

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Guest Editor
David M. Drukker
StataCorp

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet, Sweden and
Univ. degli Studi di Milano-Bicocca, Italy

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zurich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
Imperial College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editor

Lisa Gilmore

Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2006)
6, Number 2, pp. 190–213

A Mata Geweke–Hajivassiliou–Keane
multivariate normal simulator

Richard Gates
StataCorp

College Station, TX

rgates@stata.com

Abstract. An accurate and efficient numerical approximation of the multivariate
normal (MVN) distribution function is necessary for obtaining maximum likeli-
hood estimates for models involving the MVN distribution. Numerical integration
through simulation (Monte Carlo) or number-theoretic (quasi–Monte Carlo) tech-
niques is one way to accomplish this task. One popular simulation technique is the
Geweke–Hajivassiliou–Keane MVN simulator. This paper reviews this technique
and introduces a Mata function that implements it. It also computes analytical
first-order derivatives of the simulated probability with respect to the variables
and the variance–covariance parameters.

Keywords: st0102, GHK, maximum simulated likelihood, Monte Carlo, quasi–
Monte Carlo, importance sampling, number-theoretic statistics

1 Introduction

Estimation of parameters for probit models, such as the multinomial probit ([R] asm-
probit) and the multivariate probit (mvprobit, Cappellari and Jenkins [2003, 2005,
2006]), requires numerical integration to approximate the multivariate normal (MVN)
distribution. There are several techniques to carry out this task, but this paper con-
centrates on the Geweke–Hajivassiliou–Keane (GHK) MVN simulator (Geweke [1989],
Hajivassiliou and McFadden [1998], and Keane [1994]), an importance-sampling tech-
nique that samples recursively from truncated normals after a Cholesky transformation.
I review this technique and introduce a Mata function, ghk(), available in Stata 9.1,
that implements it. This function also computes the first-order derivatives of the simu-
lated probability with respect to the variables and the variance–covariance parameters
as described by Bolduc (1999).

The following sections will discuss the GHK algorithm as a series of transformations
as presented by Genz (1992), a technique that has a more number-theoretic flavor. Fol-
lowing is a discussion of the algorithm as an importance-sampling technique to numerical
integration of the MVN density function (Geweke 1989). Section 3 gives an overview of
the first-order analytic derivatives of the simulated probability (Bolduc 1999). I present
Mata code that implements the simulator followed by documentation of the Mata func-
tion ghk(), introduced in release 9.1 of Stata. Finally, I give an example using the
function ghk() to estimate the parameters of a multinomial probit model.

c© 2006 StataCorp LP st0102

R. Gates 191

2 GHK MVN simulator

Let X = (X1,X2, . . . , Xm) be distributed multivariate normal, X ∼ MVNm(0, Σ), with
density φm(x|Σ) and distribution function

Φm(x|Σ) =
∫ x1

−∞
. . .

∫ xm

−∞
φm(y|Σ) dy

=
1

(2π)m |Σ| 12
∫ x1

−∞
· · ·

∫ xm

−∞
exp

(−1
2y

′Σ−1y
)
dy

One approach to (quasi) Monte Carlo integration of the MVN density function is to
transform the domain of integration to the unit interval of dimension m, Cm = [0, 1]m,

Φm(x|Σ) =
∫ 1

0

. . .

∫ 1

0

f(u) du (1)

I will postpone defining the function f until the next section, but assuming f can be
obtained, then for a set of n vectors {ũi ∈ [0, 1)m, i = 1, . . . , n} with elements that are ei-
ther independently distributed uniform on [0, 1), U(0, 1), or a deterministic set of points
that have a uniform spread on [0, 1), the approximation to Φm(x|Σ) =

∫
Cm f(u) du is

1/n
∑n

i=1 f(ũi). I next discuss these transformations as presented by Genz (1992).

2.1 Transformations

The discussion presented here for transforming the domain of integration to the unit
interval is taken from Genz (1992). First, define φm(·) = φm(· |Im) and Φm(·) =
Φm(· |Im), where Im is the m × m identity matrix. Φ1(·) is the univariate standard
normal distribution. I start by first taking the Cholesky factorization of the variance–
covariance Σ = TT′ and making the change of variables y = Tz so that dy = |T|dz =
|Σ|1/2dz. The bounds of integration are −∞ < Tz ≤ x and can be rewritten as

−∞ < z1 ≤ x1

/
t11 = b1 and −∞ < zi ≤ (xi −

i−1∑
j=1

tijzj)
/

tii = bi(z1, . . . , zi−1), for i =

2, . . . , m. Now I have

Φm(x|Σ) = Φm(b) = (2π)−m
∫ b1

−∞

∫ b2(z1)

−∞
· · ·

∫ bm(z1,...,zm−1)

−∞
exp

(−1
2z

′z
)

dz

=
∫ b1

−∞

∫ b2(z1)

−∞
· · ·

∫ bm(z1,...,zm−1)

−∞
φm (z) dz (2)

Using the transformations zi = Φ−1
1 (vi), i = 1, . . . , m, and noting that dz =

dv/φm(z), the integral simplifies to

192 A GHK MVN simulator

Φm(x|Σ) =
∫ a1

0

∫ a2(v1)

0

· · ·
∫ am(v1,...,vm−1)

0

dv

where a1 = Φ1 (x1/t11) and ai(v1, . . . , vi−1) = Φ1

[{
xi −

∑i−1
j=1 tijΦ−1

1 (vj)
}/

tii

]
, for

i = 2, . . . , m. Finally, substituting vi = aiui, ui ∈ [0, 1), i = 1, . . . , m − 1, yields

Φm(x|Σ) = a1

∫ 1

0

a2

∫ 1

0

· · · am

∫ 1

0

du

The approximation of (1) at a single point u = (u1, . . . , um−1)′ can be implemented by
the following algorithm:

1. a1 = f1 = Φ1 (x1/t11)

2. for i = 2, . . . , m, compute

a. zi−1 = Φ−1(ui−1 ai−1)

b. ai = Φ1

⎧⎨⎩
⎛⎝xi −

i−1∑
j=1

tijzj

⎞⎠/
tii

⎫⎬⎭
c. fi = fi−1 ai

Upon completion f(u) = fm, where the ui ∈ [0, 1) are either pseudorandom uniform
variates or from a deterministic sequence that has uniform coverage on [0, 1).

