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Generating Halton sequences using Mata

David M. Drukker Richard Gates
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Abstract. This paper discusses the advantages of Halton sequences over pseudo-
random uniform numbers when using simulation to approximate integrals numeri-
cally. We describe two types of sequences and give Mata examples. Finally, we doc-
ument the Mata function halton(), currently in release 9.1 of Stata, which com-
putes both a Halton sequence and its Hammersley variant. Options to use these
point sets are available in the Stata 9 program asmprobit, a multinomial-probit
estimator, and in the Stata 9.1 Mata function ghk(), the Geweke—Hajivassiliou—
Keane multivariate-normal simulator.

Keywords: st0103, halton(), Halton set, Hammersley set, quasirandom numbers

1 Introduction

With increasing numerical computing power, there is a corresponding increasing inter-
est in using computer-intensive simulation techniques to compute approximations to
likelihood functions that involve multidimensional integrals that do not have a closed-
form solution. Evaluating these likelihood functions using simulation, also known as
Monte Carlo integration, involves taking pseudorandom draws from the standard uni-
form distribution. In applying simulation techniques to numerical integration, however,
the randomness of these draws is not as important as their uniform coverage over the
domain of integration. The more uniform the coverage over the domain of integration,
the better the numerical approximation. The coverage over the domain of integration
can be dramatically improved by using quasirandom points.! When a quasirandom
sequence is used in one of these simulation algorithms, the numerical integration tech-
nique is then referred to as quasi—-Monte Carlo integration. This paper discusses the
currently popular Halton point sets and their Hammersley variant.

The Stata 9 program [R] asmprobit that estimates the parameters of a multino-
mial probit model uses Halton point sets and the Geweke—Hajivassiliou—Keane (GHK)
simulator to approximate the multivariate-normal integral. This paper provides some
insight into why the Hammersley point sets are the default in asmprobit and why you
may want to use pseudorandom point sets for multinomial probit models with more
than 10 alternatives. In the 9.1 release of Stata, we provide two Mata functions that are
used by asmprobit: halton(), a function that generates Halton or Hammersley point
sets, and ghk(), a function that carries out the GHK simulator and which optionally
uses Halton, Hammersley, or pseudorandom point sets.

1. Pseudorandom point sets pass no-correlation tests, whereas quasirandom point sets are correlated
by design.

© 2006 StataCorp LP st0103
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In section 2, we review Monte Carlo integration and introduce discrepancy as a
measure of uniform coverage of a set of points over the unit interval. In section 3, we
discuss the theory behind Halton sequences, their Hammersley variant, and using Mata
to compute the point sets.? Section 4 gives the syntax of the Mata halton() function.
In section 5, we demonstrate these point sets for some specific scenarios and illustrate
their coverage over the unit interval graphically and numerically.

2 Monte Carlo integration

Assume that we have a multivariate function, g(x), with domain x € R? C R?, a subset
of the d dimensional reals. To perform Monte Carlo integration of g(x), the domain
. . . . . —d
of integration must be transformed to the unit interval of dimension d, C° = [0, 1]¢,
so that [ pa 9(x) dx = fad f(y) dy. This transformation allows us to approximate
Jza f(y) dy by (1/n) 31, f(u;), where the {u; € C%i=1,...,n}, C% = [0,1)%, are
uniform random vectors. We use the point set {ui ceCti=1,... ,n} that minimizes
(1/n) 370, f(wi) = [za f(¥) dy|.> Bounds on the error can
be expressed, in part, by using the notion of the discrepancy of the u;’s over C¢. We
will introduce this concept next.

the approximation error,

2.1 Discrepancy

There are many ways of measuring discrepancy, or the lack of uniformity of a point set
over a domain. Here we will describe discrepancy, using one type of discrepancy measure
(termed the star discrepancy by Niederreiter [1992, definition 2.1]), as applied in the
error analysis of quasi-Monte Carlo integration. For other discrepancy measures, see
Niederreiter (1992) and Fang and Wang (1994). First, we will define the discrepancy
for a one-dimensional point set and then generalize to a d-dimensional point set.

