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Abstract. In this paper, we suggest a Stata routine for multinomial logit mod-
els with unobserved heterogeneity using maximum simulated likelihood based on
Halton sequences. The purpose of this paper is twofold. First, we describe the
technical implementation of the estimation routine and discuss its properties. Fur-
ther, we compare our estimation routine with the Stata program gllamm, which
solves integration by using Gauss–Hermite quadrature or adaptive quadrature. For
the analysis, we draw on multilevel data about schooling. Our empirical findings
show that the estimation techniques lead to approximately the same estimation
results. The advantage of simulation over Gauss–Hermite quadrature is a marked
reduction in computational time for integrals with higher dimensions. Adaptive
quadrature leads to more stable results relative to the other integration methods.
However, simulation is more time efficient. We find that maximum simulated like-
lihood leads to estimation results with reasonable accuracy in roughly half the
time required when using adaptive quadrature.

Keywords: st0104, multinomial logit model, multinomial logistic model, panel
data, unobserved heterogeneity, maximum simulated likelihood, Halton sequences

1 Introduction

In many empirical applications, e.g., estimation of mixed logit models, the researcher
is faced with the problem that standard maximum-likelihood estimation cannot be ap-
plied, as analytical integration is not possible. Instead, methods such as quadrature or
simulation are required for approximation of the integral. We suggest a Stata routine
for multinomial logit models with unobserved heterogeneity using maximum simulated
likelihood (MSL).1 The purpose of this paper is twofold. First, we provide a description
of the technical implementation of the estimation routine and discuss its properties.
Further, we compare our estimation routine with the Stata program gllamm. gllamm
is a flexible program incorporating a variety of multilevel models including mixed logit;
see Rabe-Hesketh, Skrondal, and Pickles (2004) or Rabe-Hesketh and Skrondal (2005).
Our routine differs from gllamm for computational reasons: whereas in gllamm, inte-

1. Our approach closely follows that of Train (2003), who implemented a program for mixed logit
models in GAUSS.

c© 2006 StataCorp LP st0104



230 Estimation of multinomial logit models

grals are solved by using classical Gauss–Hermite or adaptive quadrature, we suggest
simulation based on Halton sequences for integration. In our analysis, we compare the
performance of the estimation techniques using multilevel data about schooling from
the gllamm manual.

Our empirical findings show that when the integral is reasonably well approximated
the estimation techniques lead to nearly the same results. The advantage of Halton-
based simulation over classical Gauss–Hermite quadrature is computational time; this
advantage increases with the dimensions of the integral. Adaptive quadrature leads to
more stable results relative to the other integration methods. However, again simulation
is more time efficient. We find that maximum simulated likelihood leads to estimation
results with reasonable accuracy in roughly half the time required when using adaptive
quadrature.

In the next section, we provide a brief discussion about the estimation of multi-
nomial logit models with unobserved heterogeneity using MSL. Hereafter, we present a
description of the technical implementation of the estimation routine and discuss its
properties. In section 4, we compare the performance of MSL with estimation based
on classical and adaptive quadrature using multilevel data about schooling. The final
section concludes.

2 Multinomial logit models with unobserved heterogene-
ity

Mixed logit models are a highly flexible class of models approximating any random
utility model (Train 2003). In this application, we focus on a specific model of this
broad class, the multinomial logit panel-data model with random intercepts.2 The
results we present can be generalized and extended to other mixed logit models both
with panel and cross-sectional data.

The theoretical framework of multinomial logit models can be described as follows.
Each individual i is faced with J different choices at time t. The individual receives
a certain level of utility at each choice alternative and chooses the alternative that
maximizes the utility. As well documented in the literature—e.g., Train (2003)—the
probability of making choice j conditional on observed characteristics Xit that vary
between individuals and over time and unobserved individual effects αi that are time
constant has the following form:

Pr(j|Xit, αi) =
exp(Xitβj + αij)

ΣJ
k=1exp(Xitβk + αik)

As the choice probabilities are conditioned on αi, one must integrate over the distri-
bution of the unobserved heterogeneity. Thus the sample likelihood for the multinomial
logit with random intercepts has the following form:

2. We use panel data and multilevel data interchangeably.
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L =
N∏

i=1

∫ ∞

−∞

T∏
t=1

J∏
j=1

{
exp(Xitβj + αj)

ΣJ
k=1exp(Xitβk + αk)

}dijt

f(α)dα (1)

where dijt = 1 if individual i chooses alternative j at time t and zero otherwise. The
coefficient vector and the unobserved heterogeneity term of one category are set to 0 for
identification of the model. For convenience, we assume throughout our analysis that
the unobserved heterogeneity α is identically and independently distributed over the
individuals and follows a multivariate normal distribution with mean a and variance–
covariance matrix W, α ∼ f(a,W ). In most applications, α is specified to be normally
distributed. However, as Train (2003) points out, the distributional assumption de-
pends on the research question; if more appropriate, distributions such as log-normal
or uniform can be assumed. As standard in random-effects models, the unobserved
heterogeneity α is required to be independent of the explanatory variables Xit.