In the next section, I review the GHK MVN simulator as an importance-sampling
technique (Geweke 1989).

2.2 GHK as an importance-sampling technique

In importance sampling, we use a distribution, F , with density f(·) and support (−∞, b),
that is similar to Φ1 and easy to sample from. Then for the univariate case∫ b

−∞
φ1(z) dz =

∫ b

−∞

φ1(z)
f(z)

f(z) dz = EF

{
φ1(Z)
f(Z)

}
≈ 1

n

n∑
i=1

φ1(z∗i)
f(z∗i)

where Z ∼ F and the z∗i , i = 1, . . . , n are n draws from distribution F . Our application
of importance sampling uses the (singly) truncated normal distribution for F , with
density f(z) = φ1(z)/Φ1(b) (Johnson, Kotz, and Balakrishnan 1994).

R. Gates 193

Using (2), I can write

Φm(b) =
∫ b1

−∞
φ1(z1)

∫ b2(z1)

−∞
φ1(z2) · · ·

∫ bm(z1,...,zm−1)

−∞
φ1(zm) dz

= Φ1(b1)
∫ b1

−∞
f(z1) Φ1 {b2(z1)}

∫ b2(z1)

−∞
f(z2) Φ1 {b3(z1, z2)} · · ·

· · · Φ1 {bm(z1, . . . , zm−1)}
∫ bm(z1,...,zm−1)

−∞
f(zm) dz

≈ 1
n

n∑
i=1

Φ1 (b1) ·
m∏

j=2

Φ1

{
bj(z∗i1, . . . , z

∗
i,j−1)

}
where in the last equation the z∗ij , j = 1, . . . , m−1, are draws from the (singly) truncated
normal distribution. Truncated normal variates in this case are obtained by

z∗i1 = Φ−1 {ui1Φ(b1)}
and

z∗ij = Φ−1
[
uijΦ

{
bj(z∗i1, . . . , z

∗
i,j−1)

}]
for j = 2, . . . , m − 1, where the uij are draws from the U(0, 1) distribution.

Next I outline an algorithm in Mata to carry out the Monte Carlo integration.

2.3 Mata implementation of the GHK algorithm

I will use the results from section 2.1 to create Mata code to implement the GHK

simulator since the series of transformations presented by Genz (1992) is conceptually
programmatic.

In Mata, I would like to avoid looping and take advantage of Mata’s vector operator,
: (see [M-2] op colon). Because of the recursive nature of the simulator, I will need to
loop over the dimensions, but I can process all n simulated values in a vector algorithm
and gain some efficiency at the expense of memory consumption. In the code snippet
below, assume that V = Σ and that x is a vector of length m containing the upper
bounds of integration.

z = J(n,m-1,0)
a = J(n,1,x[1])
p = J(n,1,1)
T = cholesky(V)’
for (j=1; j<=m; j++) {

if (j > 1) a = J(n,1,x[j]) - z[,1::(j-1)]*T[1::(j-1),j]

a = normal(a:/T[j,j])
p = p:*a
if (j < m) z[.,j] = invnormal(uniform(n,1):*a)

}
pr = sum(p)/n

Upon completion pr, a scalar, contains the simulated probability.

194 A GHK MVN simulator

3 First-order derivatives

Computational speed of maximum simulated-likelihood estimates using the GHK MVN

simulator is greatly enhanced with the ability to compute analytical first-order deriva-
tives of the simulated probability with respect to the variables and the variance–
covariance parameters. This enhancement can be surpassed only by analytical second-
order derivatives, but to my knowledge these have not been derived to date. The clever
derivation of the first-order derivatives presented here is taken from Bolduc (1999).

Here I deal only with the univariate standard normal distribution functions, so
Φ(·) ≡ Φ1(·) and φ(·) ≡ φ1(·). I will concentrate on one simulated probability since
the derivatives for the n simulated values will simply be the mean of the individual
derivatives. Also for ease of notation, I will denote a vector of the first i elements of
z∗ as z∗(i) = (z∗1 , . . . , z∗i)′ and t(i) = (t11, t21, . . . , ti1, t22, . . . , tii)′ = vech(T(i)), where
vech(·) is the half-vectorization operator (Lütkepohl 1996) and T(i) is the submatrix of
T that includes the first i rows and columns. Finally, let δ = (x′,vech(T)′)′.

I denote p(·) as the simulated probability and then recall from section 2 that

p(δ) = Φ {b1(x1, t11)} ·
m∏

i=2

Φ
{

bi(x(i), z∗(i−1), t(i))
}

where the z∗i s are recursive functions of x = (x1, . . . , xm)′ and T:

z∗1(x1, t11) = Φ−1 {u1 · Φ(x1/t11)} and

z∗j (x(j), z∗(j−1), t(j)) = Φ−1
[
uj · Φ

{
bj(xj , z∗(j−1), t(j))

}]
Here I have added the dependency of the functions b(·) on the x’s and the tij ’s since

b1(x1, t11) = x1/t11 and bi(x(i), z∗(i−1), t(i)) =
{

xi −
∑i−1

j=1 tijz
∗
j (x(j), z∗(j−1), t(j))

}/
tii

for i = 2, . . . , m.

First, the simulated probability can be expressed as p = exp
[
log

{∏m
j=1 Φ(bj)

}]
so

∂p

∂δl
= p

m∑
j=1

∂ log {Φ(bj)}
∂δl

= p

m∑
j=1

φ(bj)
Φ(bj)

∂bj

∂δl
(3)

I continue using the chain rule for xi = δl

∂bj

∂xi
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
tjj

if i = j

− 1
tjj

j−1∑
k=1

tjk
∂z∗k
∂xi

if i < j

0 otherwise

(4)

R. Gates 195

I end this chain, recursing back to the last equations

∂z∗k
∂xi

=
uk · φ(bk)

φ [Φ−1 {uk · Φ(bk)}]
∂bk

∂xi

=
uk · φ(bk)

φ (z∗k)
∂bk

∂xi
(5)

Now I continue the chain rule in (3) with tik = δl, i ≥ k:

∂bj

∂tik
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− x1

t211
if i = j = k = 1

−xj +
∑j−1

h=1 tjh · z∗h
t2jj

if i = j = k > 1

− z∗k
tjj

if i = j > k

− 1
tjj

j−1∑
h=1

tjh
∂z∗h
∂tik

if j > i ≥ k

or equivalently

∂bj

∂tik
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− bj

tjj
if i = j = k

− z∗k
tjj

if i = j > k

− 1
tjj

j−1∑
h=1

tjh
∂z∗h
∂tik

if j > i ≥ k

(6)

As before, this chain ends by recursing back to the last equations

∂z∗h
∂tik

=
uh · φ(bh)

φ (z∗h)
∂bh

∂tik
(7)

3.1 Mata implementation of the derivatives

To implement the derivative computations, I must return to the GHK simulator algo-
rithm and save some intermediate computations.