Assume that we have a set of points x, = {z; € [0,1),i =1,...,n}. This point set
is of dimension 1 since each x; is a scalar. For any value v € [0,1), let the function
N (u, xn) be the number of x;’s less than or equal to u. The discrepancy can be expressed
as D(n, xn) = suPyepo,1) {N (u; xn)/n} —ul. “sup” stands for supremum, which is the
least upper bound. In other words, the discrepancy is the largest possible distance
between a u € [0, 1) and the average number of z;’s that are less than or equal to u. The
more uniformly the 2’s are scattered, the closer N (u, x,)/n will be to u for any v € [0, 1),
thereby minimizing the discrepancy. Fang and Wang (1994) (and Niederreiter [1992])
show that the sequence (2i —1)/2n,i = 1,...,n has the lowest discrepancy, 1/2n, on
[0,1). You will see in the next section that this sequence is used in the first dimension
of the Hammersley set.

2. Sequences are the functions used to generate point sets. We concentrate on the point sets to make
the discussion more accessible.

3. Actually, we would like to find the function (sequence) that minimizes the approximation error,
but concentrating on point sets eases the discussion.
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For point sets of dimension d > 2, we now have u € C?% and x4 = {x; € Ci =
1,...,n}. We introduce the function v(u) = Hle u;, which is the volume of [0,u). The
discrepancy is then expressed as

N d
D(n,x%) = sup | L Xn)

—v(u)
ueCd n

As pointed out by Fang and Wang (1994), determining a sequence that has a minimal
discrepancy when d > 1 is difficult. As a result, sequences are found that have an
asymptotically (as n gets large) small discrepancy.

A bound on the error of the numerical approximation to the multivariate integral
can be expressed as

n

1
T3 re = [ sy

i=1

< V(f)D(n, x37)

(Niederreiter [1992, theorem 2.11]), where V(f) is the total variation of the function f
as defined by Niederreiter (1992, 19). For a given f, the error bound depends on n and
the sequence generating the points y2. We choose the sequence y¢ that has the smallest
discrepancy for a given n and d. For all the sequences we consider, the discrepancy is
decreasing in n. (This discrepancy is intuitive; more points should provide a better
approximation.) Here we consider Halton, Hammersley, and uniform pseudorandom
sequences for generating point sets. For feasible n, Halton and Hammersley sequences
produce lower discrepancies for small d, but the uniform pseudorandom sequences pro-
duce smaller discrepancies for larger dimensions. As discussed below, for realistic n the
crossing point appears to be around d = 10.

3 Algorithms for generating Halton point sets

Halton and Hammersley sequences use number-theoretic methods to ensure a high de-
gree of uniformity in the point sets. Here we describe how the point sets are generated
and provide a brief introduction to their number-theoretic foundation.

Any nonnegative integer, 7, has a digit expansion i = 23‘21 bj,p(i)pjfl, where p?~! <
i < p?, base p > 0, and b;,(i) € {0,1,2,...,p— 1} is the jth digit of the base p
representation of the base 10 number ¢. We will restrict p to be a prime number. For
example, 113 in base 5 is 33 in base 10. Thus for p = 5 and ¢ = 33, we have ¢ = 3,
b15(33) =3, ba5(33) = 1, and b3 5(33) =1, or 33 =3-5° +1-5' +1- 5% Henceforth,
we will subscript the number with its base if the base is other than 10, for instance,
33 = 311s.
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The ith member of a Halton sequence is obtained by computing the radical inverse
of i with base p,*

i) = 3 el W

For our example, r5(33) = 3/5+ 1/25+ 1/125. The Halton set of dimension d is gener-
ated from the first d primes, pi, k = 1,...,d, so that on draw ¢, h; = {rp, (1), 7p, (), . ..,
Tp, () }. The Hammersley set uses a sequence of n evenly spaced points on (0, 1) in the
first dimension with the first d — 1 Halton sequences in dimensions 2, ... ,d,

