
Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
h-p://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including pos;ng to another Internet site, is permi=ed without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising ac;vi;es by the author(s) of the following work or their
employer(s) is intended or implied.

http://ageconsearch.umn.edu
mailto:aesearch@umn.edu
https://makingagift.umn.edu/give/yourgift.html?&cart=2313

The Stata Journal

Guest Editor
David M. Drukker
StataCorp

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet, Sweden and
Univ. degli Studi di Milano-Bicocca, Italy

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zurich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
Imperial College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editor

Lisa Gilmore

Gabe Waggoner

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2006)
6, Number 2, pp. 156–189

Calculation of multivariate normal probabilities
by simulation, with applications to maximum

simulated likelihood estimation

Lorenzo Cappellari
Catholic University of Milan

Milan, Italy
and University of Essex

Colchester, UK

lorenzo.cappellari@unicatt.it

Stephen P. Jenkins
University of Essex

Colchester, UK

stephenj@essex.ac.uk

Abstract. We discuss methods for calculating multivariate normal probabilities
by simulation and two new Stata programs for this purpose: mdraws for deriving
draws from the standard uniform density using either Halton or pseudorandom
sequences, and an egen function, mvnp(), for calculating the probabilities them-
selves. Several illustrations show how the programs may be used for maximum
simulated likelihood estimation.

Keywords: st0101, mdraws, egen function mvnp(), simulation estimation, maxi-
mum simulated likelihood, multivariate probit, Halton sequences, pseudorandom
sequences, multivariate normal, GHK simulator

1 Introduction

This article discusses the program mdraws, which produces pseudorandom or Halton
draws, and the egen function mvnp(), which uses the Geweke–Hajivassiliou–Keane
(GHK) smooth recursive conditioning simulator to calculate multivariate normal prob-
abilities and shows how they may be used for maximum simulated likelihood (MSL)
estimation. The article is a development of our research on estimation of multivariate
probit models (Cappellari and Jenkins 2003, 2005, 2006). In the earlier work, we noted
that estimation of these models required evaluation of multivariate normal probabil-
ity distribution functions, but functions to evaluate trivariate and higher dimensional
normal distributions did not exist in Stata at the time. In the mvprobit program ac-
companying our 2003 article (updated in this issue), we used the GHK simulator to do
these evaluations, using pseudorandom draws. Because the GHK simulator can be used
in many other contexts, we were motivated to write stand-alone programs that could
be applied more generally. The programs mdraws and mvnp() for Stata 8.2 or higher
can be used in many MSL estimation applications.

Because simulation estimation is computationally intensive, we sought to reduce
computing time. This reduction has been done in two ways. First, mvnp() has been
implemented as a Stata plugin, with an option to use ado-code. As we show below,
the plugin leads to substantial gains in speed. Second, mdraws lets users create draws

c© 2006 StataCorp LP st0101

L. Cappellari and S. P. Jenkins 157

variables based on Halton sequences for use by mvnp() or, indeed, by other programs.
(The program can also create variables based on pseudorandom uniform variates, as
used by mvprobit.) Train (2003) argued that Halton draws are more effective for MSL

estimation than pseudorandom draws because they can provide the same accuracy with
fewer draws, thereby saving computer time. However, most evidence to date about
this conclusion has been based on estimation of mixed logit models rather than of
multivariate probit models of the types that we consider in our illustrations.

Our discussion is nontechnical and didactic. For more extensive discussion of the
principles underlying MSL estimation, the GHK simulator, and drawing from densi-
ties, see Greene (2003, 931–933), Gouriéroux and Monfont (1996), and especially Train
(2003), on whom we rely heavily. Also see our earlier article (Cappellari and Jenkins
2003, 2005, 2006) and the other articles in this issue. Section 2 discusses mdraws and
Halton sequences in particular. Section 3 focuses on mvnp() and provides examples of
its use. Section 4 concludes.

2 Multiple draws from the standard uniform density

MSL works by simulating likelihoods and then averaging over these. These calculations
involve expressions that contain a multivariate density—a multivariate normal density
here—and so to do the simulation, one needs to take draws from this density. The
GHK simulator works by taking draws from upper-truncated univariate standard nor-
mal distributions and then recursively computing a multivariate probability value using
Cholesky factorization. The draws are derived by taking values from a density that
is uniform over the interval [0, 1), the so-called standard uniform density. The upper-
truncated standard normal distribution values are generated by inversion of the normal
probability function combined with an inversion formula given by, among others, Stern
(1997). The key initial step, then, is taking draws from the standard uniform density.

The most common method of generating these draws has been to use a pseudorandom
number generator. In Stata, this means creating variables by using the uniform()
function. The method is straightforward and the independence of the draws facilitates
derivation of the statistical properties of the MSL estimator. On the other hand, “there
are ways to take draws that can provide greater accuracy for a given number of draws”
(Train 2003, 217). Train (2003, chap. 9) emphasizes that coverage and covariance are
the two important criteria for assessing these methods.

With pseudorandom draws, the values may clump together in particular regions
of the domain of the density that we wish to integrate, which may lead to a poor
approximation of the integral. And, because the draws are independent, the covariance
across draws for each observation is zero. A negative covariance across draws is better,
because this reduces the variance of the simulation compared to the independent draws
case: a relatively high value is balanced by a low value. The negative covariance can
also lead to greater coverage. Antithetic draws are the most commonly used method
for this type of variance reduction, and creation of the most straightforward type is
provided as an option in mdraws. For each vector of draws, z, from the standard
uniform distribution, the antithetic draw is 1 − z.

158 Calculation of multivariate normal probabilities by simulation

A second type of covariance is the covariance of the draws across observations,
which is zero when independent pseudorandom draws are used but, again, a negative
correlation is more desirable. If the average of the draws for one observation is more
than 1/2, we want the average for another observation to be less than 1/2. As Train
(2003, 218) explains, the maximand in MSL is a sum across observations of the logs
of the simulated probabilities. If draws across observations are negatively correlated,
then the variance of the MSL maximand is smaller than the variance with independent
pseudorandom draws (the sum of the variances for each observation).

Draws derived from Halton sequences both improve coverage of the domain of inte-
gration and induce a negative correlation between the draws from different observations.
Each sequence is defined uniquely by a particular prime number, P . Sequence elements
are characterized by an iterative process comprising a series of successive rounds. In
the first round, the unit interval (the domain of the standard uniform density) is split
into P equal-width segments, and P sequence elements with values equal to the P − 1
segment cutpoints are defined. (If P = 3, the values are 1/3 and 2/3.) In the sec-
ond round, each segment created in the first round is split into P new segments (nine
segments if P = 3). Then there is a systematic cycling across the segments. In each
cycle, P sequence elements are picked, and the cycling continues until all the relevant
segments have been exhausted. (If P = 3, the values are, in order, the cutpoints from
segments #1, #4, and #7 and then the cutpoints from segments #2, #5, and #8.) In
the next round, each segment is split P ways again, and the systematic cycling rule is
used again, and the rounds and within-round cycles continue for as long as one needs
sequence elements. As the number of rounds increases, the unit interval is filled in more
and more by sequence elements.

If P = 3, the first elements of the Halton sequence are 1/3, 2/3 (from the initial
round), 1/9, 4/9, 7/9, 2/9, 5/9, 8/9 (from the second round), 1/27, 10/27, 19/27, 4/27,
13/27, 22/27, 7/27, 16/27, 25/27, 2/27, 11/27, 20/27 (from the third round), and so
on. The sequence elements for any other prime are defined similarly. For example, if
P = 2, the initial elements are 1/2 (from the first round), 1/4, 3/4 (from the second
round), 1/8, 5/8, 3/8, 7/8 (from the third round), and so on.

The procedure outlined above defines a long sequence of numbers from the unit
interval. For MSL estimation using data on a sample of observations, we need a set
of draws for each observation, with one draw variable used in each simulation. One
allocates elements to observations in bunches. With five draws, for example, the first
five elements of the sequence are allocated to the first observation, the second five
elements are allocated to the second observation, and so on. (This allocation is often
done after discarding some initial elements of the original sequence; see below.)

Where integration is over multiple dimensions, as with calculation of multivariate
normal probabilities, one Halton sequence is created for each dimension by using a sepa-
rate prime, and again values are allocated to observations in bunches. Using the first M
primes for an M -dimensional calculation is conventional, which is what the multinomial
probit program asmprobit does, for example. Multiple Halton sequences generally pro-
vide better multidimensional coverage than the corresponding pseudorandom sequences,

L. Cappellari and S. P. Jenkins 159

but issues remain concerning the correlation between sequences for different primes. The
initial elements of any two sequences can be highly correlated, at least during the first
cycle over the unit interval (before the different cycle periods for the two primes take
effect). Therefore, dropping the initial elements of each Halton sequence before allocat-
ing the elements to observations is common. Little guidance about the optimal number
of elements to drop is available, except that the number of elements to drop should
be greater than the largest prime used to create the sequences (Train 2003, 230). The
burn() option in the mdraws command lets users choose how many elements to drop.

Also several authors have pointed to problems of high correlation between the se-
quences constructed using relatively large primes, i.e., when the number of dimensions
is relatively high, and thence poorer multidimensional coverage. Hess and Polak (2003)
and Hess, Polak, and Daly (2003) discuss the problem and argue in favor of “shuffled”
Halton sequences rather than the “scrambled” Halton sequences that other researchers
have suggested. The mdraws command offers the option of shuffled Halton sequences,
but their properties are not yet well known, especially when used for lower-dimensional
problems or for MSL applications other than mixed logit model estimation.

mdraws creates M × D new variables, where each variable contains numbers drawn
from the standard uniform density. M is the number of equations (integration dimen-
sions), and D is the number of draws created per observation. The numbers are either
Halton sequences (the default) or sequences of pseudorandom numbers. The names of
the variables created have a common prefix specified by the option prefix(string),
and the variable name suffixes are m d for each integer m = 1, . . . , M and each integer
d = 1, . . . , D. Users may need to set matsize and set memory to values higher than
the default to allow enough space for the new variables. Also mdraws uses temporary
files and will not work if there is not enough free hard disk space for temporary file
storage. In this situation (rare in our experience), users should check the path specified
by their computer’s TEMP environment variable, and either create space on the relevant
disk or change TEMP to a location where there is space (e.g., a different disk).