(Continued on next page)

196 A GHK MVN simulator

z = J(n,m-1,0)
a = J(n,1,x[1])
b = J(n,m,0)
dp = J(n,m,0)
dz = J(n,m-1,0)
p = J(n,1,1)
T = cholesky(V)’
for (j=1; j<=m; j++) {

if (j > 1) a = J(n,1,x[j]) - z[,1::(j-1)]*T[1::(j-1),j]
a = a:/T[j,j]
b[.,j] = a
f = normalden(a)
a = normal(a)
dp[.,j] = f:/a
p = p:*a
if (j < m) {

u = uniform(n,1)
a = invnormal(u:*a)
dz[.,j] = u:*f:/normalden(a)
z[.,j] = a

}
}
pr = sum(p)/n

Upon completion, the n × m matrix dp contains the ratios φ(bj)/Φ(bj), j = 1, . . . , m,
and the n × m − 1 matrix dz contains uj · φ(bj)/φ

(
z∗j
)
, j = 1, . . . , m − 1.

I continue with the Mata code to compute ∂p/∂xj , j = 1, . . . , m. Here I use a
recursive Mata function, dbdx, and perform vector computations to all n simulation
points.

(Continued on next page)

R. Gates 197

real colvector dbdx(real scalar j, real scalar i, real matrix dz, real matrix T)
{

real scalar k, n
real colvector dxk, dx

n = rows(dz)
/* equations (4) and (5) */

dx = J(n,1,1/T[j,j])
if (j > i) {

dxk = J(n,1,0)
for (k=i; k<j; k++) dxk = dxk - J(n,1,T[j,k]):*dz[,k]:*dbdx(k,i,dz,T)
dx = dx:*dxk

}
return(dx)

}
T = T’
dx = J(1,m,0)
for (l=1; l<=m; l++) {

dxl = J(n,1,0)
/* equation (3) */

for (j=l; j<=m; j++) dxl = dxl + dp[,j]:*dbdx(j,l,dz,T)
dx[l] = sum(p:*dxl)/n

}

Recall that I transposed T to upper triangular, so I first return it to lower triangular.
Upon completion, the vector dx of length m contains ∂p/∂xj , j = 1, . . . , m.

I next present Mata code to compute ∂p/∂vech(T). Again I use a recursive function,
dbdt, to carry out the vector computations.

real colvector dbdt(real scalar j, real scalar i, real scalar k, real matrix dz,
real matrix z, real matrix b, real matrix T)

{
real scalar k, n
real colvector dt

n = rows(dz)
/* equations (6) and (7) */

if (i==k && j==k) dt = -b[,j]
else if (i==j) dt = -z[,k]
else {

dt = J(n,1,0)
for (h=i; h<j; h++) dt = dt - J(n,1,T[j,h]):*dz[,h]:*dbdt(h,i,k,dz,z,b,T)

}
return(dt:/J(n,1,T[j,j]))

}

l = 0
dt = J(1,m*(m+1)/2,0)
for (k=1; k<=m; k++) {

for (i=k; i<=m; i++) {
dtl = J(n,1,0)

/* equation (3) */
for (j=i; j<=m; j++) dtl = dtl + dp[,j]:*dbdt(j,i,k,dz,z,b,T)
dt[++l] = sum(p:*dtl)/n

}
}

Upon completion, the vector dt contains ∂p/∂vech(T).

198 A GHK MVN simulator

I promised that I would produce the first-order derivatives of the simulated prob-
ability with respect to vech(Σ). Again Bolduc (1999) provides the matrix differential
calculus to carry out this task, which is easily implemented using Mata. First, I review
the calculus.

I can express vech(Σ) as

vech(Σ) = vech(TT′) = L′
m (T ⊗ Im)Lm vech(T)

= L′
m (Im ⊗ T)Km vech(T)

where ⊗ is the Kronecker product (Magnus and Neudecker 1988) and the m · m ×
m(m + 1)/2 matrices Lm and Km are such that vec(T) = Lm vech(T) and vec(T′) =
Km vech(T). Here vec(T) is the vector operator that returns a vector of length m · m
containing the matrix columns stacked on top of one another (Magnus and Neudecker
[1988] or Lütkepohl [1996]). The Jacobian of the Cholesky transformation is

∂vech(Σ)
∂vech(T)′

= L′
m {(T ⊗ Im)Lm + (Im ⊗ T)Km} = A (8)

so the derivatives I seek are

∂p

∂vech(Σ)′
=

∂p

∂vech(T)′
∂vech(T)
∂vech(Σ)′

=
∂p

∂vech(T)′
A+

where A+ is the Moore–Penrose (MP) inverse of A (Magnus and Neudecker 1988).

I carry out these last computations by first introducing the Mata function duplower()
that computes Lm and Km, but in vector form. The matrices Lm and Km are matri-
ces of 0s with a single 1 in each row and column (or none at all, since there are only
m(m− 1)/2 of them). Just as with permutation matrices, I can gain efficiency by using
vectors that address the column (row) indices of the matrix instead of using matrix
multiplication. (See also [M-1] permutation for more on permutation matrices.) For
example, the matrix multiplication AL3, where A is 9 × 9 and

L3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
can be implemented in Mata as A[,vL] where vL is

R. Gates 199

1 2 3 4 5 6

1 1 2 3 5 6 9

void duplower(real scalar m, real vector vL, real vector vK)
{

real scalar i, j, k, l

vK = vL = J(m*(m+1)/2,1,.)
k = l = 0
for (j=1; j<=m; j++) {

for (i=j; i<=m; i++) {
vL[++l] = ++k
vK[l] = (i-1)*m+j

}
k = k + j

}
}
vK = vL = J(0,1,.)
duplower(m, vL, vK)
dv = dt*qrinv(((T#I(m))[,vL]+(I(m)#T)[,vK])[vL,])

Here I carry out the matrix computation for ∂p/∂vech(Σ) in one line of Mata code
making use of Mata’s Kronecker operator # (see [M-2] op kronecker). I could have used
the Mata function pinv() ([M-5] pinv()), which uses singular value decomposition to
carry out the MP inverse with more accuracy, but I chose the QR-based function qrinv()
([M-5] qrinv()), reasoning that it may be a bit faster.