~ 2i—1 _ . . .
h; = {{T} an1(Z)7TP2(Z)7"'>TPd1(1)] »o1=L...,n

where {z} is the fractional part of = (e.g., 0.2 = {1.2}).> The latter can be used
when evaluating a likelihood that requires m integral evaluations (m contributions to
the likelihood) using Hammersley sets of length n, where the first index of each set is
i=ln+12n+1,...,(m—1)n+ 1

3.1 Halton set discrepancy

Let U2 be a point set from the uniform distribution of length n and dimension d; then
a bound on the set’s discrepancy can be expressed as

D(n,blg) <K [loglogn
n

for some K > 0. The bound is independent of d. On the other hand, the bounds for the
Halton and Hammersley point sets, 'HZ and Hfll, respectively, are the following functions
of d and n J
Cr(d)(1
D3¢t < Crld)lozn)
n

and
Cg(d)(logn)?~*

n
(Fang and Wang 1994). Here the Cy(d) and Cg(d) increase exponentially with d
(Niederreiter 1992, chap. 4). Thus the Halton and Hammersley sets used in quasi—
Monte Carlo integration are useful only for low-dimensional problems.

D(n,ﬁg) <

For moderate n, say, n € [50, 5,000], the advantages of the Halton and Hammersley
point sets relative to the uniform point sets are tied up in the unknown constants of
these bounds. We will illustrate this point by simulating the discrepancy for specific
cases in section 5.

The practical implication is that although Halton and Hammersley points will pro-
vide more accurate approximations to the integral for small d, for larger d pseudouniform
point sets should be used.

4. See Niederreiter (1992, 24) for a discussion of this radical inverse function. _
5. This equation generalizes the definition in Fang and Wang (1994), which assumes that 2

—1
2n

< 1.
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3.2 Computing Halton point sets

In our work in maximum simulated likelihood, we have seen two numerical techniques
for computing Halton point sets. The first comes directly from the Halton sequence
definition in (1) and the second, a result from Wang and Hickernell (2000) and ado-
code posted on Statalist (see
http://www.stata.com/statalist /archive/2004-08 /msg00222.html), cleverly computes
the ith value in a sequence from the 7 — 1.

Algorithmically, we express (1) in Mata code. We first choose an index i = 1,2, ...
in the sequence and assume that we are working with dimension 1 < k < d, where d
is the dimension of the integration. We choose the base pj from the set of increasing
primes py € {2,3,5,7,11,...}, to use an optimal set of bases for generating a Halton
set. Then the following snippet of Mata code will iterate ¢ times, where pz_l <1i<pjf,
and on completion r; will be the ith value from the Halton sequence for dimension k.

plk]

ael
NN
wonon
-

while (j>0) {

= pj/pk

mod (j,pk)

ri + pj*bj

j = trunc((j-bj)/pk)

o’
won o

Returning to the previous example where £ = 3 and p3; = 5, the variable i is 33, pk
is the prime 5, and bj stores the constants b;5(33), j = 1,2,3, that are computed in
the while loop: 01,5(33) = 3 = 33mod 5 and b2 5(33) = 1 = (33 — 3)/5 mod 5, and
b35(33) =1=(6—1)/5mod 5, where 6 = (33 — 3)/5.

The second algorithm for generating a Halton sequence cleverly generates the radical
inverse of 7 from that of ¢ — 1. Before showing the general form of this relationship, we
illustrate how this can be done by continuing the previous example. We left off with
i = 34 using p = 5. The coeflicients of the base 5 expansion are by 5(34) = 4, by 5(34) = 1,
and b3 5(34) = 1. Its radical inverse is r5(34) = 4/5 4+ 1/25 + 1/125 = 0.848 = 0.4115.
We can obtain 75(34) from r5(33) by r5(34) = r5(33) +1/5, or 0.3115 + 0.15 = 0.4115.