For Halton sequences, users can specify M prime numbers of their own choosing
using the primes(matrix name) option. If the option is not specified, mdraws uses the
first M prime numbers in ascending order.

2.1 Syntax for mdraws

mdraws
[
if
] [

in
]
, draws(#) neq(#) prefix(string)

[
primes(name)

antithetics burn(#) random seed(#) hrandom shuffle replace
]

2.2 Options for mdraws

draws(#) specifies the number of draws. If the antithetics option is not chosen, the
total number of draw variables created for each integration dimension is D = D∗,
where D∗ is the number specified in draws(). If the antithetics option is chosen,
D = 2D∗.

160 Calculation of multivariate normal probabilities by simulation

neq(#) specifies M , the number of equations (dimensions of integration).

prefix(string) specifies the prefix common to the names of each of the draws variables
created.

primes(name) specifies the name of an existing 1×M or M × 1 matrix containing M
different prime numbers. If the option is not specified and as long as M ≤ 20, the
program uses the first M prime numbers in ascending order.

antithetics specifies that antithetic draws also be created. The antithetic draw for a
vector of draws, z, is 1−z. The variables are named in a manner consistent with the
system outlined above. The first D∗ variables per dimension are the original draws
variables; the second D∗ variables are the corresponding antithetic draws.

burn(#) specifies the number of initial sequence elements to drop for each equation
when creating Halton sequences. The default is zero, and the option is ignored if
the random option is specified. Train (2003, 230) recommends that # should be at
least as large as the largest prime number used to generate the sequences.

random specifies that pseudorandom number sequences are created rather than Halton
sequences (the default).

seed(#) specifies the initial value of the pseudorandom number seed used by the
uniform() function if random is specified or if the hrandom or shuffle options
are requested when Halton sequences are specified. Otherwise, it is ignored. The
value should be an integer (the default value is 123456789). Use this option to ensure
reproducibility of results.

hrandom specifies that each Halton sequence should be transformed by a random per-
turbation. For each dimension, a draw, u, is taken from the standard uniform
distribution. Each sequence element for that dimension has u added to it. If the
sum is greater than 1, the element is transformed to the sum minus 1; otherwise,
the element is transformed to the sum. See Train (2003, 234).

shuffle specifies that “shuffled” Halton draws should be derived, as proposed by
Hess and Polak (2003) and Hess, Polak, and Daly (2003). The Halton sequence for
each dimension is randomly shuffled before sequence elements are allocated to ob-
servations. Philippe Van Kerm’s program gclsort, available from SSC, must be
installed for this option to work.

replace specifies that existing variables named using the prefix specified by prefix()
and the suffix defined by the relevant equation and draw number be replaced.

L. Cappellari and S. P. Jenkins 161

2.3 Saved results

mdraws saves the following in r():

Scalars
r(n draws) scalar equal to D
r(n dimensions) scalar equal to M
r(n burn) number of draws dropped per dimension, if burn() option used

Macros
r(antithetics) local macro containing "yes" if antithetics option specified, else

containing "no"
r(prefix) local macro containing the string specified by the prefix() option
r(seed) local macro containing c(seed), if seed() option used
r(type) local macro containing "halton" if Halton draws created, else con-

tains "random"

Matrices
r(primes) primes used in creating a Halton draw, if primes() option used

2.4 Examples

We begin by reproducing the Halton draws example given by Train (2003, 227). He
has two observations, D = 5, P = 3, and the first nine elements of the sequence are
dropped. (Train refers to dropping 10 initial elements because he uses zero as the first
element when illustrating how to construct the sequence.) z is the draw variable name
prefix, and the command is

. set obs 2
obs was 0, now 2

. matrix p = (3)

. mdraws, draws(5) neq(1) prefix(z) burn(9) primes(p)
Created 5 Halton draws per equation for 1 dimensions. Number of initial
draws dropped per dimension = 9 . Primes used:

3

. list

z1_1 z1_2 z1_3 z1_4 z1_5

1. .37037037 .7037037 .14814815 .48148148 .81481481
2. .25925926 .59259259 .92592593 .07407407 .40740741

The values shown in the five draws variables for observation 1 are 10/27, 19/27,
4/27, 13/27, and 22/27; those in the corresponding variables for observation 2 are 7/27,
16/27, 25/27, 2/27, and 11/27 (see earlier). MSL for this sample would be based, at
each iteration, on simulation of the sample likelihood using each of the five z variables
in turn and then averaging the result across simulations.

Suppose that we now have a more realistic sample size, 1,000 observations, and three
integration dimensions and require 100 draws. For pseudorandom draws, the command
syntax is

162 Calculation of multivariate normal probabilities by simulation

. set obs 1000
obs was 0, now 1000

. mdraws, draws(100) neq(3) prefix(a) random
Created 100 pseudorandom draws per equation for 3 equations. Seed = 123456789

For 50 Halton draws plus antithetic draws, using primes 7, 11, and 13, and dropping
the first 20 sequence elements in each dimension, the syntax is

. matrix p1 = (7, 11, 13)

. mdraws, draws(50) neq(3) prefix(b) burn(20) antithetics primes(p1)
Created 50 Halton draws per equation for 3 dimensions. Number of initial draws
dropped per dimension = 20 . Primes used:

7 11 13
Also created 50 antithetic draws per dimension for 3 dimensions. Note: there
are now 100 draws per equation

Observe in the last case that D∗ = 50 (the number specified in the draws() option)
but, with antithetics also specified, D = 100.

. return list

scalars:
r(n_draws) = 100

r(n_dimensions) = 3
r(n_burn) = 20

macros:
r(antithetics) : "yes"

r(prefix) : "b"
r(type) : "halton"

matrices:
r(primes) : 1 x 3

3 An egen function for computing multivariate normal
probabilities, mvnp()

Our egen function mvnp() calculates multivariate normal probabilities with the GHK

simulator and returns the results in a new variable with storage type double. More
specifically, the function returns the multivariate normal probability

Pr (−∞ < xm ≤ am,m = 1, . . . , M)

where the M variables xm each have mean zero and covariance matrix V . For com-
putational reasons, users specify not V but the lower triangular matrix C that is the
Cholesky factorization of V : C = cholesky(V). From the MSL estimate of C, one can
recover an estimate of V since V = CC ′. We show how to do this using nlcom later.
(Instead, one could use diparm.)

Put another way, mvnp() returns the joint cumulative distribution Φ(a1, a2, . . . , aM ;
V) of an M -variate normal distribution with covariance matrix V , where the cumulation
is over (−∞, a1]×(−∞, a2]×· · ·×(−∞, aM]. The upper integration points a1, a2, . . . , aM

are variables specified by the user and may of course vary across observations. If the

L. Cappellari and S. P. Jenkins 163

mean of any of the xm variables is nonzero, the upper integration points should be
appropriately centered first. For MSL estimation of multivariate probit–type models,
this step is typically unnecessary.

The function assumes the existence of M × D variables containing draws from the
standard uniform distribution. The names of the variables must have a common prefix,
specified by the option prefix(string), and the variable name suffixes are m d for each
integer m = 1, . . . , M and each integer d = 1, . . . , D. The variables can be created with
mdraws.

The MSL estimator is consistent, asymptotically normal and efficient, and equivalent
to ML if the number of draws tends to infinity faster than the square root of the number
of observations does (Train 2003, 259). When M = 2, and for a large number of random
draws, then calculation by mvnp() is asymptotically equivalent to that provided by the
built-in function binormal(). Other things being equal, the more draws, the better. In
practice, relatively few draws may work well in the sense that the change in calculated
probabilities as the number of draws is increased is negligible. The user must check that
this is the case.

Calculation is numerically intensive and may be slow if the number of observations
is large, if D is large, or especially if M is large.

Next we introduce the syntax for the egen function mvnp() and then illustrate the
function. The first example shows how the function can be used for stand-alone one-off
calculations. The remaining three examples illustrate how the function may be used
for MSL estimation—essentially showing how to embed calls to mvnp() within code for
likelihood function evaluation by ml.

3.1 Syntax for mvnp()

egen newvar = mvnp(varlist1)
[
if
] [

in
]
, prefix(string) draws(#)[

chol(matrix name) signs(varlist2) adoonly
]

where varlist1 refers to a list of existing variables containing upper integration points.
The variable names should be separated by spaces, not commas.

3.2 Options

prefix(string) specifies the prefix common to each of the variables representing draws
from a standard uniform density.

draws(#) specifies the number of draws used when calculating the simulated proba-
bility. The default is draws(5). (See the discussion above concerning the choice of
D.)

164 Calculation of multivariate normal probabilities by simulation

chol(matrix name) specifies the lower triangular matrix that is the Cholesky factor-
ization of the covariance matrix, V , i.e., matrix matrix name = cholesky(V). At
least one of the diagonal elements of matrix matrix name should equal 1. The na-
ture of any further constraints on matrix matrix name depends on the application
(see the examples below). The user must ensure that the appropriate constraints
are imposed.

signs(varlist2) may be used if the function is used to evaluate multivariate probit-like
likelihood functions, and it helps reduce computation time. For an ordered set of
binary dependent variables i = 1, . . . , M , varlist2 contains the names of a set of vari-
ables summarizing the sign of each dependent variable. Specifically, the ith variable
of varlist2 should contain 1 for an observation with the corresponding dependent
variable equal to 1 and contain −1 for an observation with the corresponding de-
pendent variable equal to 0.

adoonly prevents using the Stata plugin to perform the intensive numerical calculations.
Specifying this option results in slower-running code but may be necessary if the
plugin is not available for your platform.

