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Abstract. Many problems in statistical analysis include time-of-day variables,
but Stata offers limited support for time-of-day calculations. Support is needed
for dates with times, times alone, and durations or timings. This article presents
two new programs as general utilities to convert back and forth between string
and numeric representations.
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1 Introduction

Many problems in statistical analysis include time-of-day variables. Economists, medical
statisticians, and environmental scientists are just three groups who often deal with such
data. However, Stata offers limited official support for time-of-day calculations. Here I
will discuss the general problems that time of day poses and introduce two utilities for
conversion back and forth between numeric representations (in some units such as days
or seconds) and composite string representations showing the information separated
into elements (and often decorated with units or other information).

This column is the first in a series with the general theme of circular arguments.
Time of day is a circular scale, as one midnight or noon is followed by another a day
later. Later columns will examine seasonal data and directions (angles, orientations)
defined on more general circular outcome spaces.

2 From time to time of day

Support for time and time variables has been part of official Stata for several versions,
including

Formats. Daily date and other date formats (%d and %t formats).

Functions. Various functions for date definitions and extractions (date(), d(), mdy()
and many others).

tsset. Allows the declaration of datasets as individual time series or longitudinal or
panel data.

Operators. Time-series operators such as L. and D. allow the automation of lagging,
differencing, etc.

c© 2006 StataCorp LP dm0018
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Specific commands. Various commands intended mostly or entirely for time series,
whether individual time series or longitudinal or panel data, as surveyed in the
[TS] and [XT] manuals.

If most or all of this is new to you, start with [U] 24 Dealing with dates.

Use of single time variables, let alone of tsset, is not compulsory in Stata for all
time-series manipulations. When working with daily rainfall data, I have often used a
date definition based on three separate variables, for year, month, and day of month,
or one based on two separate variables, for year and day of year. This system is less
wasteful than may at first sight appear, as year and month (or day of year) variables are
essential for many analyses. Nor is the sort order defined by year, month, and day in
turn the only natural sort order. An order defined by month, day, and year has several
uses when examining seasonal fluctuations.

Some of the facilities for time data are necessary because time has a direction defining
a unique order of observations. Most of the programming complexities arise, however,
because of the calendar. Richards (1998) gives an entertaining and informative survey
of the variety of calendars. Even the Western (Gregorian) calendar that most readers
will regard as standard has a complicated structure of years, months, weeks, and days,
including leap year corrections. Some data, especially in finance or economics, also
refer to half-years or quarters. There are also alternative calendars; weekends; public
holidays and other special days; years or quarters linked to origins other than 1 January;
and other details not explicitly supported in Stata. Calendar problems continue to pose
a variety of computing challenges. Reingold and Dershowitz (2001) is the standard
reference.

Data do often arrive using some calendar convention. But even if you receive a Stata
dataset in which time has been set up according to Stata’s own conventions, you must
be able to report results for time data using the standard calendar.

Put together, these facilities for time variables ease management and analysis of data
recorded on various resolutions from yearly to daily. Stata’s support does not apply to
years before 100 CE, so any archaeologists, ancient historians, or climatologists with
interests around or before that time would need to fend for themselves. Evidently, some
scientists do work with data over even longer time spans. Geologists and astronomers
routinely think in thousands, indeed millions, of years. However, they can avoid the
idiosyncrasies of the calendar. Geologists estimating the date of a meteor impact do not
trouble themselves with whether it was during a leap year: that resolution is impossible
to attain. At the other end of the spectrum, some scientists do work on fast reactions
in which times may be measured in nanoseconds. As with very long time scales, it is
not clear that any special support in Stata is needed for time over such resolutions.

One feature that is almost missing from official Stata, however, is support for time
of day. As I type this sentence, a little display in the corner of my computer screen
shows 17:16, which you will recognize as a 24-hour time. Many datasets go beyond daily
resolution to register when an event occurred or when some property was recorded.
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As with the calendar, the complexity in handling time of day arises from using
hours, minutes, and seconds. Although familiar to all readers, this system emerged only
in stages over a long period. The brief notes here are based mostly on details given
by Richards (1998, 44) and Whitrow (1975, 62). The Egyptians divided the day into
24 periods, but astronomers from Hipparchus (second century BCE) onward took the
further step of defining those periods to have equal length. For several centuries more,
most other subdivisions of the day were based on subdivisions of daylight and nighttime
periods, which thus varied seasonally. Division of hours into 60 minutes was introduced
by the astronomer Ptolemy in the second century CE, but seconds came only much later.
Whitrow reports seconds’ being used for theoretical calculations in 1345—before they
were used as units of measurement.