An increment of .1, can be used until the sum exceeds 1 in base 10, when we must
make a rightward carry operation. Wang and Hickernell (2000) define a rightward carry
addition operator, &. Let by11 (i) = 0 and
k = argmin;{ b; (i) < p— 1}, such that 1 < j < ¢+ 1, and then

rp(i+1) =rp(i) ©
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For example, when ¢ = 33 = 1135, so k = 1 and by 5(33) = 3. Then (2) yields r5(34) =
(1+3)/5+1/25 +1/125. For i = 34 = 1145, k = 2, and by5(34) = 1, yielding
r5(35) = (1 +1)/25 4+ 1/125. The exceptional case, k = ¢ + 1, occurs when ¢ + 1 = p9.
For example, at ¢ = 124 = 4445, k = 4 and since we defined by 5(124) to be 0, 75(125) =
(1+0)/5% = 1/625 = 0.00015.

The way to compute r,,(i+1) from 7, (i) numerically comes from Wang and Hickernell
(2000), who note that (2) can be expressed as

. . 1+
(it 1) = (i) + i F —1 3)
. 1 . 1
with k such that ok <1—-ry(1) < s

Below is the Mata code implementing (3). Here assume that p is a vector containing
the first 20 primes. We will use the kth prime as the base. The scalar ri contains the
Halton number for index i before the code is executed and is updated to contain the
¢ + 1th Halton number of the sequence.

pk = plk]

pj =1

x=1-ri- eps

while (pj > x) pj = pj/pk
ri = ri+(pk+1)*pj-1

Here we decrement 1 —7,(i) =1 - ri by a small amount, eps = epsilon(100), say, to
prevent machine imprecision from terminating the loop too soon (see [M-5] epsilon()).

Both approaches to computing Halton point sets can be used: the first approach is
useful for implementing start, where the user specifies the starting index of the sequence;
and the second algorithm is useful after the first point of the sequence is computed.
Moreover, the start option could be useful for producing Halton point sets sequentially
in blocks, where each block can pick up where the last block left off. For example, the
likelihood evaluator for asmprobit loops over cases computing the simulated probability
of each choice given the regression coefficient estimates. The Halton (or Hammersley)
point set used in the simulated probability for each case picks up from the last index
used in the simulated probability of the previous case.

Wang and Hickernell (2000) use (2) and (3) to randomize the Halton sequences. This
randomization is done by generalizing the definition of the function r,(i) by defining
rp(iyu) as (i + 1,u) = rp(i,u) + {(1 4+ p)/p"} — L fori = 0,... and r,(0,u) = u, where
u is a draw from the uniform distribution, U(0,1). For w = 0 the standard Halton
sequence is generated. Another way to produce randomized Halton sequences is to shift
the Halton sequence by adding u as described by Train (2003, 234), i.e., {r,(i) + u} (in
Mata {z} is implemented using mod(x,1); see [M-5] mod()). The two techniques will
not, however, generate the same sequence.
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These randomized Halton point sets can be used to estimate the error of the numer-
ical integration by repeatedly estimating the integral, using different uniform variates
as starting values for the sequence. A bound on the desired error of the numeric in-
tegration, €, can be obtained using the variance of the integral estimates, o2, and the
Chebyshev inequality, Pr(e < ko) > 1 — 1/k?, where the constant k determines the
confidence bound (e.g., k = 5 gives Pr = 0.96).

We will not delve further into this topic, but for a good example of a Monte Carlo al-
gorithm to compute multivariate normal probabilities that could use randomized Halton
point sets, see Genz (1992). Moreover, Stata 9.1 provides the Mata function ghalton()
to compute these generalized Halton point sets. We will next document this function
as well as the Mata functions halton() and _halton().

4 The Mata function halton()

4.1 Syntax
real matrix halton(real scalar n, real scalar d [ , real scalar start
[ , real scalar hammersley”)
void _halton(real matriz x [ , real scalar start

[ , real scalar hammersley”)

real colvector ghalton(real scalar n, real scalar base, real scalar u)

4.2 Description

halton(n, d) returns an n X d matrix containing a Halton set of length n and dimen-
sion d.

halton(n, d, start) does the same thing, but the first row of the returned matrix
contains the sequence starting at index start. The default is start = 1.

halton(n, d, start, hammersley), with hammersley # 0, returns a Hammersley set
of length n and dimension d with the first row of the returned matrix containing the
sequences starting at index start.