I next introduce the Mata function ghk(), which carries out the computations dis-
cussed thus far.

4 The Mata function ghk()

4.1 Syntax

real scalar ghk(real vector x, real matrix V, real vector opt, real scalar rank)
real scalar ghk(real vector x, real matrix V, real vector opt, real scalar rank,

real rowvector dfdx, real rowvector dfdv)

(Continued on next page)

200 A GHK MVN simulator

4.2 Description

ghk(x, V , opt, rank) returns a real scalar containing the simulated value of the
MVN distribution with variance–covariance V at the point x . opt is a vector of length
4 containing the following simulator options:

opt[1] = 1 Halton sequence
2 Hammersley sequence
3 uniform pseudorandom sequence

opt[2] > 0 number of points to use in the simulation
opt[3] > 0 index of the first draw (optional for Halton or Hammersley sets)
opt[4] �= 0 use antithetic draws (optional)

On return, rank contains the rank of V.

ghk(x, V , opt, rank, dfdx, dfdv) does the same thing but also returns the first-
order derivatives of the simulated probability with respect to x in dfdx and the simulated
probability derivatives with respect to vech(V) in dfdv , where vech() is the half-
vectorization operator (see [M-5] vec()).

4.3 Remarks

Halton and Hammersley point sets are composed of deterministic sequences on [0,1) and,
for sets of dimension less than 10, generally provide better coverage than the uniform
pseudorandom sequences.

Antithetic draws effectively double the number of points and reduce the variability of
the simulated probability. For draw u, the antithetic draw is 1 − u.

If you are using ghk() in a likelihood evaluator for ml, be sure to use the same se-
quence with each call to the likelihood evaluator. For a uniform pseudorandom sequence
(opt[1] = 3), you must set the uniform random-number generator seed, uniformseed(),
to the same value with each call to the likelihood evaluator. If you are using the Halton
or Hammersley sets, you will want to keep the sequences going with each call to ghk()
within one likelihood evaluation. This task is done by first initializing opt[3] = 1 on
entering the ml likelihood evaluator and computing the increment opt[3] =opt[3]+opt[2]
after each call to ghk() to compute the likelihood of each observation.

R. Gates 201

4.4 Conformability

ghk(x, V , opt, rank):
input :

x : 1 × m or m × 1
V : m × m (symmetric, positive definite)

opt : 1 × 4 or 4 × 1
output :

result : 1 × 1
rank : 1 × 1

ghk(x, V , opt, rank, dfdx, dfdv):
input :

x : 1 × m or m × 1
V : m × m (symmetric, positive definite)

opt : 1 × 4 or 4 × 1
output :

result : 1 × 1
rank : 1 × 1
dfdx : 1 × m
dfdv : 1 × m(m + 1)/2

4.5 Diagnostics

The maximum dimension, m, is 20.

The V must be symmetric and preferably positive definite. ghk() will not terminate if
V is not positive definite, where the returned value of rank will be less than rows(V).
The function uses a Cholesky routine that pivots out the rows and columns of V (as
well as elements of x) that make V indefinite. The corresponding elements of dfdx and
dfdv are zero. Although the MVN distribution is not defined for indefinite variance–
covariance matrices, an indefinite V can occur early in an ml optimization, and this
flexible behavior may allow the optimization process to continue. If this is not desirable
behavior in your program, add the line

if (rank < rows(V)) exit(3353)

just after the call to ghk().

5 A multinomial probit example

The Mata function ghk() can be used in any Stata ml likelihood evaluator that in-
volves the MVN distribution. I will demonstrate its use in estimating the regression and
variance–covariance parameters of the multinomial probit model. This implementation
of the model will be somewhat simpler than that of the Stata program asmprobit.

202 A GHK MVN simulator

I first give a quick review of the key features of the multinomial probit model that
I will have to address to interface with the ghk() function. See Methods and Formulas
in [R] asmprobit for more details of the model or, better yet, Train (2003), chapter
5. I then develop another Mata function to implement the multinomial probit–specific
computations. Finally, I produce the ado-likelihood evaluator that is ml callable. For
simplicity, the ado-code will be specific to my example, which will estimate the multi-
nomial probit parameters for the travel data demonstrated in [R] asmprobit.

5.1 A multinomial probit model synopsis

The multinomial probit model applied to a discrete choice problem with m alternatives
requires the evaluation of the m − 1 dimension MVN distribution function. One alter-
native is chosen as the base alternative to normalize location, giving us m − 1 latent
variable equations. For simplicity of discussion, I will assume that the base alternative
is the one associated with index m. I can express the equations for one case (individual)
as

yj = (xj − xm)′β + z′αj + εj

= ηj + εj (9)

for j = 1, . . . , m − 1, and where the xj are alternative-specific variables that vary
with each alternative, β are their associated coefficients, and the z are the case-specific
variables that are constant for each alternative (but not for each case), with the αj

their associated coefficients (one set for each alternative, less the base). The vector
ε = (ε1, . . . , εm−1)′ are distributed MVNm−1(0,Σ). The alternative chosen is the one
associated with index j such that yj is the maximum and yj > 0, j = 1, . . . , m − 1. If
all yj < 0, then alternative m is chosen.

For this model, I estimate the p parameters of β and the q(m−1) parameters of the
αj = (αj1, . . . , αjq)′, j = 1, . . . m−1. The covariance matrix Σ has only m(m−1)/2−1
identifiable parameters, or one less than the unique values of Σ, or vech(Σ) = (σij), i ≥
j. I will fix σ11 = 1, thereby normalizing the scale.