To maximize the sample likelihood, one must integrate over the distribution of un-
observed heterogeneity. Yet, there exists no analytical solution for the integral in (1).
In the literature, many methods for integral approximation have been suggested and
discussed. We focus on classical Gauss–Hermite quadrature, adaptive quadrature, and
simulation based on Halton sequences.

Gauss–Hermite and adaptive quadrature

Gauss–Hermite and adaptive quadrature are discussed in detail in the work of Rabe-
Hesketh, Skrondal, and Pickles (2002). Gauss–Hermite quadrature approximates an
integral by a specified number of discrete points. Adaptive quadrature uses Bayes’
rule to find quadrature weights that lead to better approximations of the integral than
those of normal Gauss–Hermite quadrature, significantly increasing the accuracy of
integration. The Stata program gllamm incorporates both integration methods, yet
adaptive quadrature is strongly recommended for its higher accuracy (Rabe-Hesketh,
Skrondal, and Pickles 2002).

Estimation with maximum simulated likelihood

We suggest integrating over the unobserved heterogeneity by using simulation and max-
imizing a simulated likelihood. MSL draws R values from the distribution of the unob-
served heterogeneity with variance–covariance matrix W. For each of these draws, the
likelihood is calculated and then averaged over the R draws, which implies that instead
of the exact likelihood, a simulated sample likelihood (SL) is maximized:3

3. When using random draws, MSL is equivalent to the ML estimator if N0.5/R → 0 and both N and
R→ ∞. For more detailed information, see Cameron and Trivedi (2005).
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SL =
N∏

n=1

1
R

R∑
r=1

T∏
t=1

J∏
j=1

{
exp(Xitβj + αr

j)

Σj
k=1exp(Xitβk + αr

k)

}dijt

(2)

Consider an example with three different choices (j = 3). For identification, β1

and αi1 are normalized to zero. We assume that the unobserved heterogeneity differs
between the two other choices (αi2 �= αi3) and allow for correlation of these terms.
Hence, the distribution of the unobserved heterogeneity can be described by a bivariate
normal distribution with the following:

α ∼ f

{(
a2

a3

)
,

(
var2 cov23

cov23 var3

)}
This equation implies that when applying MSL, an approximate two-dimensional integral
is needed. Each draw r consists of two values, (ε2, ε3)′, which follow a standard normal
distribution. We apply a Cholesky decomposition of the variance–covariance matrix W.
A Cholesky factor L of matrix W is defined such that LL′ = W. Then the unobserved
effects αr are calculated by αr = Lεr, which for our example implies the following:

(
α2

α3

)
=
(

l11 0
l21 l22

)(
ε2
ε3

)
(3)

The example can be easily extended to more complex choice situations. However,
with more choices, integration becomes more and more time intensive as the dimension
of the integral increases.

Instead of using random draws to obtain (ε2, ε3)′, we follow Train (2003) and rec-
ommend basing simulation on Halton sequences. Halton sequences generate quasi-
random draws that provide a more systematic coverage of the domain of integration
than independent-random draws and induce a negative correlation over observations.
Several studies such as Train (2000) and Bhat (2001) have shown that for mixed logit
models, the accuracy can be markedly increased by using Halton sequences; the authors
find in their studies that the results are more precise with 100 Halton draws than with
1,000 random draws. These results confirm that quasirandom sequences go along with
a lower integration error and faster convergence rates and therefore clearly require fewer
draws than pseudorandom sequences.4 However, as Train (2003) points out, using Hal-
ton draws in simulation-based estimation is not completely understood and caution is
required. He provides an example of Halton sequences and discusses advantages and
anomalies of this method for mixed logit models. Computational time and estimation

4. The expected integration error using pseudorandom sequences is of order R−.5, whereas the the-
oretical upper bound for the integration error using quasirandom sequences is of order R−1; see Bhat
(2001) or Cameron and Trivedi (2005). This comparison implies that a 10-fold increase in the number
of quasirandom draws leads to the same improvement of accuracy as a 100-fold increase in the number
of pseudorandom draws.
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results slightly vary with the chosen primes for the Halton draws. This fact is docu-
mented by Train (2003), who found that the choice of the primes might noticeably affect
the estimated coefficients.