I said that support for time of day is “almost” missing because the documentation of
the official split command introduced in Stata 8 does include an example showing how
time data in hh:mm:ss form may be split into component variables. More generally,
various general Stata commands or functions can be useful if you are dealing with times
of day, as will be discussed in the next section. Other than that, support for time
of day is limited to various user-written programs. Perhaps Stata groups in financial
institutions or government agencies have privately developed such programs, but all
those known to me are accessible from the SSC archive by using the ssc command; see
[R] ssc. The programs concerned are fodstr, fod2str, and mkfrac by William Gould
and various egen functions written by Christopher F. Baum and myself.

For me, the need for time-of-day support arises mostly from looking at data from
tipping-bucket rain gauges. People have been measuring rainfall for thousands of years.
At root, it is easy. Just after a storm you look in a pot or a bucket that was left out
in the open and see how deep the water is. Naturally there are many complications
(e.g., splashing, evaporation, snow), but the instrument design and the measurement
protocol have moved on accordingly. Tipping-bucket rain gauges all center on recording
the times by which successive units of rainfall have accumulated. The name comes from
tipping and emptying of a little bucket each time it is full, meaning that it is holding
the specified unit. One great attraction of modern designs is that gauges can be left in
wild or remote areas without needing much attention from scientists.

This column can be read on two levels. First, it introduces two new commands,
ntimeofday and stimeofday, for basic time-of-day manipulations. The first letters n
and s flag a major distinction. n stands for numeric, and ntimeofday is for generating
numeric time-of-day variables from string time-of-day variables. s stands for string,
and stimeofday is for generating string time-of-day variables from numeric time-of-day
variables. You may be interested primarily to know whether these commands provide
the functionality you need.

Second, and in many ways more interesting, are some issues that arise in implement-
ing these programs, ranging from user needs to syntax choices. In brief, some support
for time of day is within the reach of the user–programmer, but some functionality
requires StataCorp action.



N. J. Cox 127

3 Needs and possibilities

First, let us look at what is needed and to what extent user–programmers can provide
it. In programming any extension of Stata, you can write what you like, so long as it is
legal syntax. That said, many questions of style do also arise (Cox 2005). In the long
term, it pays off, and users will thank you more, if what you write is as close to official
Stata style as possible.

In supporting time of day, a natural aim is to mesh as closely as possible with existing
support for dates, especially where dates and times of day are likely to touch. Let us
recap on how Stata handles dates. If you read the string

“21 January 2006”

you recognize a date immediately. Stata in this case will agree with you, so that

. display d(21 January 2006)

will elicit a display of 16822, which is the number of days after Stata’s origin 0 at
1 January 1960. Conversely, Stata’s smartness about dates is finite, and it is fooled by

. display d(January 21 2006)

although not by

. display d(21/1/2006)

In general, dates may be shown in Stata as strings that have meaning but are subject
to arbitrary misunderstanding, or as numeric values, meaning integers, counting time
units from their origin in 1960, which will be understood correctly so long as Stata is
told what it is dealing with. Although shown here only for daily dates, the concept
holds for dates varying from weeks through months, quarters, and halves to years.

You can bridge the gap between numeric and string values, which can be collected
in variables, in various ways. Value labels are possible but would be inefficient for most
time-series problems given the many possible distinct values. A neater way is using
formats. Thus

. display %dM_d_CY 16822

reverses the process. The format %dM d CY can be thought of as an instruction to produce
something like a value label on demand, although unlike value labels the text cannot be
completely arbitrary. That catch is not much of a problem with date formats, as the
little language defining them is rich enough for most purposes.

Times of day are similar to dates in many ways. We should distinguish carefully
among

1. Times in the strict sense, such as “17:16” mentioned earlier. The colon convention
used here is common but not universal. If you ask Stata to show the current time
by
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. display "$S_TIME"

or

. di c(current_time)

it will give a colon-separated time of the form hh:mm:ss.