5.2 A Mata multinomial probit function

Here I describe a Mata function, mnp(), that manipulates latent variables computed by
my ml likelihood evaluator to create the input matrices for the Mata ghk() function. It
will also take the first-order derivatives computed by the ghk() function and make the
necessary Jacobian transformations to create the score variables needed by the likelihood
evaluator.

The equations defined in my call to ml will provide the mnp() function with m

variables, one for each alternative, such that vj = x′
jβ̂ + z′α̂j , for j = 1, . . . , m− 1 and

vm = x′
mβ̂. I need to transform these variables into vectors that have the form of (9).

Assume that I have an m × 1 vector v = (v1, . . . , vm)′ for an individual case. I can
generate an m − 1 × m matrix N4 such that

R. Gates 203

N4 =

⎛⎝1 0 0 −1
0 1 0 −1
0 0 1 −1

⎞⎠
so that η = N4v. Further assume that the individual chose the second alternative, so
I need to compute the probability that this choice is made given the current estimates
β̂ and α̂j , j = 1, . . . , m − 1. That is, I need to compute the probability that y2 is
the largest and that it is not less than zero. This probability can be expressed as
Pr {y1 − y2 ≤ 0, y3 − y2 ≤ 0,−y2 ≤ 0}. I transform the variables by using the 3 × 3
matrix M2

M2 =

⎛⎝1 −1 0
0 −1 1
0 −1 0

⎞⎠
so I have w = M2N4v = N2v, where the matrix Nj is an m−1×m matrix constructed
from the m×m identity matrix with the jth column replaced with a vector of −1s and
the jth row removed. The matrix Mj is then the matrix Nj with the fourth column
removed. The error terms for the transformed variables w, γ = (γ1, . . . , γm−1)′, say, are
MVNm−1(0,M2ΣM′

2), and the probability statement is now Pr{γ1 ≤ −w1, . . . , γm−1 ≤
−wm−1}. I can estimate this probability with the Mata function ghk().

I need to ensure that the estimated variance–covariance matrix remains positive
definite throughout the optimization. One safe way is to optimize on the lower triangular
elements of the m − 1 × m − 1 Cholesky-factored covariance matrix, T, Σ = TT′.
Moreover, I have transformed the variance–covariance, Ω = McΣM′

c, where c is the
index of the choice made, c = 1, . . . , m. The Mata function ghk() will be computing
∂p/∂vech(Ω)′, and I will use these derivatives to compute ∂p/∂vech(T)′. Again I use
the results from Bolduc (1999).

∂p

∂vech(T)′
=

∂p

∂vech(Ω)′
L′

m−1 {(McT ⊗ Mc)Lm−1 + (Mc ⊗ McT)Km−1} (10)

Finally, I need to compute the first-order derivatives of p with respect to v from
those returned from ghk() (i.e., ∂p/∂w′) as

∂p

∂v′ = − ∂p

∂w′Nc (11)

(Continued on next page)

204 A GHK MVN simulator

Below I define the Mata function mnp().

void function mnp(string scalar sX, string scalar schoice, string scalar sT,
real scalar meth, real scalar draws, string scalar spr,|
string scalar sXscr, string scalar sTscr)

{
real scalar i, m, m1, n, c, todo, rank
real rowvector opt, g, s
real colvector x, choice, pr
real vector vL, vK
real matrix V, R, M, X, T, MT, Xscr, Tscr
pointer(real matrix) vector N

pragma unset X
st_view(X,.,tokens(sX))
pragma unset pr
st_view(pr,.,spr)
n = rows(X)
m = cols(X)
T = st_matrix(sT)
m1 = rows(T)
V = T*T’

pragma unset rank
pragma unset g
pragma unset s
pragma unset choice
st_view(choice,.,schoice)

if (todo=(args()==9)) {
pragma unset Xscr
pragma unset Tscr
st_view(Xscr,.,tokens(sXscr))
st_view(Tscr,.,tokens(sTscr))
pragma unset vL
pragma unset vK
duplower(m1, vL, vK)

}
N = J(m,1,NULL)
for (c=1; c<=m; c++) N[c] = &mnp_N(m,c)
opt = (meth, draws, 1, 0)
for (i=1; i<=n; i++) {

c = choice[i]
x = -(*N[c])*X[i,.]’
M = (*N[c])[,1::m1]
R = M*V*M’
if (todo > 0) {

pr[i] = ghk(x,R,opt,rank,g,s)
MT = M*T

/* equation (10) */
Tscr[i,.] = s*((MT#M)[,vL]+(M#MT)[,vK])[vL,]

/* equation (11) */
Xscr[i,.] = -g*(*N[c])

}
else pr[i] = ghk(x,R,opt,rank)

if (meth < 3) opt[3] = opt[3] + draws
}

}

R. Gates 205

In mnp() the function mnp N(), with scalar arguments m and c, computes the matrix
Nc for choice c of m alternatives. This function is simple enough that I do not display
the code.

Next I create an ado-likelihood evaluator that is callable from ml and uses my Mata
function mnp().

5.3 Multinomial probit maximum simulated likelihood using ml

I will write an ado-likelihood evaluator that is specific to this problem, using the same
travel data that demonstrate [R] asmprobit. These data contain information on 210
individuals’ choices of travel mode between Sydney and Melbourne. The four choices
are air, train, bus, and car, with indices 1, 2, 3, and 4, respectively, and are stored in
the variable mode. I will use two alternative-specific variables: travelcost, a measure
of generalized cost of travel that is equal to the sum of in-vehicle cost and a wage-
like measure times the amount of time spent traveling; and termtime, the terminal
time, which is zero for car transportation. Household income, income, is a case-specific
variable. Finally, the variable id is the integer variable identifying each case, and the
variable choice is a byte (0/1) variable indicating which choice is made.

To understand the logic of the likelihood evaluator, I first introduce the data reshap-
ing, initial estimate computations, and the ml call. I reshape the dataset so that it is
in wide format, but I use clogit to compute initial estimates for my call to ml first. I
chose the wide format for this demonstration since the data are balanced, there are four
alternatives for each case, and the ml likelihood evaluator tools mleval and mlvecsum
are more suited for the wide data format. The result is that less data manipulation and
ado-code are required in the likelihood evaluator so that I do not distract from the use
of the ghk() function itself. The program asmprobit expects the data in long format
since it must handle unbalanced data, where the number of alternatives varies with each
case, so this example also provides a different perspective on estimating the parameters
of a multinomial probit model in Stata.