The advantages of Halton draws might not hold for other models in the same way; see
Cappellari and Jenkins (2006a), who discuss Halton sequences for multivariate probit
models.

3 Stata routine for MSL estimation

Here we provide an ml model statement that refers to a multinomial logit panel-data
model with two potentially correlated random intercepts that follow a bivariate normal
distribution. This example can easily be extended to models with more alternatives.

For illustration, we apply our program to a real dataset about teachers’ evaluations
of pupil behavior.5 The variables id and scy3 identify pupils and schools, respectively.
Teachers group pupils in three different quality levels (tby), which is the dependent
variable in our estimation. The data contain several additional variables explaining the
quality level of the pupils, such as sex, and provide information about 1,313 pupils in
48 schools. The number of pupils differs between schools; i.e., we have an unbalanced
panel.

The panel dimension of the data is not over time but over the pupils of a certain
school (scy3). Hence, in the estimation, we can control for unobserved school-specific
effects, but we do not control for individual-specific unobserved heterogeneity.6 For
simplicity, we condition the rating of teachers next to unobservable effects on only one
observable variable, namely, sex.

Before executing our program for MSL estimation, we apply the program mdraws by
Cappellari and Jenkins (2006a) to generate Halton sequences and calculate the corre-
sponding values following a standard normal distribution. mdraws can also be used to
create pseudonormal draws.

For each draw, the values (random 1‘r’ and random 2‘r’) must be the same for
1 observation within each unit, here within each school. Therefore, we create draws
for every school and merge these draws to every pupil within each school. Here we
approximate the integral by using 50 draws from the Halton sequence. We specify the
primes used to create the Halton sequences as 7 and 11, because we later fit models
with 150 draws and the number of draws should not be an integer multiple of any of
the primes used. See Cappellari and Jenkins (2006a) for details. We use the burn()
option to drop the first 15 draws of each sequence because the initial elements of any
two sequences can be highly correlated.

5. The dataset is available as an ASCII file, jspmix.dat (http://www.gllamm.org/jspmix.dat).
6. The presented routine can easily be transferred to a model with time-constant individual-specific

effects. Here the school (scy3) corresponds to the individual and one pupil to one individual observation
at time t.
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. matrix p = (7, 11)

. global draws "50"

. infile scy3 id sex stag ravi fry3 tby using jspmix.dat, clear
(1313 observations read)

. save jspmix.dta, replace
(note: file jspmix.dta not found)
file jspmix.dta saved

. keep scy3

. sort scy3

. by scy3: keep if _n==1
(1265 observations deleted)

. mdraws, neq(2) dr($draws) prefix(c) burn(15) prime(p)
Created 50 Halton draws per equation for 2 dimensions. Number of initial
draws dropped per dimension = 15 . Primes used:

7 11

. forvalues r=1/$draws{
2. gen random_1‘r’=invnormal(c1_‘r’)
3. gen random_2‘r’=invnormal(c2_‘r’)
4. }

. sort scy3

. save mdraws_$draws, replace
(note: file mdraws_50.dta not found)
file mdraws_50.dta saved

. use jspmix, clear

. sort scy3

. merge scy3 using mdraws_$draws.dta
variable scy3 does not uniquely identify observations in the master data

. drop _merge

. sort scy3

To get appropriate starting values for the coefficient vector, we use mlogit to fit a
multinomial logit model without random intercepts. The variables a1, a2, and a3 take
on the value of 1 if the choice 1, 2, or 3 is made, respectively, and zero otherwise; the
variables are defined using the tabulate command.

. mlogit tby sex, base(1)
(output omitted )

. matrix Init= e(b)

. tabulate tby, gen(a)
(output omitted )

. sort scy3

The following ml model statement can be applied independently of the chosen type
of draws (e.g., pseudorandom or Halton). We apply the method d0 because we fit panel-
data models with joint unobserved heterogeneity for groups of observations. The method
d0 requires the researcher to supply the log-likelihood function. The first and second
derivatives are obtained numerically; i.e., one need not supply analytically calculations
of the gradient and the Hessian of the log-likelihood function.7