2. Date–times, in which both a daily date and a time are combined, such as “21
January 2006 17:16”.

3. Durations or timings. An Internet search reveals that the women’s marathon
record is, at the time of writing, 2:15:25—2 hours, 15 minutes, 25 seconds—held
by the British athlete Paula Radcliffe. This time’s association with a daily date,
13 April 2003, does not make it a date–time. Thus we can imagine a dataset in
which times to run a maze or to complete some other task are presented without
times of observation, so that timings without a date or time context can make
perfect sense. Timings are just differences between two clock times, even though
those clock times are usually unstated. (They might be interesting, as when time
of day affects an experiment, but that is another story.) If we provide functionality
for times, we also provide it for timings. That said, in practice scientists producing
timings will usually choose a convenient time unit and record times as a multiple
thereof rather than reporting them as composite units. But we want to be able
to handle composite units easily when they occur.

No special Stata formats are available for times, date–times, and timings. Moreover,
user-defined formats are not within the scope of Stata, at least at present. We might
hope that in due course official Stata extends formats to include time-of-day formats.
Value labels are impractical for the reason already given, the many distinct values that
might be needed.

The most practical approach to times of day for user–programmers is to handle them
as both numbers and strings. The numeric form will be needed for most calculations,
such as calculating time differences, rates, or summary measures; in graphics; and so
forth. Few time calculations are amenable to string manipulations, but string represen-
tations are needed for display or presentation. Users might want to show colons, spaces,
month information, and extra text such as h, m, or s, and am or pm.

Units and precision now need discussion. For numeric representation, users might
want a variety of time units for times of day, date–times, and timings. Those that
seem most likely—from a user’s point of view—are days, hours, minutes, seconds, or
milliseconds.

Let us review some basic time arithmetic. There are 24 hours in a day, 60 minutes
in an hour, and 60 seconds in a minute. Thus there are 1,440 minutes in a day, 3,600
seconds in an hour, and 86,400 seconds in a day. Imagine that time is measured in exact
hours (minutes, seconds, respectively) and that no date component is used. Then an
int variable will be adequate for up to 32,740 time units, that is, 32,740 hours (over 545
hours, just over 9 hours, respectively). Thus for coarse resolutions, or short time spans,
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an int might be adequate. Conversely, if dates are also used, or the time resolution is
shorter, then other data types should be used. The choice in practice is between double
and long. long will be fine for large integers, but for greater generality in being able to
handle any fractional part, even down to, say, milliseconds, double is likely the better
choice.

If you had a numeric representation of time of day using one unit and wished to
convert to another (say, hours and fractions of hours to days and fractions of days),
then no special code is needed; generate and the appropriate conversion constant will
suffice.

If you had variables containing the individual elements of times of day and wanted
to use them to produce a composite, then that too is relatively simple. Suppose that
you have separate numeric variables giving hours, minutes, and seconds. A numeric
composite, with units of seconds, could be yielded by

. gen ntime = 3600 * hours + 60 * minutes + seconds

and a string composite by

. egen stime = concat(hours minutes seconds), p(:)

In the last case, there is no harm in doing it with more fundamental features:

. gen stime = string(hours) + ":" + string(minutes) + ":" + string(seconds)

Easy though such manipulations are, having individual variables like this appears un-
common in practice. The inverse may be more common. Thus given the time 17:16,
60×17+16 yields 1,036 (minutes after midnight). How would that numeric calculation
be reversed? In Stata terms, floor(1036 / 60) yields 17 and mod(1036, 60) yields
16. More generally, other such calculations require a duet of floor() (a bass voice)
and mod() (a soprano). For more on the mathematics of the floor and mod functions,
see Knuth (1997) or Graham, Knuth, and Patashnik (1994). For more on the uses of
floor() in Stata, see Cox (2003).

Here floor() never rounds up and is thus simpler than int(), which rounds non-
integers toward zero, down when positive, and up when negative. Using int() rather
than floor() could lead to bugs when dealing with Stata daily dates less than 0, i.e.,
before 1 January 1960.

Given a string representation such as “17:16”, the elements could instead be ex-
tracted by using substr() or the split command.

To summarize, many simple time-of-day calculations reduce to simple manipulations
using one or more of

• the commands generate, replace, and split,

• the functions floor(), mod(), and substr(), and

• the egen function concat().
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This system still leaves considerable scope for commands that take care of these
details for you.

4 Two new commands

Two new commands have been written: ntimeofday for converting from string times
of day (or timings) to numeric versions of the same and stimeofday for conversion in
the opposite direction. The two commands are not quite mirror images of each other,
as a few details need attention in one case but not both. The naming convention is that
the first letter of the command name indicates the result that will be produced, n for
numeric and s for string.