3.3 Illustration 1: one-off calculations of multivariate normal proba-
bilities

mvnp() may be used to calculate multivariate probabilities in any situation in which
one has a set of upper integration points and a variance matrix or, rather, the Cholesky
matrix derived from the variance matrix. That is, MSL is not the only application.
Let us illustrate how the program can be used in a stand-alone context. Although
the first example is artificial, it demonstrates the relevant principles and compares the
calculated probabilities with those generated using the built-in function binormal().
This example creates more than 4,600 variables and thus requires either Stata/SE or
Stata/MP.

Consider probabilities from a standard bivariate normal distribution with correlation
ρ = 0.5. By assumption, the means of the two variables are zero. The correlation matrix
and its Cholesky matrix are created as follows:

. clear

. matrix r = (1, .5 \ .5, 1)

. matrix c = cholesky(r)

Now suppose that we have a set of upper integration points for each of 1,000 obser-
vations held in variables v1 and v2 and created for illustrative purposes in the following
way:

. set obs 1000

. gen v1 = uniform()

. gen v2 = uniform()

L. Cappellari and S. P. Jenkins 165

We will compare calculations based on 50 and 1,000 pseudorandom draws and 100
Halton draws both with and without antithetic draws, creating six sets of draw variables
using mdraws.

. * without antithetics

. mdraws, neq(2) dr(50) prefix(p) random seed(123456789)
Created 50 pseudorandom draws per equation for 2 equations. Seed = 123456789

. mdraws, neq(2) dr(1000) prefix(q) random seed(123456789)
Created 1000 pseudorandom draws per equation for 2 equations. Seed = 123456789

. mdraws, neq(2) dr(100) prefix(h) burn(10)
Created 100 Halton draws per equation for 2 dimensions. Number of initial draws
dropped per dimension = 10 . Primes used:

2 3

. * with antithetics

. mdraws, neq(2) dr(25) prefix(pa) random seed(123456789) antithetics
Created 25 pseudorandom draws per equation for 2 equations. Seed = 123456789
Also created 25 antithetic draws per dimension for 2 dimensions. Note: there
are now 50 draws per equation

. mdraws, neq(2) dr(500) prefix(qa) random seed(123456789) antithetics
Created 500 pseudorandom draws per equation for 2 equations. Seed = 123456789
Also created 500 antithetic draws per dimension for 2 dimensions. Note: there
are now 1000 draws per equation

. mdraws, neq(2) dr(50) prefix(ha) burn(10)
Created 50 Halton draws per equation for 2 dimensions. Number of initial draws
dropped per dimension = 10 . Primes used:

2 3

Now compute the probabilities using binormal() and mvnp() with and without
antithetic draws, and then summarize the probabilities to compare them.

. * built-in

. gen pr_b = binormal(v1,v2,.5)

. * egen function with plugin

. egen pr_s1p = mvnp(v1 v2), dr(50) chol(c) prefix(p)

. egen pr_s1q = mvnp(v1 v2), dr(1000) chol(c) prefix(q)

. egen pr_s1h = mvnp(v1 v2), dr(100) chol(c) prefix(h)

. * with antithetics

. egen pr_s1pa = mvnp(v1 v2), dr(25) chol(c) prefix(pa)

. egen pr_s1qa = mvnp(v1 v2), dr(500) chol(c) prefix(qa)

. egen pr_s1ha = mvnp(v1 v2), dr(50) chol(c) prefix(ha)

. summarize pr_b pr_s*

Variable Obs Mean Std. Dev. Min Max

pr_b 1000 .5300376 .0880073 .3459212 .7432851
pr_s1p 1000 .5293781 .0889788 .3321594 .7432417
pr_s1q 1000 .5300343 .0878787 .3447233 .7420039
pr_s1h 1000 .5300534 .0879827 .3452459 .7424432
pr_s1pa 1000 .5292217 .0891549 .3220528 .7490329

pr_s1qa 1000 .529947 .087786 .3442015 .7413688
pr_s1ha 1000 .5300763 .0880055 .3450753 .7425911

166 Calculation of multivariate normal probabilities by simulation

The simulated probabilities have a similar distribution to those calculated using
binormal() regardless of the number of draws and whether antithetic draws are used.
Nonetheless and unsurprisingly, the mean probability based on 1,000 pseudorandom
uniform draws is markedly closer than the mean probability based on 50 pseudorandom
draws to the mean probability based on binormal(). The mean based on 100 Halton
draws, with or without antithetics, gets even closer.

The second, and perhaps more useful, application of one-off calculations is generation
of predicted probabilities of multiple outcome variables after estimation of multivariate
probit (and related) models. Our postestimation command mvppred generates predicted
probabilities from multivariate probit estimates derived using mvprobit, but only for
the probability that every observed outcome variable equals one and that every observed
outcome variable equals zero. (Updated versions of these commands are available with
this issue.) With mvnp(), the predicted probability of any combination of ones and
zeros can be derived.

The multivariate probit model is characterized, for each observation, by M pairs of
equations, one describing each latent dependent variable and the other describing the
corresponding binary observed outcome.

y∗
m = β′

mXm + εm,m = 1, . . . , M

ym = 1 if y∗
m < 0, and 0 otherwise

εm,m = 1, . . . , M , are error terms distributed as multivariate normal, each with
a mean of zero, and variance–covariance matrix V , where V has values of 1 on
the leading diagonal and correlations ρjk = ρkj as off-diagonal elements for j, k =
1, . . . , M and j �= k.

The predicted probability of the observed outcomes for any observation is ΦM (µ; Ω),
where ΦM (.) is the M -variate standard normal cumulative distribution function with
arguments µi and Ω, and µ = (κ1β

′
1X1, κ2β

′
2X2, . . . , κMβ′

MXM). The κk are signs
variables, being equal to 1 or −1 depending on whether the observed binary outcome
equals 1 or 0: κk = 2yk − 1 for each observation for k = 1, . . . , M . Matrix Ω has
constituent elements Ωjk, where Ωjj = 1 for j = 1, . . . , M , and Ωjk = Ωkj = κkκjρkj .

Estimates of βm and V can be derived using the egen-based code shown in the next
illustration or with mvprobit. To calculate the predicted probabilities using mvnp(), one
first generates several new variables. There are the M -signs variables appropriate to the
outcome combinations of interest; these will be the arguments specified in the signs()
option. The upper integration point variables are the M linear index variables Im =
b′mXm, which can be derived by using matrix score or mvppred, xb after mvprobit
(bm is the estimate of βm). Next use mdraws to generate the draws variables and,
finally, calculate the probabilities by using the egen command with the Im variables
as arguments and referring to a matrix equal to cholesky(V) in the chol() option.
You can save much computer time if the probability calculations are not made for every
observation. Instead create a few new observations that have the specific values for

L. Cappellari and S. P. Jenkins 167

X1,X2, . . . , XM that are of interest, and generate the linear index variable values for
them by using Stata’s ability to generate out-of-sample predictions. Then calculate the
probabilities only for these observations: mvnp() accepts if and in qualifiers.

3.4 Illustration 2: MSL estimation of multivariate probit models

Now we show how our command may be used to fit multivariate probit models. The
main advantage of using mvnp() rather than mvprobit is that you can save much com-
putational time by taking advantage of the plugin and Halton draws. These savings
may be particularly valuable when the number of outcome variables is large (four or
more, say) and the number of observations is large.

The illustration considers the trivariate probit model. (It is straightforward to gen-
eralize the likelihood evaluation code below to fit multivariate probit models with more
equations.) To benchmark the estimates, we create a dataset with 5,000 observations
from a model with known parameters, using the same methods as in our previous work,
Cappellari and Jenkins (2003, 2005, 2006):

. set seed 123456789

. set obs 5000
obs was 0, now 5000

. matrix R = (1, .25, .5 \ .25, 1, .75 \ .5, .75, 1)

. drawnorm u1 u2 u3, corr(R)

. correlate u*
(obs=5000)

u1 u2 u3

u1 1.0000
u2 0.2501 1.0000
u3 0.4913 0.7575 1.0000

. gen x1 = uniform()-.5

. gen x2 = uniform() + 1/3

. gen x3 = 2*uniform() + .5

. * Equations

. gen y1s = .5 + 4*x1 + u1

. gen y2s = 3 + .5*x1 - 3*x2 + u2

. gen y3s = 1 - 2*x1 + .4*x2 -.75*x3 + u3

. gen y1 = y1s>0

. gen y2 = y2s>0

. gen y3 = y3s>0

The equations for y1s, y2s, and y3s correspond to the equations for y∗
im, i =

1, . . . , M , given earlier, and those for y1, y2, and y3 correspond to those for yim. The
correlations between the error terms (the elements of the matrix V) are shown in the
output from the correlate command.