7. The principles of computing maximum likelihood estimators with Stata are described in
Gould, Pitblado, and Sribney (2006).
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program define mlogit_sim_d0
args todo b lnf
tempvar etha2 etha3 random1 random2 lj pi1 pi2 pi3 sum lnpi L1 L2 last
tempname lnsig1 lnsig2 atrho12 sigma1 sigma2 cov12

mleval ‘etha2’ = ‘b’, eq(1)
mleval ‘etha3’ = ‘b’, eq(2)
mleval ‘lnsig1’ = ‘b’, eq(3) scalar
mleval ‘lnsig2’ = ‘b’, eq(4) scalar
mleval ‘atrho12’ = ‘b’, eq(5) scalar

qui {
scalar ‘sigma1’=(exp(‘lnsig1’))^2
scalar ‘sigma2’=(exp(‘lnsig2’))^2
scalar ‘cov12’=[exp(2*‘atrho12’)-1]/[exp(2*‘atrho12’)+1]* ///

(exp(‘lnsig2’))*(exp(‘lnsig1’))
gen double ‘random1’ = 0
gen double ‘random2’ = 0
gen double ‘lnpi’=0
gen double ‘sum’=0
gen double ‘L1’=0
gen double ‘L2’=0
by scy3: gen byte ‘last’=(_n==_N)
gen double ‘pi1’=0
gen double ‘pi2’=0
gen double ‘pi3’=0

}
matrix W = ( ‘sigma1’ , ‘cov12’ \ ‘cov12’ , ‘sigma2’)

capture matrix L=cholesky(W)

if _rc != 0 {
di "Warning: cannot do Cholesky factorization of rho matrix"

}

local l11=L[1,1]
local l21=L[2,1]
local l22=L[2,2]

forvalues r=1/$draws{
qui {
replace ‘random1’ = random_1‘r’*‘l11’
replace ‘random2’ = random_2‘r’*‘l22’ + random_1‘r’*‘l21’

replace ‘pi1’= 1/(1 + exp(‘etha2’+‘random1’)+exp(‘etha3’+‘random2’))
replace ‘pi2’= exp(‘etha2’+‘random1’)*‘pi1’
replace ‘pi3’= exp(‘etha3’+‘random2’)*‘pi1’

replace ‘lnpi’=ln(‘pi1’*a1+‘pi2’*a2+‘pi3’*a3)

by scy3: replace ‘sum’=sum(‘lnpi’)
by scy3: replace ‘L1’ =exp(‘sum’[_N]) if _n==_N

by scy3: replace ‘L2’=‘L2’+‘L1’ if _n==_N
}

}

qui gen ‘lj’=cond(!‘last’,0, ln(‘L2’/‘$draws’))
qui mlsum ‘lnf’=‘lj’
if (‘todo’==0|‘lnf’>=.) exit

end
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Instead of estimating the variances and the correlation coefficient directly, we es-
timate transformed variables of these parameters, i.e., the logarithm of the standard
deviations (lnsig1 and lnsig2) and the inverse hyperbolic tangent of ρ (atrho12), to
constrain them within their valid limits. Therefore, the first step in our program is to
calculate the variances (sigma1 and sigma2) and the covariance (cov12) of the bivariate
normal distribution. Then we apply a Cholesky decomposition of the covariance matrix
W. To do this, the matrix W must be positive definite at each iteration. If not, our
program traps the error, shows a warning, and uses the most recent estimate of W,
which is guaranteed to be positive definite. This assurance is based on the capture
command.8

We calculate the likelihood for each draw from the individual-specific quasirandom
terms random1 and random2 within the following loop. The two terms random1 ‘r’ and
random2 ‘r’ are multiplied with the elements of the Cholesky matrix L, following (3).
The probabilities of making choice 1, 2, or 3 are expressed by pi1, pi2, and pi3. With
the information about the realized choices, captured in variables a1, a2, and a3, the
likelihood is evaluated for each observation. The corresponding log-likelihood values
are added up within each unit for each draw (sum) and this sum is exponentiated
for the last observation per unit (L1). These likelihood values are added up over all
draws (L2). Following (2), the approximated likelihood is the average over the r draws.
The simulated likelihood can be maximized by using the ml maximize and ml model
commands. To set the starting values, we use the command ml init. For the β, we use
the estimated coefficients from the mlogit saved as matrix Init. The starting values
of lnsig1, lnsig2, and atrho12 are set to 0.5.