_halton(x) modifies the n x d matrix so that it contains a Halton or Hammersley set
of dimension d of length n.

ghalton(n, base, u) returns an n X 1 vector containing a (generalized) Halton se-
quence using base base and starting from u € [0,1). For v = 0, the standard Halton
sequence is generated. If u is a uniform (0, 1) variable, the randomized Halton sequence
is generated.
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4.3 Remarks

The Halton sequences are generated from the first d primes and generally have more
uniform coverage over the unit cube of dimension d than that of sequences generated
from pseudouniform random numbers. However, Halton sequences based on large primes
(d > 10) can be highly correlated, and their coverage can be worse than that of the
pseudorandom uniform sequences.

The Hammersley set contains the sequence (2¢ — 1)/(2n), ¢ = 1,...,n, in the first
dimension and Halton sequences for dimensions 2, ..., d. If index is given then the first
dimension is mod ((2*i-1)/(2#%n),1), i = index, ..., index + n—1.

_halton() modifies z and can be used when repeated calls are made to generate long
sequences in blocks. Here update the start index between calls by using
start = start + rows(z).

ghalton() uses the base base, preferably a prime, and generates a Halton sequence
using 0 < u < 1 as a starting value. If w is uniform (0, 1), the sequence is a randomized
Halton sequence. For u = 0, the sequence is the standard Halton sequence. Blocks of
sequences can be generated by ghalton() by using the last value in the vector returned
from a previous call as u. For example,

base = 5

x = J(n,1,0)

for (i=1; i<=k; i++) {
x[.] = ghalton(n, base, x[nl)

}

4.4 Conformability

halton(n, d, start, hammersley):

mput:
n: 1x1
d: 1x1
start: 1 x 1 (optional)
hammersley: 1 x 1 (optional)
output:
result: n x d

_halton(x, start, hammersley):

mput:
z: n x d
start: 1 x 1 (optional)
hammersley: 1 x 1 (optional)
output:

T n X d
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ghalton(n, base, u):

mput:
n: 1x1
base: 1x1
u: 1x1
output:
result: n x 1

4.5 Diagnostics

The maximum dimension, d, is 20. The scalar index start must be a positive integer,
and the scalar v must be 0 < u < 1.

5 Analysis

Here we use examples and simulations to provide intuition for why the Halton and Ham-
mersley point sets provide better approximations to low-dimensional integrals, whereas
pseudorandom points do better for higher-dimensional integrals. Our simulations lead
to conjecture that pseudorandom point sets will outperform Halton and Hammersley
point sets for d > 10.

Figure 1 shows a matrix scatterplot of Halton, Hammersley, and pseudorandom point
sets of dimension 4 and length 200. For the pseudorandom point sets, each dimension
is started with a different random-number generator seed. The scatter for dimensions
2-4 of the Hammersley and Halton point sets are the same for dimensions 1-3.%

6. The (1,1), (2,1), and (2,2) Halton boxes correspond to the (2,2), (3,2), and (3,3) Hammersley boxes,
where box (,5) is in the ith row and the jth column.
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Halton Hammersley

Uniform

Figure 1: Matrix scatterplot of the first 200 points of the Halton and Hammersley sets
of dimension 4 as well as a set of 200 x 4 uniform pseudorandom numbers

For a numerical exposition of uniform coverage of the point sets, we simulate a
discrepancy measure by partitioning the C? = [0,1) into ¢ subintervals and for each

grid
{z’l—l i1> {iz—l ig) [id—l id>
s T X s X : s T
q q q q q q

. . ii—1 i ”
fori; =1,...,q; we generate uniforms uy; € [”q , %), and for repetition, k = 1,...,m,

we compute

NX, ) 1
D(X,uy) = - H Upj
where X = (x1,...x,)" is the n X d matrix containing one of the point sets, u; =
(Ug1, Ug2, - -, upq), and the function N (X, u) counts the number of vectors, x;, i =
1,...,n, that are less than or equal to ui. The vector, u;, that maximizes the discrep-
ancy in this region is saved. A local search is then made in a region around this vector
that has a grid width of 2/n,
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1 1 1 1 1 1
Ul — —, Ul + — | X [Ug2 — —,Ug2 + — | X oot |Ukd — —, Ukd + —
n n n n n n