The program clogit finds the regression estimates that maximize the conditional
logit likelihood. Here I condition the number of choices made by each case identified in
the variable id, the group variable in clogit jargon. Since there is one choice for each
group, the conditional logit likelihood is easily evaluated and although it has different
distributional assumptions, it produces good initial estimates for the multinomial probit
model. The initial estimates are further improved by scaling by the variance of the
extreme value distribution, π2/6. Below is the ado-code.

use http://www.stata-press.com/data/r9/travel, clear

/* alternative 4 (car) is base alternative */
forvalues i=1/3 {

gen int inc‘i’ = cond(mode==‘i’,income,0)
gen byte cons‘i’ = (mode==‘i’)
local model ‘model’ inc‘i’ cons‘i’

}
qui clogit choice termtime travelcost ‘model’, group(id)

206 A GHK MVN simulator

/* scale by extreme value variance */
mat b0 = e(b)*sqrt(6)/c(pi)
drop ‘model’

The case-specific variable income does not vary within id, so I need clogit to compute
an income regression coefficient for each level of mode except for car transportation,
the base alternative. To do so I need to do some legwork and generate new variables
that are the product of income with indicators for the first three modes of travel.
Moreover, the generated indicator variables will be included in the clogit varlist to
obtain alternative-specific intercepts. The Stata program asmprobit takes care of this
detail for you.

Next I reshape the dataset to wide format. Once done, there will be one record for
each case. In the varlist for reshape, I include the alternative-specific and the dependent
variables that are used in the model. Four new variables for each variable in varlist will
be generated, each prefixed with the variable name followed by the indices 1, 2, 3, and
4. I must drop the remaining two alternative-specific variables that exist in the dataset,
invehiclecost and traveltime, before the call to reshape. Finally, I generate a new
integer variable, choice, containing the index of the choice made by each individual.

drop invehiclecost traveltime
reshape wide choice termtime travelcost, i(id) j(mode)

gen int choice = 1 if choice1 == 1
replace choice = 2 if choice2 == 1
replace choice = 3 if choice3 == 1
replace choice = 4 if choice4 == 1

drop choice1 choice2 choice3 choice4

The model specification in the call to ml will contain nine equations: the first four are
for each mode of travel and the last five are for the Cholesky matrix parameters. The
equations for modes air, train, and bus transportation include termtime, travelcost,
and income, and by default ml will include a constant term for each. The equation for
mode car transportation includes only termtime and travelcost, and I add the option
noconstant since it is the base alternative. Below is the ado-code.

mat b0 = (b0[1,1..2],b0[1,3..4],b0[1,1..2],b0[1,5..6],b0[1,1..2], ///
b0[1,7..8],b0[1,1..2],J(1,5,0))

/* alternative-specific variables */
constraint 1 [air]termtime1 = [train]termtime2
constraint 2 [train]termtime2 = [bus]termtime3
constraint 3 [bus]termtime3 = [car]termtime4

constraint 4 [air]travelcost1 = [train]travelcost2
constraint 5 [train]travelcost2 = [bus]travelcost3
constraint 6 [bus]travelcost3 = [car]travelcost4

R. Gates 207

ml model d1 travel_lf ///
(air: choice=termtime1 travelcost1 income) ///
(train: choice=termtime2 travelcost2 income) ///
(bus: choice=termtime3 travelcost3 income) ///
(car: choice=termtime4 travelcost4, nocons) ///
/t21 /t31 /t22 /t32 /t33, init(b0,copy) max ///
constraints(1-6) search(off) tech(nr) collinear ///
shownrtol

The additional equation specifications /t21 /t31 /t22 /t32 /t33 are for the param-
eters of the Cholesky-factored variance–covariance. There are 5, not 3 · 4/2 = 6, since
there are only m(m−1)/2−1 identifiable variance–covariance parameters. I fix σ11 = 1
to scale the estimates, and this restriction means that t11 = 1. I also use the log trans-
form for the diagonal elements t22 and t33, so their initial estimates are 0 = log(1).

Finally, I constrain the alternative-specific parameter estimates to be equal for each
variable since there is only one parameter for each alternative-specific variable. I must
also use the option collinear to prevent ml from dropping termtime4 (it is all zeros),
and I know that the constraints will do the rank reduction that is necessary. This last
set of legwork is a side effect of having the dataset in wide format.

In the call to ml, the likelihood evaluator is identified as travel lf. I will present
this ado-code next with a discussion.

5.4 The ml likelihood evaluator

The ml likelihood evaluator, travel lf, acts as an interface between ado and Mata. The
Mata functions discussed thus far, ghk() and mnp(), are doing most of the computations.
The ado-program travel lf will compose the factored variance–covariance matrix from
the transformed parameter estimates and compute the latent variables by using the ml
helper program mleval. It then identifies the latent variables, score variables, choice
variable, and the factored variance–covariance matrix to mnp() by passing their names
as strings. Below is the ado-code.

program define travel_lf
args todo b lnf g negH sair strain sbus scar st21 st31 st22 st32 st33

if ‘todo’ > 0 {
tempvar st11
local xscrs ‘sair’ ‘strain’ ‘sbus’ ‘scar’
local tscrs ‘st21’ ‘st31’ ‘st22’ ‘st32’ ‘st33’

foreach scr of varlist ‘xscrs’ ‘tscrs’ {
qui replace ‘scr’ = 0

}
qui gen ‘st11’ = 0

}
tempname t21 t31 t22 t32 t33
tempvar lf air train bus car
local lvars ‘air’ ‘train’ ‘bus’ ‘car’
local tpars ‘t21’ ‘t31’ ‘t22’ ‘t32’ ‘t33’