. ml model d0 mlogit_sim_d0 (tby = sex) (tby = sex) /lnsig1 /lnsig2 /atsig12

. matrix start = (Init)

. ml init start 0.5 0.5 0.5, copy

(Continued on next page)

8. The procedure is the same as in the program mvprobit by Cappellari and Jenkins (2003, 2005,
2006b).
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. ml maximize

initial: log likelihood = -1338.0475
rescale: log likelihood = -1338.0475
rescale eq: log likelihood = -1301.4639
Iteration 0: log likelihood = -1301.4639
Iteration 1: log likelihood = -1300.4893
Iteration 2: log likelihood = -1299.4587
Iteration 3: log likelihood = -1299.4509
Iteration 4: log likelihood = -1299.4509

Number of obs = 1313
Wald chi2(1) = 14.22

Log likelihood = -1299.4509 Prob > chi2 = 0.0002

Coef. Std. Err. z P>|z| [95% Conf. Interval]

eq1
sex .5488225 .14552 3.77 0.000 .2636085 .8340364

_cons .59589 .1394991 4.27 0.000 .3224768 .8693032

eq2
sex 1.104577 .1748037 6.32 0.000 .7619681 1.447186

_cons -.5663381 .1816152 -3.12 0.002 -.9222974 -.2103788

lnsig1
_cons -.3369519 .1695314 -1.99 0.047 -.6692274 -.0046763

lnsig2
_cons -.1021489 .1602249 -0.64 0.524 -.4161839 .2118861

atsig12
_cons 1.614593 .3185383 5.07 0.000 .9902697 2.238917

. _diparm lnsig1, function((exp(@))^2) deriv(2*(exp(@))*(exp(@)))
> label("sigma1")

sigma1 .5097149 .1728254 .2622506 .9906909

. _diparm lnsig2, function((exp(@))^2) deriv(2*(exp(@))*(exp(@)))
> label("sigma2")

sigma2 .8152196 .2612369 .435018 1.527713

. _diparm atsig12, tanh label("roh12")
roh12 .9238359 .0466745 .7574773 .9775391

. _diparm atsig12 lnsig1 lnsig2,
> function([exp(2*@1)-1]/[exp(2*@1)+1]*(exp(@2))*(exp(@3)))
> deriv(-(2*exp(2*@1+@2+@3)*(-1+exp(2*@1))/(1+exp(2*@1))^2)+
> 2*exp(2*@1+@2+@3)/(1+exp(2*@1))
> [exp(2*@1)-1]/[exp(2*@1)+1]*(exp(@2))*(exp(@3))
> [exp(2*@1)-1]/[exp(2*@1)+1]*(exp(@2))*(exp(@3))) label("cov12")

cov12 .5955193 .188545 .2259779 .9650606

As mentioned above, we estimate the variances and the covariance in a transformed
metric. We use the program diparm to calculate and display the parameters and their
standard errors after the estimation. For this task, we must calculate the first derivative
of the function. Also we can use diparm to calculate the correlation and its standard
error.
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4 Illustrations

In the following section, we discuss the empirical performance of the MSL routine with
a multilevel dataset about schooling (Junior School Project) that is taken from the
gllamm manual (Rabe-Hesketh, Skrondal, and Pickles 2004). We described the data in
the previous section. This example provides a comparison of the above-described inte-
gration methods, Gauss–Hermite and adaptive quadrature using gllamm and simulation
based on Halton draws using our MSL routine. We are interested in two findings: 1)
the accuracy of the procedures, evaluated for the stability of estimation results and 2)
the computational time they require. Further, we want to show how the two estimators
perform when the dimension of the integrals increases. Therefore, we fit models with
only one random term (one-dimensional integral) and with two random terms (two-
dimensional integral). One random term implies that unobserved effects are constant
between the alternatives. In the second example (two random terms), the heterogeneity
varies between the alternatives and is potentially correlated. The structure of unob-
served heterogeneity is the same as that in section 2’s example.

Computational time and accuracy of integral approximation depend on the chosen
number of quadrature points or number of draws when estimating. Therefore, we present
several estimations by increasing the number of quadrature points and draws. As there
is a tradeoff between accuracy of integration and computational time, the number of
points or draws can become a crucial variable. Providing a rigid test indicating the
optimal number of draws is difficult. In practice, researchers often vary the number of
draws or points to see whether the coefficients and the log likelihood remain constant
as an indication whether an adequate number of draws is chosen (Cameron and Trivedi
2005). We present results of six estimations using MSL with 25, 50, 100, 150, 200,
and 500 draws from the Halton sequences and six estimations with Gauss–Hermite and
adaptive quadrature, both with 4, 8, and 16 points.9 Because we do not directly test for
accuracy, the comparison needs to be interpreted carefully. All estimates were computed
with Intercooled Stata version 8.2 on a 3-GHz Pentium 4 PC running Windows 2000
Professional. To make computational time between both methods comparable, we used
the same starting values for all estimations.