The log-likelihood contribution for each observation, log{Φ3(µ; Ω)}, needs to be
calculated by the user-written evaluation program that is called by ml. Code for

168 Calculation of multivariate normal probabilities by simulation

doing this using ml evaluation method lf is set out below and then the key ele-
ments are explained. (For a general introduction to ML estimation using Stata, see
Gould, Pitblado, and Sribney 2006.)

program define myll
args lnf xb1 xb2 xb3 c21 c31 c32
tempvar sp k1 k2 k3

quietly {
gen double ‘k1’ = 2*$ML_y1 - 1
gen double ‘k2’ = 2*$ML_y2 - 1
gen double ‘k3’ = 2*$ML_y3 - 1
tempname cf21 cf22 cf31 cf32 cf33 C

// Following needed since lf evaluator
su ‘c21’, meanonly
scalar ‘cf21’ = r(mean)
su ‘c31’, meanonly
scalar ‘cf31’ = r(mean)
su ‘c32’, meanonly
scalar ‘cf32’ = r(mean)

// constraints on diagonal elements
scalar ‘cf22’ = sqrt(1 - ‘c21’^2)
scalar ‘cf33’ = sqrt(1 - ‘c31’^2 - ‘c32’^2)
mat ‘C’ = (1, 0, 0 \ ‘cf21’, ‘cf22’, 0 \ ‘cf31’,‘cf32’, ‘cf33’)
egen ‘sp’ = mvnp(‘xb1’ ‘xb2’ ‘xb3’) , ///

chol(‘C’) draws($dr) prefix(z) ///
signs(‘k1’ ‘k2’ ‘k3’)

replace ‘lnf’= ln(‘sp’)
}
end

The args statement refers first to lnf, the variable that will contain the observation-
specific values of log{Φ3(µ; Ω)}. Cited next are the variables containing the observation-
specific values of the linear indices for each of the three model equations (β′

mXm), and
finally there are three variables containing scalar values of the three Cholesky factors
associated with correlation matrix V . The first three lines after the quietly statement
define the observation-specific signs variables that were introduced earlier. Next six
lines define three Cholesky factor scalars that are used to specify the lower triangular
Cholesky matrix (‘C’) that will be passed to mvnp(). These lines are required because,
although the Cholesky factors to be estimated are scalars, each of the arguments of a
method lf evaluator is a variable with a value that is the same for each observation.
The procedure shown avoids problems that may arise if there are any observations with
missing values on those variables, e.g., observations excluded using an if qualifier in a
later ml model statement.

The lines defining scalars ‘cf22’ and ‘cf33’ place constraints on the Cholesky
matrix, ‘C’. Recall that for a multivariate probit model, each diagonal element of the
covariance matrix V equals 1 (the variance of each error is normalized to unity). The off-
diagonal elements are correlations. Since V = CC ′, V11 = (C11)2, V22 = (C21)2 +(C22)2,
and V33 = (C31)2 + (C32)2 + (C33)2. Requiring V11 = V22 = V33 = 1 leads to the
constraints shown. C11 is not a function of the estimated parameters and simply set
equal to 1: note the first element in the definition of matrix ‘C’.

L. Cappellari and S. P. Jenkins 169

The egen command calculates the observation-specific values of Φ3(µ; Ω). The upper
integration points are the linear indices for each equation and specified using mvnp(‘xb1’
‘xb2’ ‘xb3’). The draws($dr) option refers to a global that will be filled in later, and
we will create the required draws variables that have a prefix z. The signs() option
refers to the signs variables created earlier in the evaluation program.

Good starting values are important. An obvious strategy for the multivariate probit
model is to assume that the cross-equation correlations are each equal to zero and to set
the regression coefficients in each equation equal to the corresponding univariate probit
estimates for that equation. (The univariate estimates are consistent but inefficient
estimators of the multivariate probit ones.)

quietly {
probit y1 x1
mat b1 = e(b)
mat coleq b1 = y1
probit y2 x1 x2
mat b2 = e(b)
mat coleq b2 = y2
probit y3 x1 x2 x3
mat b3 = e(b)
mat coleq b3 = y3

mat b0 = b1, b2, b3
}

To fit the trivariate probit model, we need only choose and set the number of draws
and to create the draws variables using mdraws, the ml model statement, specification
of the vector containing starting values using ml init, and then, finally, the call to ml
maximize. We will use 250 pseudorandom draws combined with antithetic draws (500
draws in total). The ml model statement specifies equations corresponding to the data
generation process.

. mdraws, dr(250) neq(3) prefix(z) random seed(123456789) antithetics replace
Created 250 pseudorandom draws per equation for 3 equations. Seed = 123456789
Also created 250 antithetic draws per dimension for 3 dimensions. Note: there
are now 500 draws per equation

. global dr = r(n_draws)

. ml model lf myll (y1: y1=x1) (y2: y2=x1 x2) (y3: y3 = x1 x2 x3)
> /c21 /c31 /c32, title("MV Probit by MSL, $dr pseudorandom draws")

. ml init b0

After estimation, the estimates of the cross-equation correlations and their standard
errors can be derived with nlcom applying the definition V = CC ′. The estimates were
as follows:

(Continued on next page)

170 Calculation of multivariate normal probabilities by simulation

. ml maximize
(output omitted)

MV Probit by MSL, 500 pseudo-random draws Number of obs = 5000
Wald chi2(1) = 1705.86

Log likelihood = -6749.249 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

y1
x1 3.939239 .0953764 41.30 0.000 3.752304 4.126173

_cons .496217 .0232598 21.33 0.000 .4506286 .5418054

y2
x1 .4808888 .0708867 6.78 0.000 .3419534 .6198243
x2 -2.998213 .0805319 -37.23 0.000 -3.156052 -2.840373

_cons 2.94806 .0750775 39.27 0.000 2.800911 3.09521

y3
x1 -2.037973 .0711971 -28.62 0.000 -2.177516 -1.898429
x2 .324464 .0648008 5.01 0.000 .1974569 .4514712
x3 -.7676863 .0316202 -24.28 0.000 -.8296607 -.7057119

_cons 1.082151 .0740849 14.61 0.000 .9369469 1.227354

c21
_cons .2090744 .0306232 6.83 0.000 .1490541 .2690947

c31
_cons .4664248 .0263437 17.71 0.000 .4147921 .5180576

c32
_cons .6666989 .0214556 31.07 0.000 .6246466 .7087512

. nlcom (r21: [c21]_b[_cons])
> (r31: [c31]_b[_cons])
> (r32: [c21]_b[_cons]*[c31]_b[_cons]
> + sqrt(1 - [c21]_b[_cons]^2)*[c32]_b[_cons])

r21: [c21]_b[_cons]
r31: [c31]_b[_cons]
r32: [c21]_b[_cons]*[c31]_b[_cons]

> + sqrt(1 - [c21]_b[_cons]^2)*[c32]_b[_cons]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

r21 .2090744 .0306232 6.83 0.000 .1490541 .2690947
r31 .4664248 .0263437 17.71 0.000 .4147921 .5180576
r32 .7494822 .0179106 41.85 0.000 .714378 .7845864

The program provides good estimates of not only the underlying model of the re-
gression coefficients but also the correlation matrix. The largest divergences from the
“true” model are for the estimates of correlations r21 and r31 though, even for these,
the 95% confidence interval spans the “true” value.

The gain in estimation speed from using the plugin is substantial. Using a Win-
dows XP Pentium P4/1.8-GHz computer, convergence took about 57 minutes with the
plugin, whereas the adoonly version of the program and mvprobit each took more than
3.5 hours.

L. Cappellari and S. P. Jenkins 171

Estimates will vary depending on the number and type of draws used. We (2003,
2005, 2006) illustrated this issue for a bivariate probit model fitted with mvprobit,
varying the number of pseudorandom draws and the seed. Here we focus on differences in
results for pseudorandom and Halton draws. Train (2003, 231–234) cites several studies
including one of his own, each demonstrating that Halton draws are more effective for
simulation than pseudorandom draws. All the studies were based on mixed logit models,
and so it is of interest to know whether similar conclusions also apply to multivariate
probit models.

Our comparisons took the same format as Train’s. First, a trivariate probit model
was fitted five times using 500 pseudorandom draws plus antithetics, but with a different
seed each time, where the seeds were chosen randomly. The five seeds were selected, to
avoid overlaps in sequences, using the following code (derived from Stewart 2006):

set seed 123456789
gen long seedvar = int((uniform() + 5 - _n)*100000000) in 1/5
local seed1 = seedvar[1]
local seed2 = seedvar[2]
local seed3 = seedvar[3]
local seed4 = seedvar[4]
local seed5 = seedvar[5]

Estimates were compared with those derived from the same model fitted using 50
Halton draws plus antithetic draws, with 10 initial sequence elements dropped in each
dimension. Primes 2, 3, and 5 were used, in different permutations, for different dimen-
sions to produce the different estimates. The estimates of parameters and their standard
errors are summarized in tables 1 (pseudorandom draws) and 2 (Halton draws).

(Continued on next page)

172 Calculation of multivariate normal probabilities by simulation

Table 1: Trivariate probit model estimates: pseudorandom draws

500 pseudorandom draws plus antithetic draws

Row Row
mean s.d.

−logL 6,749.6990 0.3994
Time (sec) 6,878.6380 59.6338
[y1] b[x1] 3.9391 0.0001
[y1] se[x1] 0.0954 0.0000
[y1] b[cons] 0.4964 0.0001
[y1] se[cons] 0.0233 0.0000
[y2] b[x1] 0.4817 0.0004
[y2] se[x1] 0.0709 0.0000
[y2] b[x2] −2.9980 0.0003
[y2] se[x2] 0.0805 0.0000
[y2] b[cons] 2.9480 0.0004
[y2] se[cons] 0.0751 0.0000
[y3] b[x1] −2.0350 0.0012
[y3] se[x1] 0.0712 0.0000
[y3] b[x2] 0.3238 0.0015
[y3] se[x2] 0.0648 0.0000
[y3] b[x3] −0.7670 0.0005
[y3] se[x3] 0.0316 0.0000
[y3] b[cons] 1.0822 0.0014
[y3] se[cons] 0.0741 0.0000
[c21] b[cons] 0.2084 0.0008
[c21] se[cons] 0.0307 0.0000
[c31] b[cons] 0.4673 0.0006
[c31] se[cons] 0.0264 0.0000
[c31] b[cons] 0.6671 0.0004
[c31] se[cons] 0.0215 0.0000
r32 0.7498 0.0002
se(r32) 0.0179 0.0000

Note: c21 = r21 and c31 = r31.

