the entire parameter vector. When
the user specifies the entire parameter vector, the preliminary models are not fitted and
ereturn produces a missing value for the log likelihood under exogeneity.

Finally, although the standard deviation of the distribution of each of the latent fac-
tors is set equal to one by default for a scale normalization, there may be occasions when
it may need to be decreased using the scale option. Such situations will occur when
the overdispersion parameter α is very close to zero, i.e., when there is no overdispersion
conditional on the latent factors. In such situations, the maximization algorithm may
take a long time to converge. Because overdispersion in the unconditional negative bi-
nomial process is a function of α, the dispersion of the distributions of the latent factors
and the magnitudes of the factor-loading parameters |λ|, decreasing the dispersion of
the distributions of the latent factors will typically resolve the issue. A corollary of this
issue is that mtreatnb may not work well if the outcome variable is not significantly
overdispersed.
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