The computations ensure that ug; — 1/n > 0 and ug; + 1/n < 1 for all ki. A search
for a new maximum is performed within the subregion generating up to [\/31 - 10 new
uniform vectors. If a new maximum is found, another local search is done in a region
centered about this new maximum. This searching continues until a new maximum is
no longer found. After the random search for a local maximum completes, the algorithm
moves on to another of the ¢¢ grids.

By partitioning [0, 1) into subintervals and generating uniforms on [(i; — 1)/q,1;/q),
j=1,...,q, the random search for local maxima is concentrated on each subregion. We
thought that this method would yield a more efficient (random) search for a maximum on
[0,1)%, especially for larger dimensions, d. However, the larger the dimension and with
q held constant, the number of grids, ¢¢, and the total number of uniform vectors used
in the search, IV, increases dramatically. Moreover, the searches for local maxima are
expensive in terms of the number of uniform vectors generated, but by casual observation
it was worth the effort. We tried a more naive approach to simulating the discrepancy
by generating millions of uniform vectors on C? and taking the maximum, but the
choice of N, the total number of vectors, was too subjective. By contrast, with our
proposed search algorithm, the size of N is driven by the algorithm after we choose m,
the number of uniform vectors for the initial search in each grid, and g, the number of
partitions for each dimension. For each estimate, we used ¢ = 10 so we only simulate
the discrepancies up to dimension d = 6. We used m = [\/E] - 10 initial replications
for each search for the local maximum on each grid, where [z] is the integer value of z
such that x < [z] <z + 1 (see [M-5] trunc()).

We will discuss the simulated discrepancy estimates for n = 200 with d = 2,...,6
later and give the discrepancy estimates for the point sets displayed in figure 1, where
d =4 and n = 200.

To compute the simulated discrepancy for d = 4 with ¢ = 10, 10* = 10,000 grids
were used. We used m = 20 replicates within each grid to obtain the initial maxima. A
total of N, = 1,274,030, N, = 1,164,460, and N,, = 1,078,790 uniform vectors were used
in searching for the maximum simulated discrepancy for the Halton, Hammersley, and
uniform point sets, resulting in estimates of 0.051, 0.038, and 0.108, respectively. We
repeated the experiment, using a different random-number seed and produced estimates
of 0.047, 0.044, and 0.103, for the same Halton, Hammersley, and uniform point sets.
The number of uniform vectors used to produce these estimates were N;, = 1,273,720,
N, = 1,178,140, and N,, = 1,089,620, respectively.

In figure 2, we show a line plot of the simulated discrepancies for d = 4 and as n
increases from 50 to 500. Each simulated discrepancy is computed using m = 20, ¢ = 10.
The plot demonstrates that for d = 4 the uniform point set requires a substantially
larger n to achieve the same numeric accuracy in (quasi) Monte Carlo integration as
do the Halton and Hammersley point sets. For larger n, the simulated discrepancy for
the Halton and Hammersley point sets are about equivalent. The value of N for each
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estimate was on the order of 105. Here the local maxima search interval width of 2/n
has an effect on the size of N. We found that if we fixed the width to 0.01, say, then
N decreased with n. At n = 50, the Halton simulated discrepancy is smaller than the
Hammersley.

.15

Simulated discrepancy

0 100 200 300 400 500
Number of points

Halton ———--—-—- Hammersley
........... Uniform

Figure 2: Line plot of the simulated discrepancy of the Halton, Hammersley, and a
uniform point set with dimension 4 and as n goes from 50 to 500

Be careful when working with Halton sequences generated from large bases since
these sequences can be highly correlated because of their large period [the number of
points to cycle through [0,1)]. For example, figure 3 contains matrix plots of Halton
sets of length 200, 400, 600, and 800 based on primes 41, 43, 47, and 53. These are the
primes that are used for dimensions 13—16. The simulated discrepancy (using m = 20
and ¢ = 10) for these four dimension point sets are 0.218, 0.132, 0.079, and 0.047. For
comparison, recall that the simulated discrepancy for our uniform point set of length
200 is 0.110, and we extended this point set to lengths 400, 600, and 800, which have
simulated discrepancies of 0.072, 0.057, and 0.046, respectively. We speculate that for
d > 10 dimensions and holding n = 200 that the uniform point sets will outperform the
Halton and Hammersley. However, for such a large problem we would be compelled to
use a value of n that is much larger than 200.