208 A GHK MVN simulator

local k = 0
foreach l in ‘lvars’ {

mleval ‘l’ = ‘b’, eq(‘++k’)
}
foreach t in ‘tpars’ {

mleval ‘t’ = ‘b’, scalar eq(‘++k’)
}
scalar ‘t22’ = exp(‘t22’)
scalar ‘t33’ = exp(‘t33’)

tempname T
mat ‘T’ = (1, 0, 0 \ ‘t21’, ‘t22’, 0 \ ‘t31’,‘t32’, ‘t33’)
qui gen double ‘lf’ = .
if ‘todo’ > 0 {

mata: mnp("‘lvars’", "$ML_y1", "‘T’", 2, 200, "‘lf’", ///
"‘xscrs’", "‘st11’ ‘tscrs’")

foreach scr of varlist ‘xscrs’ ‘tscrs’ {
qui replace ‘scr’ = ‘scr’/‘lf’

}
qui replace ‘st22’ = ‘st22’*‘t22’
qui replace ‘st33’ = ‘st33’*‘t33’

}
else mata: mnp("‘lvars’", "$ML_y1", "‘T’", 2, 200, "‘lf’")

qui replace ‘lf’ = ln(‘lf’)
mlsum ‘lnf’ = ‘lf’

if ‘todo’ > 0 {
tempname g1
local k = 0
cap mat drop ‘g’
foreach scr of varlist ‘xscrs’ ‘tscrs’ {

mlvecsum ‘lnf’ ‘g1’ = ‘scr’, eq(‘++k’)
matrix ‘g’ = (nullmat(‘g’),‘g1’)

}
}

end

Upon return from the function mnp(), some final computations are required. First, the
function mnp() caches the simulated probabilities in the temporary variable identified
as ‘lf’. I must log ‘lf’ before using the ml utility mlsum, summing the elements of
‘lf’ to give the log simulated likelihood for the current parameter estimates. Because
I take the log of the simulated probability, more computations are required for all the
score variables. Also I am using the log transform for the two diagonal elements of the
Cholesky matrix, identified in the temporary names ‘t22’ and ‘t33’, to ensure that the
diagonal elements of the Cholesky matrix are positive. Therefore, more computations for
the score variables ‘st22’ and ‘st33’ are required before using the ml utility mlvecsum
to produce the gradient vector ‘g’.

5.5 The run

Below are the segments of the log generated from my do-code driver. The GHK simulator
here used 200 points from the Hammersley set (Fang and Wang 1994).

R. Gates 209

. use http://www.stata-press.com/data/r9/travel, clear

(output omitted)

. ml model d1 travel_lf (air: choice=termtime1 travelcost1 income)
> (train: choice=termtime2 travelcost2 income)
> (bus: choice=termtime3 travelcost3 income)
> (car: choice=termtime4 travelcost4, nocons)
> /t21 /t31 /t22 /t32 /t33, init(b0,copy) max
> constraints(1-6) search(off) tech(nr) collinear
> shownrtol

Iteration 0: log likelihood = -211.89315
Iteration 1: log likelihood = -200.02487 (not concave)
Iteration 2: log likelihood = -193.38753

(output omitted)
Iteration 9: log likelihood = -190.09418

g inv(H) g’ = 5.545e-20

. ml display, neq(4) noheader
(1) [air]termtime1 - [train]termtime2 = 0
(2) [train]termtime2 - [bus]termtime3 = 0
(3) [bus]termtime3 - [car]termtime4 = 0
(4) [air]travelcost1 - [train]travelcost2 = 0
(5) [train]travelcost2 - [bus]travelcost3 = 0
(6) [bus]travelcost3 - [car]travelcost4 = 0

Coef. Std. Err. z P>|z| [95% Conf. Interval]

air
termtime1 -.0306287 .0084317 -3.63 0.000 -.0471546 -.0141028

travelcost1 -.0079355 .0019771 -4.01 0.000 -.0118107 -.0040604
income .0039867 .0064421 0.62 0.536 -.0086396 .0166131
_cons 1.489141 .6563072 2.27 0.023 .202803 2.77548

train
termtime2 -.0306287 .0084317 -3.63 0.000 -.0471546 -.0141028

travelcost2 -.0079355 .0019771 -4.01 0.000 -.0118107 -.0040604
income -.0197278 .0081871 -2.41 0.016 -.0357742 -.0036814
_cons 1.945315 .4947447 3.93 0.000 .9756328 2.914996

bus
termtime3 -.0306287 .0084317 -3.63 0.000 -.0471546 -.0141028

travelcost3 -.0079355 .0019771 -4.01 0.000 -.0118107 -.0040604
income -.0063689 .004835 -1.32 0.188 -.0158453 .0031075
_cons 1.44271 .3779816 3.82 0.000 .7018798 2.18354

car
termtime4 -.0306287 .0084317 -3.63 0.000 -.0471546 -.0141028

travelcost4 -.0079355 .0019771 -4.01 0.000 -.0118107 -.0040604

. mat b = e(b)

. mat R = (1,0,0\b[1,15],b[1,16],0\exp(b[1,17]),b[1,18],exp(b[1,19]))

. mat li R

R[3,3]
c1 c2 c3

r1 1 0 0
r2 .09313086 .07669325 0
r3 .70495283 .30962656 .34010134

. mat V = R*R’

210 A GHK MVN simulator

. mat li V

symmetric V[3,3]
r1 r2 r3

r1 1
r2 .09313086 .01455521
r3 .70495283 .08939913 .70849602

. mat D = syminv(cholesky(diag(vecdiag(V))))

. mat R = D*V*D

. mat li R

symmetric R[3,3]
r1 r2 r3

r1 1
r2 .77194141 1
r3 .8375126 .8803499 1

6 Discussion

This paper presented some of the mathematical background to the GHK MVN simulator
and the first-order derivatives of the simulated probability, along with Mata code to
numerically implement them. The Mata function ghk() released in version 9.1 of Stata
is really a Mata wrapper to C code that implements generating the sequences and com-
puting the simulated probability and the derivatives. By doing so, the function ghk()
in Stata/MP will use multiple processors (see the performance graphs for asmprobit in
the white paper found at http://stata.com/statamp/report.pdf). Furthermore, the C
code also pivots the wider bounds of integration to the inside, thereby moving the larger
values of x to the end of the vector and pivoting the corresponding rows and columns of
V. This pivot is a recommendation made in Genz (1992). The pivoted GHK algorithm
reduces the variability of the simulated probability dramatically, which probably reflects
improved accuracy. With the implementation of pivoting, we have a pivot matrix, P,
and we simply modify (8) as

∂vech(Σ)
∂vech(T)′

= L′
m {(PT ⊗ P)Lm + (P ⊗ PT)Km} (12)

To demonstrate the advantage of the GHK simulator with pivoting, I ran the same
example with a version of the GHK simulator that does not use pivoting and compared
the maximum simulated log likelihood between the two techniques. These results are
presented in table 1.