In the following code, we present the gllamm command for estimation of the model
with the two-dimensional integral using four quadrature points (Gauss–Hermite). For
more description of the syntax, see Rabe-Hesketh, Skrondal, and Pickles (2004).

use jspmix, clear
mlogit tby sex, base(1)
matrix Init = e(b)
scalar var = exp(0.5)
matrix start = Init, var, var, 0.5
matrix colnames start = sex _cons sex _cons a2 a3 _cons
matrix coleq start = c2 c2 c3 c3 scy1_1 scy1_2 scy1_2_1
gen school = scy3
sort school sex tby

9. In addition to these results, we fitted the model using MSL based on pseudorandom draws. Our
results are in line with previous studies, e.g., Train (2000) and Bhat (2001), and indicate that many
more pseudorandom draws than Halton draws are required to get relatively stable results.
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gen patt = _n
expand 3
sort patt
qui by patt: gen alt = _n
gen chosen = alt == tby
sort pat alt
tabulate alt, gen(a)
gen dum=1
replace dum = 0 if a1 == 1
eq dum: dum
eq a2: a2
eq a3: a3

gllamm alt sex, expand(patt chosen m) i(scy3) link(mlogit) /*
*/family(binom) nrf(2) eq(a2 a3) nip(4) trace from(start)

Table 1 shows the MSL results for the model with a common term of unobserved
heterogeneity. Comparing the coefficients and the log likelihood between the estima-
tions, we find that the results are fairly stable when using at least 50 draws. When
using only 25 Halton draws, the deviations of the coefficients from those obtained with
better approximated integrals can be seen. However, even with more than 100 draws,
we find that results slightly differ between the number of draws; the log likelihood varies
between the estimations in the first decimal place. Estimation time varies between the
estimations with an acceptable approximation of the integral from 42 seconds (50 draws)
to 8 minutes 18 seconds (500 draws); estimation results suggest that computational time
increases approximately linearly with the number of draws.

(Continued on next page)
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Table 1: One random intercept: Maximum simulated likelihood

Coefficient
Parameter (SE)

tby = 2
0.543 0.551 0.549 0.550 0.550 0.550

Sex (0.146) (0.146) (0.146) (0.146) (0.146) (0.146)

0.685 0.598 0.592 0.592 0.592 0.591
Constant (0.141) (0.145) (0.146) (0.145) (0.146) (0.145)

tby = 3
1.064 1.072 1.070 1.071 1.071 1.070

Sex (0.141) (0.145) (0.146) (0.145) (0.146) (0.145)

−0.399 −0.486 −0.492 −0.492 −0.492 −0.493
Constant (0.160) (0.163) (0.164) (0.164) (0.164) (0.164)

−0.391 −0.289 −0.301 −0.301 −0.321 −0.312
lnsig1 (0.146) (0.154) (0.155) (0.159) (0.163) (0.162)

0.457 0.561 0.547 0.548 0.526 0.536
sig1 (0.133) (0.172) (0.170) (0.174) (0.172) (0.173)

Log likelihood −1,303.791 −1,303.605 −1,303.751 −1,303.937 −1,303.658 −1,303.740

Time (hh:mm:ss) 00:00:20 00:00:42 00:01:26 00:02:10 00:03:05 00:08:18

No. of draws 25 50 100 150 200 500

Source: http://www.gllamm.org/jspmix.dat.

Note: Numbers of observations: 1,313.

Table 2 compares one random intercept calculated with both Gauss–Hermite and
adaptive quadrature. Comparing the results derived with simulation with those esti-
mated with quadrature, we find that the estimation results are similar when the integral
is reasonably well approximated. When using Gauss–Hermite quadrature, at least eight
quadrature points are required for integration. The log likelihood and the coefficients
clearly differ between the estimation with four and eight points.

Turning to the adaptive quadrature, the picture changes. With only four quadrature
points, the integral seems to be reasonably well approximated, as a further increase in
the number of quadrature points leads to similar estimated parameters. This finding
underscores the result of Rabe-Hesketh, Skrondal, and Pickles (2002), who show the
computational advantage of adaptive quadrature versus Gauss–Hermite quadrature.
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Table 2: One random intercept: Gauss–Hermite and adaptive quadrature

Gauss–Hermite quadrature Adaptive quadrature

Coefficient Coefficient
Parameter (SE) (SE)

tby = 2
0.553 0.554 0.549 0.550 0.550 0.550

Sex (0.146) (0.146) (0.146) (0.146) (0.146) (0.146)