L. Cappellari and S. P. Jenkins 173

Table 1: Trivariate probit model estimates: pseudorandom draws, continued

500 pseudorandom draws plus antithetic draws

Seed 413698407 364322066 255780169 160479494 68417597
(1) (2) (3) (4) (5)

−logL 6,750.34 6,749.94 6,749.56 6,749.19 6,749.47
Time (sec) 6,803.16 6,829.94 6,906.33 6,880.56 6,973.20
[y1] b[x1] 3.9391450 3.9392590 3.9392470 3.93907 3.9389380
[y1] se[x1] 0.0953744 0.0953770 0.0953797 0.0953833 0.0953632
[y1] b[cons] 0.4963101 0.4963739 0.4964035 0.4964518 0.4962911
[y1] se[cons] 0.0232582 0.0232589 0.0232624 0.0232609 0.0232553
[y2] b[x1] 0.4816162 0.4819739 0.4821864 0.4815196 0.4811402
[y2] se[x1] 0.0708839 0.0708854 0.0708736 0.0708734 0.0708819
[y2] b[x2] −2.9985280 −2.9981170 −2.9976140 −2.9980880 −2.9977320
[y2] se[x2] 0.0805410 0.0805375 0.0805302 0.0805265 0.0805371
[y2] b[cons] 2.9485970 2.9480640 2.9474610 2.9480880 2.9475610
[y2] se[cons] 0.0750873 0.0750833 0.0750729 0.0750709 0.0750777
[y3] b[x1] −2.0333280 −2.0352470 −2.0366050 −2.0357180 −2.0339860
[y3] se[x1] 0.0711889 0.0712167 0.0712413 0.0711961 0.0711190
[y3] b[x2] 0.3217575 0.3230236 0.3255635 0.3254686 0.3234068
[y3] se[x2] 0.0647607 0.0647823 0.0648078 0.0647764 0.0646952
[y3] b[x3] −0.7668600 −0.7673650 −0.7674080 −0.7671380 −0.7661510
[y3] se[x3] 0.0315997 0.0316022 0.0316263 0.0316034 0.0315734
[y3] b[cons] 1.0841960 1.0837090 1.0812000 1.0809790 1.0810330
[y3] se[cons] 0.0740604 0.0740689 0.0741090 0.0740383 0.0739905
[c21] b[cons] 0.2086790 0.2073670 0.2082024 0.2081035 0.2096905
[c21] se[cons] 0.0307609 0.0307244 0.0307358 0.0307378 0.0306816
[c31] b[cons] 0.4676432 0.4672187 0.4662095 0.4675385 0.4681019
[c31] se[cons] 0.0263845 0.0263691 0.0263675 0.0263965 0.0264144
[c31] b[cons] 0.6665950 0.6672873 0.6674139 0.6674673 0.6665139
[c31] se[cons] 0.0215065 0.0214476 0.0214307 0.0214068 0.0214541
r32 0.7495067 0.7496684 0.7498540 0.7501507 0.7498524
se(r32) 0.0179468 0.0179033 0.0178797 0.0178633 0.0178969

Note: c21 = r21 and c31 = r31.

174 Calculation of multivariate normal probabilities by simulation

Train (2003, tables 9.1 and 9.2) reports estimates for mixed logit models (N =
4,308), five estimated using 100 Halton draws and five estimated using 1,000 pseudo-
random draws. The means of the estimated model parameters were much the same in
each case, suggesting that the smaller number of Halton draws provided estimates much
the same on average. But the standard deviation of his Halton estimates was lower,
suggesting, given much the same mean, that with 100 Halton draws a researcher can
expect to be closer to the expected values of the estimates than with 1,000 pseudoran-
dom draws. For our trivariate probit model, we get an approximately 10-fold savings in
computation time, as Train did. According to the “Time” row in table 1, mean estima-
tion time is 10.2% smaller using Halton draws. Corresponding means of estimates are
also similar (see the “row mean” entries). However, the row standard deviations are not
unambiguously lower for the Halton estimates. Our results underscore Train’s (2003,
233) remarks that simple statements about the relative advantages of Halton draws
need to be viewed with caution. More research is required before definitive conclusions
can be drawn about the tradeoff between speed and accuracy.

(Continued on next page)

L. Cappellari and S. P. Jenkins 175

Table 2: Trivariate probit model estimates: Halton draws

50 Halton draws plus antithetic draws (10 initial draws dropped)

Row Row
mean s.d.

−logL 6,750.3430 0.3306
Time (sec) 698.8080 7.6409
[y1] b[x1] 3.9387 0.0001
[y1] se[x1] 0.0954 0.0000
[y1] b[cons] 0.4962 0.0001
[y1] se[cons] 0.0233 0.0000
[y2] b[x1] 0.4816 0.0004
[y2] se[x1] 0.0709 0.0000
[y2] b[x2] −2.9984 0.0003
[y2] se[x2] 0.0806 0.0000
[y2] b[cons] 2.9481 0.0002
[y2] se[cons] 0.0751 0.0000
[y3] b[x1] −2.0345 0.0018
[y3] se[x1] 0.0712 0.0001
[y3] b[x2] 0.3232 0.0011
[y3] se[x2] 0.0648 0.0001
[y3] b[x3] −0.7665 0.0007
[y3] se[x3] 0.0316 0.0000
[y3] b[cons] 1.0816 0.0008
[y3] se[cons] 0.0741 0.0001
[c21] b[cons] 0.2078 0.0010
[c21] se[cons] 0.0308 0.0001
[c31] b[cons] 0.4655 0.0009
[c31] se[cons] 0.0264 0.0001
[c31] b[cons] 0.6669 0.0005
[c31] se[cons] 0.0215 0.0000
r32 0.7490 0.0005
se(r32) 0.0179 0.0000

Note: c21 = r21 and c31 = r31.

176 Calculation of multivariate normal probabilities by simulation

Table 2: Trivariate probit model estimates: Halton draws, continued

50 Halton draws plus antithetic draws (10 initial draws dropped)

Primes 2, 3, 5 3, 2, 5 5, 3, 2 2, 5, 3 3, 5, 2
(1) (2) (3) (4) (5)

−logL 6,750.92 6,750.332 6,750.364 6,749.907 6,750.192
Time (sec) 703.99 702.30 700.03 703.92 683.80
[y1] b[x1] 3.9388990 3.9386530 3.9385420 3.9385820 3.9385950
[y1] se[x1] 0.0953799 0.0953742 0.0953760 0.0953675 0.0953814
[y1] b[cons] 0.4963090 0.4962998 0.4961965 0.4961129 0.4961550
[y1] se[cons] 0.0232611 0.0232602 0.0232600 0.0232571 0.0232613
[y2] b[x1] 0.4821302 0.4818128 0.4809724 0.4819018 0.4813064
[y2] se[x1] 0.0708865 0.0708894 0.0708929 0.0708850 0.0709040
[y2] b[x2] −2.9982050 −2.9984710 −2.9987860 −2.9980170 −2.9984140
[y2] se[x2] 0.0805421 0.0805402 0.0805527 0.0805527 0.0805631
[y2] b[cons] 2.9480800 2.9481210 2.9484980 2.9478830 2.9481380
[y2] se[cons] 0.0750866 0.0750821 0.0751001 0.0750986 0.0751062
[y3] b[x1] −2.0325070 −2.0330360 −2.0358330 −2.0337580 −2.0373120
[y3] se[x1] 0.0711341 0.0711083 0.0711919 0.0711608 0.0712849
[y3] b[x2] 0.3223934 0.3221294 0.3224382 0.3249884 0.3240396
[y3] se[x2] 0.0648024 0.0647506 0.0648555 0.0648144 0.0648916
[y3] b[x3] −0.7656050 −0.7659450 −0.7667760 −0.7665520 −0.7675070
[y3] se[x3] 0.0316383 0.0316004 0.0316483 0.0315646 0.0316592
[y3] b[cons] 1.0813130 1.0814320 1.0826200 1.0802830 1.0823640
[y3] se[cons] 0.0741471 0.0740966 0.0741638 0.0740542 0.0741773
[c21] b[cons] 0.2084468 0.2062338 0.2089133 0.2083446 0.2069897
[c21] se[cons] 0.0308445 0.0307262 0.0306878 0.0308136 0.0307486
[c31] b[cons] 0.4658724 0.4648260 0.4651382 0.4671057 0.4644295
[c31] se[cons] 0.0264159 0.0263092 0.0262384 0.0264215 0.0264397
[c31] b[cons] 0.6667344 0.6675500 0.6662109 0.6672030 0.6666491
[c31] se[cons] 0.0215791 0.0215287 0.0215076 0.0214571 0.0215259
r32 0.7491984 0.7490623 0.7486839 0.7498806 0.7483437
se(r32) 0.0179779 0.0179679 0.0179383 0.0179089 0.0179304

Note: c21 = r21 and c31 = r31.

L. Cappellari and S. P. Jenkins 177

3.5 Illustration 3: MSL estimation of multivariate probit models with
sample selection

mvnp() can also be used to fit multivariate probit models with sample selection (oth-
erwise known as incidental truncation). The built-in command heckprob is a bivariate
example of this type of model: there is one equation describing the binary outcome of
interest and a second equation that characterizes whether the first outcome is observed.
If the cross-equation error terms are correlated, sample selection is “endogenous”, in
which case simply fitting a univariate probit model for the binary outcome of interest
leads to inconsistent estimators of the parameters of interest. Models with multiple
outcomes of interest and possibly more than one selection equation are obvious gen-
eralizations of the heckprob case. For example, Jenkins et al. (forthcoming) have an
equation system with four binary outcomes, two of which describe sample selections.
In our 2004 paper, we modeled three binary outcomes, including one sample selection
equation. We consider a similar trivariate model here.