(Continued on next page)
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Figure 3: Matrix scatterplot of the first 200, 400, 600, and 800 points of a Halton set
of dimension 4 computed from the primes 41, 43, 47, and 53

Table 1 contains the correlations of these sequences and, for reference, the correla-
tions of the sequences based on primes 2, 3, 5, and 7.

Table 1: Correlations of the Halton sequences computed from the primes 2, 3, 5, and 7
and from the primes 41, 43, 47, and 53

Prime 2 3 5 Prime 41 43 47
3 —0.0197 43 0.4442
5 —0.0026 —0.0226 47 | —0.1129 0.1141
7 —0.0100 —0.0071 —0.0087 53 0.0594 —0.1025 0.0127

In figure 4, we show the simulated discrepancy computed for the Halton, Hammer-
sley, and uniform point sets for dimensions 2—6 and n = 200.
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Simulated discrepancy
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Figure 4: Plots of the simulated discrepancy for the Halton, Hammersley, and uniform
point sets versus dimension

Table 2 gives the simulated discrepancies, the values of m, and the number of uniform
vectors used for each estimate. The simulation parameter ¢ is 10 for all simulations,
and we ran the experiment twice to see how variable the estimates are.

Table 2: Dimension (d), initial replications (m), and the total number of uniform random
vectors (Ny, N, and N,,) used to compute the simulated discrepancy for the Halton
(dp), Hammersley (d, ), and uniform (d,,) point sets, respectively

dlm  dy N,  dy N, dy, N,
2120 0.022 4,790 0.015 4,450 0.090 5,840
0.022 4,910 0.017 4,380 0.090 6,070
3120 0.034 71,920 0.026 62,210 0.094 81,530
0.034 70,450 0.027 62,430 0.098 81,800
420 0.051 1,274,030 0.038 1,164,460 0.108 1,078,790
0.047 1,273,720 0.044 1,117,140 0.103 1,089,620
530 0.067 22,744,800 0.055 21,166,660 0.122 18,933,860
0.062 22,804,790 0.055 21,187,290 0.124 18,894,130
6|30 0.070 359,686,190 0.069 329,428,640 0.118 308,206,150
0.067 359,581,140 0.067 329,310,390 0.110 307,968,840
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The variability between simulated discrepancies for the two replicates demonstrates
that the algorithm works only moderately well, but it is good enough to illustrate the
theory of section 3.1.

Theoretically, the discrepancy for the uniform point set is independent of the di-
mension. The graph shows that the uniform discrepancy slightly increases to about 0.1
where a potential leveling off occurs, but we need to continue the simulations beyond
dimension 6 to really tell. The plot also demonstrates that the discrepancies for the
Halton and Hammersley sets are increasing with dimension, but not exponentially as
the theory proposes (see section 3.1). We can speculate that this phenomenon occurs
beyond dimension 6 with n = 200, but simulating beyond d = 6 with the same exper-
iment parameters, m and g, is intractable. These simulation experiments support the
theory that Hammersley point sets will give slightly better performance over the Halton
point set in quasi-Monte Carlo integration.

Again, we use a specific uniform point set where each pseudorandom sequence for
each dimension is started from a unique random-number seed, and as the dimension
increased the seeds for lower dimensions are reused so that these sequences remained
the same.

These simulations lead us to conjecture that pseudorandom point sets will provide
better approximations to integrals of dimension greater than 10. In future work, we
plan to seek stronger support for this conjecture and to look for other quasirandom
sequences whose point sets work well in higher dimensions.
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