0.693 0.619 0.593 0.594 0.594 0.594
Constant (0.146) (0.155) (0.147) (0.145) (0.146) (0.146)

tby = 3
1.074 1.075 1.070 1.071 1.071 1.071

Sex (0.171) (0.171) (0.171) (0.171) (0.171) (0.171)

−0.391 −0.465 −0.492 −0.490 −0.491 −0.491
Constant (0.165) (0.172) (0.166) (0.163) (0.164) (0.164)

0.398 0.564 0.530 0.551 0.543 0.544
sig1 (0.101) (0.181) (0.166) (0.178) (0.175) (0.175)

Log likelihood −1,305.189 −1,303.681 −1,303.843 −1,303.802 −1,303.804 −1,303.804

Time (hh:mm:ss) 00:00:21 00:00:46 00:01:10 00:01:24 00:01:42 00:03:12

No. of
quadrature
points 4 8 16 4 (Adaptive) 8 (Adaptive) 16 (Adaptive)

Source: http://www.gllamm.org/jspmix.dat.

Note: Numbers of observations: 1,313.

For the one-dimensional integral, Halton-based simulation performs similarly to
quadrature. Relative to Gauss–Hermite quadrature, we find hardly any difference in
computational time for a comparable degree of accuracy. Adaptive quadrature leads to
more stable results with four quadrature points; computation time, however, is higher
than in a simulation with 50 draws and about the same as in a simulation with 100
draws. This finding indicates that with one term there is no advantage of using MSL

relative to adaptive quadrature.

In the following discussion, the complexity of the estimation increases by allowing
the unobserved heterogeneity to differ between the alternatives. Here the advantage
of computational time of Halton-based simulation over Gauss–Hermite quadrature be-
comes evident. As shown in table 3, with at least 100 draws, coefficients and the log
likelihood become relatively stable. For 100 draws, the estimation takes more than 3
minutes. Table 4 shows that, for a comparable level of integral approximation, Gauss–
Hermite quadrature requires more than 11.5 minutes. Results from MSL become more
stable with 200 and 500 draws. The estimation with 200 draws takes less than 7 minutes,
and the one with 500 draws about 20 minutes. When doubling the number of quadrature



242 Estimation of multinomial logit models

points for the Gauss–Hermite approach, computational time approximately quadruples
(50 minutes) and the results are similar to those from the adaptive quadrature.

Table 3: Two random intercepts: Maximum simulated likelihood

Coefficient
Parameter (SE)

tby = 2
0.542 0.549 0.546 0.545 0.546 0.546

Sex (0.145) (0.146) (0.146) (0.146) (0.146) (0.146)

0.616 0.596 0.577 0.601 0.576 0.593
Constant (0.142) (0.139) (0.144) (0.140) (0.142) (0.141)

tby = 3
1.095 1.105 1.099 1.102 1.101 1.101

Sex (0.175) (0.175) (0.175) (0.175) (0.175) (0.175)

−0.534 −0.566 −0.585 −0.563 −0.585 −0.569
Constant (0.184) (0.182) (0.178) (0.180) (0.181) (0.180)

−0.367 −0.337 −0.327 −0.366 −0.362 −0.361
lnsig1 (0.201) (0.170) (0.174) (0.167) (0.175) (0.171)

−0.153 −0.102 −0.145 −0.142 −0.162 −0.158
lnsig2 (0.167) (0.160) (0.158) (0.154) (0.163) (0.161)

1.535 1.615 1.471 1.550 1.487 1.496
atrho (0.422) (0.319) (0.320) (0.339) (0.353) (0.346)

0.479 0.510 0.520 0.481 0.484 0.485
sig1 (0.192) (0.173) (0.181) (0.160) (0.170) (0.166)

0.735 0.815 0.749 0.753 0.724 0.729
sig2 (0.246) (0.261) (0.236) (0.231) (0.236) (0.234)

0.54 0.596 0.561 0.550 0.535 0.538
cov12 (0.185) (0.189) (0.184) (0.172) (0.181) (0.177)

0.911 0.924 0.900 0.914 0.903 0.904
cor (0.071) (0.047) (0.061) (0.056) (0.065) (0.063)

Log likelihood −1,299.9 −1,299.451 −1,299.700 −1,299.635 −1,299.726 −1,299.599

Time (hh:mm:ss) 00:00:45 00:01:34 00:03:23 00:05:00 00:06:52 00:19:54

No. of draws 25 50 100 150 200 500

Source: http://www.gllamm.org/jspmix.dat.