We use data on 1,098 working-age employees who responded to the Bank of Italy’s
Survey of Households’ Income and Wealth in a base year (either 1993 or 1995) and with
whom follow-up interviews were sought 2 or 3 years later (1995 or 1998, respectively).
We model the determinants of whether a respondent was low paid in the base year and
whether the respondent was low paid in the later (“current”) year. Low pay in each
year is defined as having a wage in the poorest fifth of the earnings distribution of that
year. The complication is that not all respondents in the base year provided data in the
current year, and so we wish to model current year low pay probabilities controlling for
the potential sample selection biases that may arise from differential sample dropout.
(Dropout here includes either sample attrition or sample retention but not having a
job.) In this illustrative dataset, trial.dta, lph20 = 1 if low paid in the base year
and 0 otherwise. For the current year, flph20 is defined similarly but is observed only
if the sample retention indicator retent1 = 1 (retent1 = 0 for the 382 observations
who dropped out). Age (eta), age-squared (eta2), and the sex of the employee (female
= 1 if a woman) are the only predictor variables used in this simple illustration, and all
three are included as regressors in each of the three equations.

The equations for this model have the following form for each observation:

Low pay, base year: L∗ = W ′β + l, where L = I(L∗ > 0)

Sample retention: R∗ = Y ′δ + r, where R = I(R∗ > 0)

Low pay, current year: F ∗ = Z ′θ + f, where F = I(F ∗ > 0) if R = 1
and is missing otherwise

The variables denoted by asterisks are the latent outcomes and those without them are
binary indicators summarizing the observed outcomes. I(.) is the indicator function
equal to one if its argument is true and zero otherwise. Observe the sample selec-
tion condition in the current year low-pay equation. We assume that the error terms
(l, r, f) ∼ N3(0, V), where V is a symmetric matrix with typical element ρrs = ρsr for
r, s ∈ {l, r, f} and r �= s, and ρrr = 1, for all r. The errors in each equation are assumed
to be orthogonal to the predictors (elements of the vectors W , Y , and Z, respectively).

178 Calculation of multivariate normal probabilities by simulation

Define a set of signs variables κT = 2T − 1 for T ∈ {L,R, F}. The likelihood
contribution for an employee who is observed in both the base year and the current
year, i.e., with R = 1, is

L3 = Φ3(κLW ′β, κRY ′δ, κF Z ′θ;κLκRρlr, κLκF ρlf , κRκF ρrf)

By contrast, the likelihood contribution for someone who responded only in the first
year is

L2 = Φ2(κLW ′β, κRY ′δ;κLκRρlr)

The log-likelihood contribution to be calculated by the evaluator function for each ob-
servation is

(1 − R) log L2 + R log L3

The evaluator function for method lf estimation is coded with a similar structure to
that used for the multivariate probit example earlier. Any differences reflect that the
three outcome variables are observed only for employees who are retained in the sample;
for dropouts, there are only two observed outcomes.

program define myll

args lnf x1 x2 x3 c21 c31 c32
tempvar sp2 sp3 k1 k2 k3

quietly {
gen double ‘k1’ = 2*$ML_y1 - 1
gen double ‘k2’ = 2*$ML_y2 - 1
gen double ‘k3’ = 2*$ML_y3 - 1
tempname cf21 cf22 cf31 cf32 cf33 C1 C2
su ‘c21’, meanonly
scalar ‘cf21’ = r(mean)
su ‘c31’, meanonly
scalar ‘cf31’ = r(mean)
su ‘c32’, meanonly
scalar ‘cf32’ = r(mean)
scalar ‘cf22’ = sqrt(1 - ‘cf21’^2)
scalar ‘cf33’ = sqrt(1 - ‘cf31’^2 - ‘cf32’^2)
mat ‘C1’ = (1, 0 , 0 \ ‘cf21’, ‘cf22’, 0 \ ‘cf31’ , ‘cf32’ , ‘cf33’)
mat ‘C2’ = (1, 0 \ ‘cf21’, ‘cf22’)
egen ‘sp3’ = mvnp(‘x1’ ‘x2’ ‘x3’) if $ML_y1==1, ///

chol(‘C1’) dr($dr) ml prefix(z) signs(‘k1’ ‘k2’ ‘k3’)
egen ‘sp2’ = mvnp(‘x1’ ‘x2’) if $ML_y1==0, ///

chol(‘C2’) dr($dr) ml prefix(z) signs(‘k1’ ‘k2’)
replace ‘lnf’= cond($ML_y1, ln(‘sp3’), ln(‘sp2’), .)

}
end

There are two principal differences from the earlier illustration. First, there are now
two Cholesky matrices defined, ‘C1’, ‘C2’, with the latter being a submatrix of the
former. (Having two matrices ensures that the appropriate parameter constraints hold
for all observations, regardless of whether they dropped out.) Second, the call to mvnp()
differs depending on dropout status. Adding the if qualifier to the egen command is
not essential but it is wise because restricting the number of observations for whom the
simulation calculations is undertaken reduces computation time.

L. Cappellari and S. P. Jenkins 179

Starting values were derived from three independent univariate probit regressions
(the same method as for the trivariate probit example) and again they were stored in
a matrix named b0. mdraws was used to create 100 Halton draws with antithetics,
and then the calls were made to ml model and ml maximize. Because observations
that dropped out of the sample have missing values for the current year low-pay status
variable flph20, we used the missing option on the ml model statement so that these
cases are not dropped from the estimation sample.

. mdraws, dr(100) neq(3) prefix(z) burn(10) antithetics
Created 100 Halton draws per equation for 3 dimensions. Number of initial draws
dropped per dimension = 10 . Primes used:

2 3 5
Also created 100 antithetic draws per dimension for 3 dimensions. Note: there
are now 200 draws per equation

. global dr = r(n_draws)

. ml model lf myll (retent1: retent1 = female eta eta2)
> (lph20: lph20 = female eta eta2)
> (flph20: flph20 = female eta eta2)
> /c21 /c31 /c32
> , missing title("3-var probit, 1 selection, MSL, $dr Halton draws")

. ml init b0

The resulting estimates were

. ml maximize

initial: log likelihood = -1387.3445
rescale: log likelihood = -1387.3445
rescale eq: log likelihood = -1387.3445
Iteration 0: log likelihood = -1387.3445 (not concave)
Iteration 1: log likelihood = -1347.2308 (not concave)
Iteration 2: log likelihood = -1338.9097
Iteration 3: log likelihood = -1338.7581
Iteration 4: log likelihood = -1338.7247
Iteration 5: log likelihood = -1338.7247

3-var probit, 1 selection, MSL, 200 Halton draws Number of obs = 1098
Wald chi2(3) = 32.88

Log likelihood = -1338.7247 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

retent1
female -.0282483 .0838161 -0.34 0.736 -.1925249 .1360282

eta .1605634 .0280407 5.73 0.000 .1056047 .2155221
eta2 -.0020581 .0003605 -5.71 0.000 -.0027646 -.0013515
_cons -2.500076 .5174225 -4.83 0.000 -3.514206 -1.485947

lph20
female .1314453 .0992667 1.32 0.185 -.0631139 .3260045

eta -.2443421 .0335981 -7.27 0.000 -.3101931 -.178491
eta2 .0026242 .00044 5.96 0.000 .0017618 .0034867
_cons 4.152685 .6008131 6.91 0.000 2.975113 5.330257

180 Calculation of multivariate normal probabilities by simulation

flph20
female .2920033 .1215907 2.40 0.016 .05369 .5303167

eta -.2204495 .0610417 -3.61 0.000 -.3400891 -.1008099
eta2 .0025759 .0008165 3.15 0.002 .0009756 .0041762
_cons 3.322163 1.461342 2.27 0.023 .4579846 6.186341

c21
_cons -.1382572 .0597633 -2.31 0.021 -.2553911 -.0211234

c31
_cons -.2608709 .6660562 -0.39 0.695 -1.566317 1.044575

c32
_cons .6888565 .1274599 5.40 0.000 .4390397 .9386734

. // Derive correlations from cholesky factors

. // C is lower triangular, with 1s on the leading diagonal

. // r21 = c21, r31 = c31, r32 = c21*c31 + c22*c32

. nlcom (r21: [c21]_b[_cons]) ///
> (r31: [c31]_b[_cons]) ///
> (r32: [c21]_b[_cons]*[c31]_b[_cons] ///
> + sqrt(1 - [c21]_b[_cons]^2)[c32]_b[_cons]) ///
> , post

r21: [c21]_b[_cons]
r31: [c31]_b[_cons]
r32: [c21]_b[_cons]*[c31]_b[_cons]

> + sqrt(1 - [c21]_b[_cons]^2)*[c32]_b[_cons]

Coef. Std. Err. z P>|z| [95% Conf. Interval]

r21 -.1382572 .0597633 -2.31 0.021 -.2553911 -.0211234
r31 -.2608709 .6660562 -0.39 0.695 -1.566317 1.044575
r32 .7183083 .055739 12.89 0.000 .6090618 .8275548

The results suggest that there is a U-shaped relationship between age and the prob-
ability of being low paid, whereas the relationship between age and the probability of
sample retention is inverse-U shaped. Those with unobserved characteristics favoring
sample retention are less likely to have been low paid in the base year (r21 < 0). And
low-pay propensities in the current and base years are correlated (r32 > 0). A formal
test of whether sample selection is ignorable is based on a test of the null hypothesis
r21 = 0 = r31. This test can be implemented using the test command after nlcom.
Observe the use of the post option to nlcom, which saves the nlcom output as e-class
results.

L. Cappellari and S. P. Jenkins 181

. // sample selection ignorable if r21 = r31 = 0

. test r21 r31

(1) r21 = 0
(2) r31 = 0

chi2(2) = 5.40
Prob > chi2 = 0.0670

With a p-value for the test of 0.067, we cannot reject the null hypothesis of ignora-
bility at the 5% significance level.

3.6 Illustration 4: MSL estimation of a probit model for panel data

Our final illustration provides an example of a method d0 estimator applied to panel
data. (The earlier illustrations considered method lf estimators and cross-sectional
data.) The dataset long4.dta contains data on 1,334 men and women aged 50–59
years who were respondents to the UK Quarterly Labour Force Survey between 1993
and 2004. Each individual was interviewed for five consecutive quarters (“waves”),
providing a balanced panel. We investigate the predictors of the probability of being
employed rather than being unemployed or economically inactive.