R. Gates 211

Table 1: Comparison of simulated log likelihood when using pivoting

No. of Pivoting
points Yes No

200 −190.094 −190.038
400 −190.096 −190.067
600 −190.093 −190.078
800 −190.096 −190.082

1,000 −190.092 −190.085
1,200 −190.094 −190.086

2,000 −190.093 −190.089
2,200 −190.093 −190.088

Here we see that the log simulated-likelihood from the GHK algorithm with pivoting
is stable in the second decimal place even at 200 points, whereas without pivoting it
does not stabilize at the second decimal place until after about 800 points. Moreover,
the no-pivoting algorithm is slowly approaching a −190.09 asymptote, the value that
the GHK algorithm with pivoting achieved with only 200 points.

The function ghk() also uses a Cholesky factoring function that will use pivoting in
case the m × m matrix V is not numerically positive definite. For an indefinite m × m
symmetric V with rank r < m it will reduce V to an r × r matrix and compute the
Cholesky factor of the reduced matrix as well as reduce x to a vector of length r. ghk()
then computes the simulated probability of the reduced vector. The Cholesky-factored
matrix T in (12) will be m × m with only the first r rows and columns nonzero. The
derivative vectors dfdx and dfdv are of length m and m(m + 1)/2, respectively, with the
first r and r(r + 1)/2 elements nonzero.

I have found that in the first iterations of the optimization it is common to have an
(numerically) indefinite V. This finding occurs after ml has computed the direction of
the next step and is searching for a step length (as indicated when the todo macro is
0 following a call to the likelihood evaluator with todo equal to 1). The pivoting by
ghk() to deal with the indefinite variance–covariance is one way to handle the problem,
but I could also capture an error thrown by Mata’s cholesky() function and force ml
to step-halve by returning a missing value for the log likelihood.

For example, if I use a Mata GHK function that does not use pivoting when running
the multinomial probit example from section 5, the estimated variance–covariance com-
puted by R = M*V*M’ in the mnp() function is not positive definite when trying to make
the first step in the optimization. I must capture the Mata error code 3352 (singular
matrix) from the cholesky() function and force ml to step-halve. Below is the snippet
of code implementing the capture.

212 A GHK MVN simulator

cap mata: mnp("‘lvars’", "$ML_y1", "‘T’", 2, $NPTS, "‘lf’")
if _rc == 3352 {

if ($PDMSG) di in gr "Covariance is not positive definite. Step halving"
scalar ‘lnf’ = .
exit 0

}
else if (_rc) exit _rc

Eventually the variance–covariance estimates produce a positive-definite R.

Here I chose to use the Hammersley set, a variant of the Halton set, in the GHK

algorithm. The uniform coverage of the Hammersley set on Cm−1 is superior to the
pseudorandom sequences and a bit better than the Halton set for low dimensional
problems (Fang and Wang [1994] or Niederreiter [1992]).

Instead of using ml display to show the estimates of the (transformed) Cholesky
parameters, I chose to compute the estimate of the 3 × 3 covariance matrix Σ and
the correlation matrix. If I had expressed the latent variable equations in (9) as m
equations, one for each alternative, instead of m − 1 equations, the matrix Σ could be
interpreted as the variance–covariance matrix of the latent errors of the first m − 1 al-
ternatives differenced with that of the mth (the base alternative). This procedure is the
differenced parameterization described in the Stata online help for asmprobit. These
variance–covariances and correlations are difficult to interpret, but we know that if the
m equation model errors were independent and homoskedastic (the independence of
irrelevant alternatives property) then the variance–covariance (and correlation) matrix
would have the form

Σ =

⎛⎝1 .5 .5
.5 1 .5
.5 .5 1

⎞⎠ = N4

⎛⎜⎜⎝
.5 0 0 0
0 .5 0 0
0 0 .5 0
0 0 0 .5

⎞⎟⎟⎠N′
4

The correlation estimates all exceed 0.5 and the variances vary dramatically from the
scale value of 1. Although I did not compute estimate standard errors, this result does
indicate a violation of the independence of irrelevant alternatives property.

7 References
Bolduc, D. 1999. A practical technique to estimate multinomial probit models in trans-

portation. Transportation Research, Part B 33: 63–79.

Cappellari, L., and S. P. Jenkins. 2003. Multivariate probit regression using simulated
maximum likelihood. Stata Journal 3: 278–294.

———. 2005. Software update: st0045 1: Multivariate probit regression using simulated
maximum likelihood. Stata Journal 5: 285.

———. 2006. Software update: st0045 2: Multivariate probit regression using simulated
maximum likelihood. Stata Journal 6: 284.

R. Gates 213

Fang, K.-T., and Y. Wang. 1994. Number-theoretic Methods in Statistics. London:
Chapman & Hall.

Genz, A. 1992. Numerical computation of multivariate normal probabilities. Journal of
Computational and Graphical Statistics 1: 141–149.

Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integra-
tion. Econometrica 57: 1317–1339.

Hajivassiliou, V., and D. McFadden. 1998. The method of simulated scores for the
estimation of LDV models. Econometrica 66: 863–896.

Johnson, N. L., S. Kotz, and N. Balakrishnan. 1994. Continuous Univariate Distribu-
tions, vol. 1. 2nd ed. New York: Wiley.

Keane, M. P. 1994. A computationally practical simulation estimator for panel data.
Econometrica 62: 95–116.

Lütkepohl, H. 1996. Handbook of Matrices. Chichester, UK: Wiley.

Magnus, J. R., and H. Neudecker. 1988. Matrix Differential Calculus with Applications
in Statistics and Econometrics. Chichester, UK: Wiley.

Niederreiter, H. 1992. Random Number Generation and Quasi-Monte Carlo Methods.
Philadelphia: SIAM.

Train, K. 2003. Discrete Choice Methods with Simulation. Cambridge: Cambridge
University Press.

About the author

Richard Gates is a senior statistical software engineer at StataCorp.