Designing two programs, not one, is partly a judgment call and partly based on stan-
dard Stata logic. Commands and functions in Stata that do conversions usually specify
one kind of input and thus one kind of output. The opposite conversion is done by some-
thing with a different name. For example, general string-numeric functionality comes
in pairs: encode and decode, destring and tostring, and real() and string().

A simple but powerful principle here is that whenever an operation and its inverse
both make sense, both should be supported. tostring is a case in point. It was written,
in the very first instance, because the operation clearly made sense. It became clear
only later that several users really did need it for specific problems. In any case, having
two programs gives the developer a set of consistency tests, checking that the output of
one program can be translated back to the input of the other.

4.1 ntimeofday

ntimeofday generates numeric time-of-day variables from string time-of-day variables.
It is designed as a general tool in various senses:

1. It can take several variables and correspondingly produce several new variables.
They must all follow the same specification, as explained shortly. Generation is
all or nothing; there is no scope for a partial mess that needs to be cleaned up by
the user.

2. The user may specify as units for the new numeric variables any one of days, hours,
minutes, or seconds. The required option string() should be used to specify the
sequence of time or date elements followed in each of the string variables sup-
plied. Each element specified must occur just once in any value. The minimum
requirement is one element. Elements should be separated by spaces, punctuation,
or other nonnumeric characters. The little language used for specification allows
daily dates (day, month, year) in any order allowed by date() and elements spec-
ifying separately one or more of years, months, days, hours, minutes, and seconds.
However, certain combinations of year, month, and day elements are regarded as
invalid, because they give insufficient information to define a daily date part of
a date and time. Thus years or months alone is insufficient. So also are years
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and months without days, and months and days without years. Days alone are
acceptable, as they must be to support timings. Years and days together are ac-
ceptable, as a service to those who use years and day of year running from 1 to
365 or 366: the two elements are interpreted as daily dates using mdy(1,1,year)
+ (day - 1).

An extremes option produces a report on the range of each date or time ele-
ment, thus permitting a partial check on expectations. In particular, as far as
ntimeofday is concerned, the number of hours, minutes, and seconds may reason-
ably be or exceed 24, 60, and 60, respectively, depending on what is supplied.

3. Text strings indicating times a.m. and p.m. are allowed, but the user must say
what they are. Empirical survey shows small variations in use of upper or lower
case and periods or no periods, so the onus is placed on the user to spell out what
applies. This is really a feature, as an error will result if the data are not as it is
thought they should be.

4. A variety of separators are allowed if specified through a parse() option. The
split command is used within ntimeofday to produce individual elements, and
so the argument of parse() is passed to split. The default separators are spaces
and colons.

5. A type() option may be used to specify that numeric variables should be gen-
erated as a specified variable type. By default, variables are created as double.
type() is a rarely used option. Specifying type(long) will result in loss of infor-
mation whenever the times or dates contain fractional parts in the units specified.

Conversely, ntimeofday has some explicit limitations.

6. ntimeofday neither ignores nor allows for indicators of time zones (e.g., CET) or
days of the week (e.g., Mon). These should be removed first with, say, subinstr().

7. It does not support run-together dates such as 20060121 or run-together times
such as 1234. For an official comment on how to tackle run-together dates,
see http://www.stata.com/support/faqs/data/dateseq.html and for a user-written
program, use ssc to install todate.

8. It makes no adjustments for leap seconds or other astronomical subtleties. Every
day in every year is presumed to have 24 hours, each being 60 minutes and each
minute in turn being 60 seconds.

Let us look at a few examples. Suppose that a typical date–time is 21 Jan 2006
12:34:56. Then specify string(day mo yr h mi s). No arguments need be supplied
to parse(), as the separators of space and colon are its default. The full command
might then be

. ntimeofday datetime, gen(ndatetime) s(day mo yr h mi s) n(day)

which in this case produces a daily date with an extra fractional part.
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Or suppose that a typical date–time is 21jan06 12:34:56. Then specify
string(dmy h mi s) cend(2050). Again no arguments need be supplied to parse(),
as the separators of space and colon are its default. Thus we might have

. ntimeofday datetime, gen(ndatetime) s(dmy h mi s) n(day) cend(2050)

Note the use of a century-end option here, cend(), to spell out that years like 06 are
within the century ending in 2050.