Because we have repeated observations on the same individuals over time, we can
control for unobserved differences in employment probabilities. One common way is
with a random-effects probit model (xtprobit in Stata), but this has the disadvantage
that it imposes an equicorrelation structure on the error terms for the different periods,
as well as equal variances. We generalize this model to allow for an unrestricted error
variance–covariance structure.

More formally, we assume that the model for the latent employment propensity and
observed employment outcome for each individual is

y∗
t = β′Xt + ut, t = 1, . . . , T

yt = 1 if y∗
t > 0, and 0 otherwise

where Xt is a vector of observed predictors. The error terms ut are assumed to have a
multivariate normal distribution of dimension T , with zero mean and covariance matrix
V : ut ∼ NT (0, V). The covariance matrix is unconstrained, except that one variance is
normalized to unity, for identification. The random-effects probit model is a special case
of this specification. It assumes ut = α + εt, with α ∼ N(0, σ2

α), and εt ∼ NT (0, σ2
ε IT)

implying that cov(ut, us) = σ2
α + σ2

ε if t = s, and σ2
α if t �= s.

The likelihood contribution for each individual, given T = 5 in each case, is

Φ5(κ1β
′X1, κ2β

′X2, . . . , κ5β
′X5;KV K)

where K = diag(κ1 . . . κ5), Φ5(.) is the five-variate standard normal distribution func-
tion, and the signs variables (κt) are defined as earlier.

182 Calculation of multivariate normal probabilities by simulation

The likelihood-evaluation function for this model assumes that the data are in long
form, with one row for each person–wave observation. The personal identifier for each
individual is held in the global macro $pid and the numbers of waves observed (5) is
held in global macro $M. The data are assumed to be sorted by $pid and wave.

global cs " "
global csbar " "
forvalues i = 2/$M {

forvalues j = 1/‘i’ {
global cs "$cs c‘i’‘j’"
global csbar "$csbar /c‘i’‘j’"

}
}

program define myll
args todo b lnf
tempvar theta1 T fi xb1 xb2 xb3 xb4 xb5 k1 k2 k3 k4 k5
tempname $cs
mleval ‘theta1’ = ‘b’ , eq(1)
local c = 1
forvalues i = 2/$M {

forvalues j = 1/‘i’ {
local c = ‘c’ + 1
mleval ‘c‘i’‘j’’ = ‘b’ , eq(‘c’) scalar

}
}
quietly {

forvalues i = 1/$M {
by $pid: gen double ‘k‘i’’ = (2*$ML_y1[‘i’]) - 1
by $pid: gen double ‘xb‘i’’ = ‘theta1’[‘i’]

}
by $pid: gen double ‘T’ = (_n == $M)
tempname C
mat ‘C’ = I($M)
forvalues i = 2/$M {

forvalues j = 1/‘i’ {
local c‘i’‘j’ = ‘c‘i’‘j’’
mat ‘C’[‘i’,‘j’] = (‘c‘i’‘j’’)

}
}
egen ‘fi’ = mvnp(‘xb1’ ‘xb2’ ‘xb3’ ‘xb4’ ‘xb5’) , ///

chol(‘C’) dr($dr) prefix(z) ///
signs(‘k1’ ‘k2’ ‘k3’ ‘k4’ ‘k5’)

mlsum ‘lnf’ = ln(‘fi’) if ‘T’
}

end

The first piece of code defines, for convenience, a global macro that will hold the
names of all the Cholesky matrix elements (cs), together with another global macro
containing the corresponding equation names (csbar), to be used on the later ml model
statement.

L. Cappellari and S. P. Jenkins 183

. di "$cs"
c21 c22 c31 c32 c33 c41 c42 c43 c44 c51 c52 c53 c54 c55

. di "$csbar"
/c21 /c22 /c31 /c32 /c33 /c41 /c42 /c43 /c44 /c51 /c52 /c53
/c54 /c55

Because we use a method d0 estimator, the evaluation program has a different format
from those used in the earlier illustrations. In particular, the Cholesky factors are not
declared on the args statement but by using mleval statements instead. (Each factor
is no longer a variable, but a constant term in an equation.) The first lines within the
quietly block create the signs variables and the linear indices (β′Xt). Observe the
indexing of the variables to each quarter. And, since only one equation (‘theta1’) was
declared earlier to refer to the regression coefficients, the coefficients are constrained
to be the same for each quarter, as required. The next lines specify the Cholesky
matrix. No constraints are placed on the elements except that C11 = 1. (Observe that
matrix ‘C’ is first declared as an identity matrix and subsequent lines replace lower
triangular elements with Cholesky factors—with the exception of element (1,1), which
therefore stays equal to 1.) The call to mvnp() creates the simulated probabilities of
the observed employment–nonemployment sequence for each respondent. Finally, the
mlsum statement sums, for each individual, the log of these probabilities and stores the
result in the last data row.

To fit the model, we need to start by declaring starting values and creating the
draws variables for a chosen number of draws. The predictor variables used are female
(a binary indicator equal to 1 if the individual is a woman and 0 otherwise) and age (in
years). Code for these steps, to specify the ml model statement, and to maximize the
model, could be

. probit employed female age

. mat b0 = e(b)

. mdraws, dr(50) neq($M) prefix(z) antithetics

. global dr = r(n_draws)

. ml init b0

. ml model d0 myll (employed = female age) $csbar,
> title(Multiperiod Probit, $dr Halton draws)

In practice, we had to use several variations on these statements to fit a model that
converged satisfactorily. We often experienced nonconcavities and nonconvergence and
so experimented with different numbers and types of draws, as well as with different
starting values. One successful strategy was to fit the model with a few draws, to use
the resulting estimates as starting values for estimation using more draws, and then
to repeat this process until the estimates stabilized. When doing so, we also used the
technique(dfp nr) option on the ml model statement and the difficult option on
the ml maximize statement.

184 Calculation of multivariate normal probabilities by simulation

Example output, from a run based on 250 Halton draws plus antithetics, is as follows.

. ml maximize, difficult

(output omitted)

Multiperiod Probit, 500 Halton draws Number of obs = 6670
Wald chi2(2) = 118.07

Log likelihood = -1537.467 Prob > chi2 = 0.0000

Coef. Std. Err. z P>|z| [95% Conf. Interval]

employed
female -.4531049 .0736374 -6.15 0.000 -.5974317 -.3087782

age -.0877273 .0083794 -10.47 0.000 -.1041507 -.0713039
_cons 5.488687 .4846868 11.32 0.000 4.538718 6.438656

c21
_cons 1.073389 .0386209 27.79 0.000 .9976932 1.149084

c22
_cons .1729371 .0234292 7.38 0.000 .1270167 .2188576

c31
_cons 1.044281 .043958 23.76 0.000 .9581245 1.130437

c32
_cons .1773736 .0288286 6.15 0.000 .1208705 .2338767

c33
_cons .1462416 .0201903 7.24 0.000 .1066694 .1858138

c41
_cons .9886117 .0466896 21.17 0.000 .8971018 1.080122

c42
_cons .1765436 .0336247 5.25 0.000 .1106404 .2424468

c43
_cons .1682321 .0277484 6.06 0.000 .1138461 .222618

c44
_cons .1135522 .0190432 5.96 0.000 .0762283 .1508762

c51
_cons .9701103 .0477173 20.33 0.000 .8765862 1.063634

c52
_cons .1569621 .0383303 4.09 0.000 .081836 .2320882

c53
_cons .1145818 .0341573 3.35 0.001 .0476347 .1815289

c54
_cons .1627055 .0317603 5.12 0.000 .1004565 .2249546

c55
_cons .0955757 .031963 2.99 0.003 .0329293 .1582221

L. Cappellari and S. P. Jenkins 185

The results indicate that employment probabilities are lower for women than men
and decline with age. The estimate of the covariance matrix of the error terms is as
follows, derived by applying nlcom as before.

. nlcom (v21: [c21]_b[_cons])
> (v22: [c21]_b[_cons]^2 + [c22]_b[_cons]^2)
> (v31: [c31]_b[_cons])
> (v32: [c21]_b[_cons]*[c31]_b[_cons] + [c22]_b[_cons]*[c32]_b[_cons])
> (v33: [c31]_b[_cons]^2 + [c32]_b[_cons]^2 + [c33]_b[_cons]^2)
> (v41: [c41]_b[_cons])
> (v42: [c21]_b[_cons]*[c41]_b[_cons] + [c22]_b[_cons]*[c42]_b[_cons])
> (v43: [c31]_b[_cons]*[c41]_b[_cons] + [c32]_b[_cons]*[c42]_b[_cons]
> + [c33]_b[_cons]*[c43]_b[_cons])
> (v44: [c41]_b[_cons]^2 + [c42]_b[_cons]^2 +
> [c43]_b[_cons]^2 + [c44]_b[_cons]^2)
> (v51: [c51]_b[_cons])
> (v52: [c21]_b[_cons]*[c51]_b[_cons] + [c22]_b[_cons]*[c52]_b[_cons])
> (v53: [c31]_b[_cons]*[c51]_b[_cons] + [c32]_b[_cons]*[c52]_b[_cons]
> + [c33]_b[_cons]*[c53]_b[_cons])
> (v54: [c41]_b[_cons]*[c51]_b[_cons] + [c42]_b[_cons]*[c52]_b[_cons]
> + [c43]_b[_cons]*[c53]_b[_cons] + [c44]_b[_cons]*[c54]_b[_cons])
> (v55: [c51]_b[_cons]^2 + [c52]_b[_cons]^2
> + [c53]_b[_cons]^2 + [c54]_b[_cons]^2 + [c55]_b[_cons]^2)
> , post

(output omitted)

employed Coef. Std. Err. z P>|z| [95% Conf. Interval]

v21 1.073389 .0386209 27.79 0.000 .9976932 1.149084
v22 1.18207 .0851815 13.88 0.000 1.015118 1.349023
v31 1.044281 .043958 23.76 0.000 .9581245 1.130437
v32 1.151593 .0809325 14.23 0.000 .9929687 1.310218
v33 1.14337 .0956865 11.95 0.000 .9558277 1.330912
v41 .9886117 .0466896 21.17 0.000 .8971018 1.080122
v42 1.091696 .0792027 13.78 0.000 .936461 1.24693
v43 1.088305 .0899833 12.09 0.000 .9119406 1.264669
v44 1.049717 .0977442 10.74 0.000 .8581417 1.241292
v51 .9701103 .0477173 20.33 0.000 .8765862 1.063634
v52 1.06845 .0780511 13.69 0.000 .9154726 1.221427
v53 1.057665 .0856769 12.34 0.000 .8897413 1.225588
v54 1.024525 .0918157 11.16 0.000 .8445694 1.20448
v55 1.014488 .0985217 10.30 0.000 .821389 1.207587

The estimates of the variances are close to one, which implies—given the covariance
estimates—that each correlation is also close to one. A formal test of the constant vari-
ance and equicorrelation assumptions incorporated in the random-effects probit model
can be implemented by using test after nlcom with the post option.