Note: Numbers of observations: 1,313.
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Table 4: Two random intercepts: Gauss–Hermite and adaptive quadrature

Gauss–Hermite quadrature Adaptive quadrature

Coefficient Coefficient
Parameter (SE) (SE)

tby = 2
0.548 0.551 0.546 0.547 0.546 0.546

Sex (0.145) (0.146) (0.146) (0.146) (0.146) (0.146)

0.668 0.621 0.595 0.598 0.597 0.597
Constant (0.142) (0.142) (0.141) (0.140) (0.141) (0.141)

tby = 3
1.104 1.105 1.101 1.102 1.101 1.101

Sex (0.175) (0.175) (0.175) (0.175) (0.175) (0.175)

−0.480 −0.539 −0.567 0.564 −0.565 −0.565
Constant (0.181) (0.181) (0.181) (0.180) (0.180) (0.180)

0.352 0.504 0.480 0.489 0.488 0.488
sig1 (0.098) (0.169) (0.168) (0.171) (0.170) (0.170)

0.596 0.752 0.730 0.743 0.739 0.738
sig2 (0.169) (0.238) (0.234) (0.240) (0.238) (0.238)

0.406 0.560 0.537 0.547 0.545 0.545
cov (0.108) (0.180) (0.177) (0.182) (0.181) (0.181)

0.887 0.910 0.907 0.908 0.908 0.908
cor — — — — — —

Log likelihood −1,300.950 −1,299.482 −1,299.681 −1,299.663 −1,299.664 −1,299.665

Time (hh:mm:ss) 00:02:47 00:11:38 00:47:41 00:08:16 00:30:38 02:03:12

No. of
quadrature
points 4 8 16 4 (Adaptive) 8 (Adaptive) 16 (Adaptive)

Note: Numbers of observations: 1,313. — = not calculated.

Source: http://www.gllamm.org/jspmix.dat.

With adaptive quadrature, again four points are sufficient to approximate the in-
tegral. Results hardly change with more quadrature points. Computational time with
four points is about 8 minutes. Relative to simulation, adaptive quadrature leads to
more robust results. However, using simulation with 100 draws, one can approximate
the integral such that coefficients and the log likelihood are approximately stable in less
than 3.5 minutes. Here the tradeoff between computational time and accuracy becomes
evident. Halton-based simulation leads to results in less computational time, whereas
adaptive quadrature provides results that are more stable.

From a practical point of view, the implementation of MSL based on Halton sequences
is relatively simple and has significant advantages in computational time if it is compared
with Gauss–Hermite quadrature and simulation based on pseudorandom sequences, not



244 Estimation of multinomial logit models

reported here. This implementation is particularly true for higher-dimensional integrals.
Compared with adaptive quadrature, our routine seems to be less stable. However, given
the advantage of computational time, Halton-based MSL could be an adequate model
choice. The time advantage becomes even more important when sample size or the
dimension of the integral increases.10

Therefore, we recommend the presented routine as an alternative to the quadrature
approach implemented in gllamm. Moreover, the principles of our routine can be a
useful starting point for evaluating likelihood functions that are not preprogrammed in
Stata and involve a multivariate normal distribution of the unobserved heterogeneity.

5 Conclusion

In this article, we have suggested a Stata routine for multinomial logit models with
unobserved heterogeneity using MSL based on Halton sequences. The routine refers
to a model with two random intercepts but can easily be extended to models with a
higher dimension. Further extensions of the presented code are possible; examples are
Haan (2005), fitting a dynamic conditional logit model, or Uhlendorff (2006), fitting a
dynamic multinomial logit model with endogenous panel attrition.

Using multilevel data about schooling, we compare the performance of our code to
that of the Stata program gllamm, which numerically approximates integrals using clas-
sical Gauss–Hermite quadrature and adaptive quadrature. Estimation by MSL provides
approximately the same estimation results as estimation with Gauss–Hermite quadra-
ture or adaptive quadrature. Compared with classical quadrature, simulation markedly
reduces computational time when a higher-dimensional integral needs to be approxi-
mated. However, relative to adaptive quadrature, the advantage of simulation vanishes
in our example. Adaptive quadrature leads to stable results with only a few quadra-
ture points (four). Estimations with 100 draws are less stable but lead to qualitatively
the same results and take roughly half the estimation time. This finding underscores
the tradeoff between computational time and accuracy of the results, which becomes
important if estimation takes not a few minutes but instead hours or days.
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10. Using Bayes’ rule for simulation might be one way to reduce the tradeoff between estimation time
and accuracy. Train (2003) suggests using Bayesian simulation instead of classical MSL, as the Bayesian
method leads to consistent estimates even with a fixed number of draws.
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