Or suppose that timings are specified as 12h 34m 56s. Then specify
string(h mi s). The separators here are parse(h m s). split automatically trims
the remaining spaces. We can also ask for a display of extremes:

. ntimeofday timing, gen(ntiming) s(h mi s) n(day) parse(h m s) extremes

Syntax

ntimeofday strvarlist
[
if
] [

in
]
, generate(newvarlist) numeric(units)

string(specification)
[
am(am strings) pm(pm strings) cend(century end)

extremes parse(parse strings) type(variable type)
]

Options

generate(newvarlist) specifies a list of new names for the new numeric variables.
There must be as many new names as there are existing composite string variables.
generate() is required.

numeric(units) indicates units for the new numeric variables. One of days, hours (or
hrs), minutes, or seconds must be specified but may be abbreviated in any way.
numeric() is required.

string(specification) specifies the sequence of time or date elements followed in each
of the string variables supplied. Each element specified must occur just once in any
value. The minimum requirement is one element. Elements should be separated by
spaces, punctuation, or other nonnumeric characters. See also the parse() option
below. string() is required. See help ntimeofday for more details of specification.

am(am strings) and pm(pm strings) specify any text used in the string variables to
indicate whether times are a.m. or p.m. If two or more different text indicators are
used, all should be specified. Thus am(am) specifies that at least some times a.m.
are flagged with the text “am”. Times a.m. are naturally not adjusted, but the use
of such indicators should be declared. Similarly, pm(pm p.m.) specifies that at least
some times p.m. are flagged with one of those indicators. Times p.m. are adjusted
by adding 12 to hours from 1 to 11. A p.m. time given as, say, 23:45 pm will not
therefore be adjusted. Again the use of such indicators should be declared.
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cend(century end) specifies a century-end to apply to two-digit years whenever the
element is one of ymd, ydm, myd, mdy, dym, or dmy, and such dates are to be inter-
preted with date("date", "element", century end). See the date() function in
[D] functions.

extremes requests a display of the minimum and maximum of each date element.
ntimeofday performs some checks, and invalid or unintelligible dates will yield miss-
ing values. However, the user is advised to apply more, drawing upon knowledge
of what the data should be. In particular, as far as ntimeofday is concerned, the
number of hours, minutes, and seconds may reasonably be or exceed 24, 60, and 60,
respectively, depending on what is supplied. Inspection of extremes is thus advised.

parse(parse strings) supplies parse strings, that is, separators, to split (see [D] split),
which divides string variables into components before they are reassembled. By
default, ntimeofday causes split to parse on spaces and colons.

type(variable type) specifies that numeric variables be generated as a specified variable
type. By default, variables are created as doubles in ntimeofday. type() is a rarely
used option. Specifying type(long) will result in loss of information whenever the
times or dates contain fractional parts in the units specified.

4.2 stimeofday

stimeofday generates string time-of-day variables from numeric time-of-day variables.
It also is designed as a general tool in various senses:

1. Point 1 above also applies; that is, the command will operate on several variables
within one call.

2. All the numeric variables supplied must share the same units, one of days, hours,
minutes, or seconds. The option string() specifies the sequence of time or date
elements followed in each of the string variables to be generated. One of the
following specifications should be given.

days hours minutes seconds
days hours minutes
days hours
hours minutes seconds
hours minutes
minutes seconds

Thus single elements are ruled out, as requiring only trivial work to produce them,
although it might be argued that this exclusion makes the command incomplete.
The rule can be stated in one: elements must compose a subsequence of the
sequence days, hours, minutes, and seconds. Thus a choice such as hours and
seconds is ruled out as capricious. This is a judgment call, and only experience
will indicate whether there are demands for forms that are presently regarded as
unlikely choices.
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3. Similarly to point 3 above, am() and pm() options may be used to specify text
indicating whether times are a.m. or p.m.

4. A timeonly option specifies that only the time-of-day part of a date with a time of
day be used. Thus given 1453466096 with specified unit seconds, which is 21 Jan
2006 12:34, then only the time-of-day part would be used: i.e., mod(1453466096,
86400) would be used to produce a representation of the time of day.

5. A set of options may be used to tune the presentation of individual date or time
elements. Thus dformat(), hformat(), mformat(), and sformat() specify for-
mats for day, hour, minute, and second elements. Commonly, but not necessarily,
the day format will be specified by using a date format. This option is at the
user’s discretion. The default format is the default numeric format, given that the
number of days could be (part of) a timing. The default formats for hours, min-
utes, and seconds are %02.0f, %02.Of, and %05.2f, respectively, so that leading
zeros apply by default with numbers less than 10. Using default formats may lead
to considerable loss of information.