. test _b[v22] = _b[v33] = _b[v44] = _b[v55] = 1

(1) v22 - v33 = 0
(2) v22 - v44 = 0
(3) v22 - v55 = 0
(4) v22 = 1

chi2(4) = 6.21
Prob > chi2 = 0.1841

186 Calculation of multivariate normal probabilities by simulation

. test _b[v21] = _b[v31] = _b[v32] = _b[v41] = _b[v42] = _b[v43] = _b[v51] =
> _b[v52] = _b[v53] = _b[v54], accum

(1) v22 - v33 = 0
(2) v22 - v44 = 0
(3) v22 - v55 = 0
(4) v22 = 1
(5) v21 - v31 = 0
(6) v21 - v32 = 0
(7) v21 - v41 = 0
(8) v21 - v42 = 0
(9) v21 - v43 = 0
(10) v21 - v51 = 0
(11) v21 - v52 = 0
(12) v21 - v53 = 0
(13) v21 - v54 = 0

chi2(13) = 29.25
Prob > chi2 = 0.0060

According to the first test, we cannot reject the null hypothesis that each error
variance is equal to one. However, according to the second test, one can reject the
null hypothesis of unit variances combined with equal cross-wave correlations, i.e., the
assumptions of the random-effects probit model (for which the estimated cross-wave
correlation is around 0.96).

One might also investigate other hypotheses about the structure of the covariance
matrix, for example whether the estimates were consistent with some particular autore-
gressive moving average error structure and implement the test for the Cholesky factors
using testnl. Estimation of models that incorporate autoregressive moving average
error structures is harder since, e.g., ml does not currently allow specification of non-
linear constraints (constraint define refers to linear constraints). It would also be
desirable to incorporate some genuine dynamics into the model, e.g., to have the cur-
rent quarter’s employment probability depend on whether the individual worked last
quarter. This relationship, in turn, raises initial conditions issues. That is, the state
in which the respondent is first observed is endogenous and needs to be accounted for.
For a program that estimates by MSL a dynamic probit model controlling for initial
conditions and with first-order autocorrelated errors, see redpace by Stewart (2006).
Allowing for unbalanced panels would be another useful extension.

4 Conclusions

Here we have extended the range of models that can be fitted in Stata. Users can fit
many types of model by MSL and do so using less computation time. Although our
examples have focused on fitting multivariate and multiperiod probit models, one can
also fit models in which some outcomes are continuous and some are binary. Using
mdraws and mvnp() requires the user to code the appropriate likelihood evaluation
function, but the template code used in our illustrations aims to make that task easier.

L. Cappellari and S. P. Jenkins 187

Effective estimation is also partly a matter of experience. Complicated models re-
quire good starting values, and finding them may require some experimentation. We
have referred, for example, to tricks such as starting by fitting a model with a few draws
and using estimates from this model as starting values for a model with more draws. If
the process takes a long time, then saving intermediate results to disk with tools such
as Michael Blasnik’s estsave program (available from SSC) may prove useful.

There remain many gaps in our knowledge about the performance of MSL estimators
and the different types of draw variables. Most empirical investigations of estimator
properties have focused on mixed logit models, and it is not clear yet whether the
conclusions derived in that context also apply to the multivariate normal case. Our
comparisons of multivariate probit model estimates based on pseudorandom and Halton
draws (tables 1 and 2) emphasize this point. Nevertheless, some promising evidence
is provided by Sándor and András (2004). They studied the performance of several
sampling methods for estimation of multivariate normal probabilities using the GHK

simulator. Draws variables based on Halton sequences are shown to perform better
than those based on pseudorandom draws (with or without antithetic draws). Both
are dominated by other more complicated methods such as Niederreiter sequences and
those based on orthogonal arrays.

Our programs intentionally separate the tasks of creation of the draws variables from
the calculation of the multivariate normal probabilities. This modular approach means
that it should be easier to incorporate extensions and innovations. These improvements
might also take advantage of Mata. After we finished the first draft of this paper, Mata
functions for calculation of Halton sequences and multivariate normal probabilities using
the GHK simulator became available: halton() and ghk(), released in the 20 January
2006 update to Stata version 9.1; see help mf halton and help mf ghk. These are
welcome innovations, but our programs provide similar functionality for Stata users of
version 8.2 and later, and our use of a plugin means that calculations are also relatively
fast. Moreover, mdraws lets users choose the prime numbers that are used to create
Halton sequences and allocates the sequence elements to observations.

Our programs do not have to be used together. For example, mdraws can be used
separately for many MSL applications. Haan and Uhlendorff (2006) use MSL to fit a
random-intercept multinomial logit model with panel data. Because the latent outcome
variables do not have a multivariate normal distribution, mvnp() is not applicable.
However, each simulation requires a set of draws variables, and these simulations use
mdraws to derive Halton draws.

5 Acknowledgments

This research was supported by core funding to the Institute for Social and Economic
Research from the UK Economic and Social Research Council and the University of
Essex.

188 Calculation of multivariate normal probabilities by simulation

The first draft of this article was written when Jenkins visited the SOEP Group at DIW

Berlin. Mark Stewart provided many helpful comments and suggestions. The code for
Halton draws is a generalization of some do-file code by Arne Uhlendorff (DIW Berlin),
which in turn uses a program posted on Statalist by Nick Cox (Durham University)
in August 2004: see http://www.stata.com/statalist/archive/2004-08/msg00222.html.
mdraws also uses that program, here renamed mdraws h and modified. We are grateful to
the anonymous referee for comments. We owe very special thanks to Roberto Gutierrez
(StataCorp) for writing the plugin to accompany mvnp().

6 References
Cappellari, L., and S. P. Jenkins. 2003. Multivariate probit regression using simulated

maximum likelihood. Stata Journal 3: 278–294.

———. 2004. Modelling low income transitions. Journal of Applied Econometrics 19:
593–610.

———. 2005. Software update: st0045 1: Multivariate probit regression using simulated
maximum likelihood. Stata Journal 5: 285.

———. 2006. Software update: st0045 2: Multivariate probit regression using simulated
maximum likelihood. Stata Journal 6: 284.

Gould, W., J. Pitblado, and W. Sribney. 2006. Maximum Likelihood Estimation with
Stata. 3rd ed. College Station, TX: Stata Press.

Gouriéroux, C., and A. Monfont. 1996. Simulation-Based Econometric Methods. Ox-
ford: Oxford University Press.

Greene, W. H. 2003. Econometric Analysis. 5th ed. Upper Saddle River, NJ: Prentice
Hall.

Haan, P., and A. Uhlendorff. 2006. Estimation of multinomial logit models with unob-
served heterogeneity using maximum simulated likelihood. Stata Journal 6: 229–245.

Hess, S., and J. Polak. 2003. An alternative method to the scrambled Halton sequence for
removing correlation between standard Halton sequences in higher dimensions. Paper
presented at the 2003 European Regional Science Conference, Jyväskylä, Finland.
http://www.jyu.fi/ersa2003/cdrom/papers/406.pdf.

Hess, S., J. Polak, and A. Daly. 2003. On the performance of the shuffled Halton
sequence in the estimation of discrete choice models. Paper presented at the European
Transport Conference, Strasbourg, France.
http://www.cts.cv.imperial.ac.uk/StaffPages/StephaneHess/papers/
Hess Polak Daly ETC oct 16.pdf.

Jenkins, S. P., L. Cappellari, P. Lynn, A. Jäckle, and E. Sala. Forthcoming. Patterns of
consent: evidence from a general household survey. Journal of the Royal Statistical
Society, Series A 169. http://www.iser.essex.ac.uk/pubs/workpaps/pdf/2004-27.pdf.

L. Cappellari and S. P. Jenkins 189

Sándor, Z., and P. András. 2004. Alternative sampling methods for estimating multi-
variate normal probabilities. Journal of Econometrics 120: 207–234.

Stern, S. 1997. Simulation-based estimation. Journal of Economic Literature 35: 2006–
2039.

Stewart, M. 2006. Maximum simulated likelihood estimation of random-effects dynamics
probit models with autocorrelated errors. Stata Journal 6: 256–272.

Train, K. 2003. Discrete Choice Methods with Simulation. Cambridge: Cambridge
University Press.

About the authors

Lorenzo Cappellari is an associate professor at the Universitá Cattolica (Milan, Italy) and a
research associate of the Institute for Social and Economic Research (ISER) at the University
of Essex, Colchester, UK. Stephen Jenkins is a professor at ISER, research professor at DIW

Berlin, and an associate editor of the Stata Journal. Both authors are research associates of
IZA (Bonn) and CHILD (Turin).