Similarly, dsymbol(), hsymbol(), msymbol(), and ssymbol() specify symbols for
day, hour, minute, and second elements. Each symbol occurs after the associated
element. The defaults are space, colon, colon, and empty string, respectively,
except that the default symbol is always an empty string for the last element
specified.

6. Similarly to point 6 above, stimeofday does not indicate time zones (e.g., CET) or
days of the week (e.g., Mon). If desired, these elements should be added otherwise.

7. Similarly to point 7 above, stimeofday does not produce run-together dates or
times.

8. Point 8 above also applies; that is, the command makes no adjustments for leap
seconds or other astronomical subtleties.

Suppose that you want a typical date–time to look like 21 Jan 2006 12:34:56.
Then specify string(d h m s) dformat(%dd m CY) sformat(%02.0f). By default,
without these format statements, the same date–time would appear as
16822 12:34:56.00.

. stimeofday ntime, gen(stime) n(s) s(d h m s) dformat(%dd_m_CY) sformat(%02.0f)

Or suppose that you want just the time of day from such a date and an indication of
both a.m. and p.m. Then specify, e.g., string(h m s) timeonly am("am") pm("pm").

. stimeofday ntime, gen(stime) n(s) s(h m s) timeonly am("am") pm("pm")



N. J. Cox 135

Syntax

stimeofday numvarlist
[
if
] [

in
]
, generate(newvarlist) numeric(units)

string(specification)
[
am(am strings) pm(pm strings) timeonly

dformat(format) hformat(format) mformat(format) sformat(format)

dsymbol(symbol) hsymbol(symbol) msymbol(symbol) ssymbol(symbol)
]

Options

generate(newvarlist) specifies a list of new names for the new string variables. There
must be as many new names as there are existing numeric variables. generate() is
required.

numeric(units) indicates units for the numeric variables. One of days, hours (or hrs),
minutes, or seconds must be specified but may be abbreviated in any way. numeric()
is required.

string(specification) specifies the sequence of time or date elements followed in each
of the string variables to be generated. One of the following specifications should be
given.

days hours minutes seconds (a)
days hours minutes (b)
days hours (c)
hours minutes seconds (d)
hours minutes (e)
minutes seconds (f)

hrs is allowed as an alternative to hours.

string() is required.

am(am string) and pm(pm string) specify text used in the string variables to indicate
whether times are a.m. or p.m. Thus am(am) specifies that times a.m. are to be
flagged with the text “am”. Times a.m. are naturally not adjusted. Similarly,
pm(" p.m.") specifies that times p.m. are to be flagged with that text, including
the leading space. Times p.m. are adjusted by subtracting 12 from hours from 13
to 23. By default, no such text is used. One of am() and pm() may be specified
without the other. am() and pm() are deemed incompatible with (c) and (f) above.
Assigning am or pm text when the number of hours is 24 or more will cause an error.

timeonly specifies that only the time-of-day part of a date with a time of day be used.
Thus given 1453466096 with specified unit seconds, which is 21 Jan 2006 12:34, then
only the time-of-day part would be used; i.e., mod(1453466096, 86400) would be
used to produce a representation of the time of day.
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dformat(format), hformat(format), mformat(format), and sformat(format) specify
formats for day, hour, minute, and second elements. Commonly, but not necessar-
ily, the day format will be specified by using a date format; see [U] 12.5.3 Date
formats. This choice is at the user’s discretion. The default format is the default
numeric format, given that the number of days could be (part of) a timing. The
default formats for hours, minutes, and seconds are %02.0f, %02.Of, and %05.2f,
respectively, so that leading zeros apply by default with numbers less than 10; see
[D] format. Using default formats may lead to considerable loss of information, so
you should exercise due care.

dsymbol(symbol), hsymbol(symbol), msymbol(symbol), and ssymbol(symbol) specify
“symbols” for day, hour, minute, and second elements. Each symbol occurs after
the associated element. The defaults are " " (space), : (colon), : (colon), and
" " (empty string), respectively, except that the default symbol is always an empty
string for the last element specified (namely, hours given (c) above and minutes given
(b) or (e) above).

5 Conclusion

The two programs here are offered as one step forward in providing support for time of
day, allowing the user to try to have the best of both worlds in both calculating with
and suitably displaying time, date–time, or duration data. Most of the hard work—
extending date formats to include times and in allowing time-series commands to work
where appropriate on such data—is yet to be done.
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