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Mata Matters: Creating new variables—sounds
boring, isn’t
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Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. In this quarter’s column, we continue to
explore the handling of Stata datasets in Mata and focus on creating new variables.

Keywords: pr0021, Mata, views, Stata datasets

Reprise

Think of Mata as being separate from Stata, but with functions that will allow Mata
to access, manipulate, and change Stata objects. The most important Stata object is
the dataset. In last quarter’s column, we discussed how the Mata function st view()
and, to a lesser extent, st data(), could be used to access the dataset. To summarize,
using st view(), you can obtain Mata matrices that are, in fact, views onto Stata’s
dataset, or even portions of it. Using the matrices accesses the dataset. Changing the
matrices changes the dataset. st data(), on the other hand, returns a copy of the
data, and changing the values in the matrix does not change the dataset—which can
be advantageous or not, depending on application.

Thus if I want to obtain variable mpg as a column vector, I could code

st_view(x=., ., "mpg")

or I could code

x = st_data(., "mpg")

It makes no difference which I code as long as my intention is to use and not to reset
the values of mpg, although the view uses less memory. With either definition of x, I
could code

mean = colsum(x)/rows(x)

to obtain the mean. With the view, I could also change the values of mpg to be their
deviations from the mean by then coding

x[.] = x :- mean

c© 2006 StataCorp LP pr0021
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I use the colon-minus operator because x is n × 1 and mean is 1 × 1. I use x[.] on
the left, rather than just x, for reasons that I will explain later. If I had defined x as
st data(., "mpg"), subsequently coding x[.] = x :- mean would have changed the
Mata vector x but would have left the underlying Stata variable unchanged. If I wanted
to change variable mpg in this case, I would have to code

st_store(., "mpg", x:-mean)

We did not discuss st store() in the previous column because the view created by
st view() can be used for both reading and writing the data. Sometimes, however,
using st store() is easier or makes the intention clearer. We also did not discuss
adding new variables to the Stata dataset. Both subjects we will discuss below.

Creating new variables

Function st addvar() will add variables to the Stata dataset. The function is in one
sense unnecessary because you could structure your code so that new variables were
added before calling Mata, and your Mata routines could simply fill in the values of
the already-created variables. That arrangement can be inconvenient, especially if the
number of new variables created somehow depends on values in the dataset.

Consider an example. Here is part of a dataset on patients.

. list in 1/5

patid bp1 bp2 bp3 bp4 bp5

1. 1 170 168 166 163 161
2. 2 158 156 154 151 147
3. 3 161 158 155 151 147
4. 4 155 153 151 148 144
5. 5 158 160 160 161 162

The variables bp1, bp2, . . . , bp5 record blood pressure measurements at times 1,
2, . . . , 5. To this dataset, assume that we want to add new variable b, recording each
observation’s trend coefficient from a regression of bp on measurement time. The new
variable b would contain −2.3 in observation 1, the result of running a regression of
(170, 168, 166, 163, 161)′ on (1, 2, 3, 4, 5)′, and contain −2.7 in observation 2, the result
of running a regression of (158, 156, 154, 151, 147)′ on (1, 2, 3, 4, 5)′. We might use the
new variable b as the dependent variable in a regression if we thought that, because
of a treatment, blood pressure should decline linearly over the five measurements. If
we thought the decline should be larger at earlier times, we might use the log of blood
pressure.
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In any case, pretend that I had a Mata routine, trends(real matrix Y), that returned
a column vector of the desired b’s. That is, given the matrix

Y =

⎛
⎜⎜⎜⎜⎝

170 168 166 163 161
158 156 154 151 147
161 158 155 151 147
155 153 151 148 144
158 160 160 161 162

⎞
⎟⎟⎟⎟⎠

trends() would return (−2.3,−2.7,−3.5,−2.7, 0.9)′. trends() will be easy to write.
Given trends(), one solution to our problem would be

mata: do_trend_var("b", "bp1 bp2 bp3 bp4 bp5")

after defining

function do_trend_var(string scalar newvarname, string scalar varnames)
{

real matrix Y
real colvector b
real scalar idx

st_view(Y, ., tokens(varnames))
b = trends(Y)
idx = st_addvar("float", newvarname)
st_store(., idx, b)

}

All the routine do trend var() does is set up the view onto the data, call trends()
to obtain the desired result, and then store that result as new Stata variable b.

st addvar() creates the new Stata variable. st addvar() requires two arguments:
the type and the name of the new variable to be created. st addvar() returns the index
of the variable created, such as 7 if the new variable were the seventh in our dataset.
So far, every time I have demonstrated a data-access function such as st view() or
st data(), I have specified the variable names. These functions also allow you to
specify variable numbers, and that saves computer time. Then the functions do not
have to look up the names to get to the numbers, which is how Stata tracks variables
internally.

st store() will also accept variable names or numbers. Above, I used the number
returned by st store(), but I could just as well have used the name by changing the
last two lines to read as follows:

(void) st_addvar("float", newvarname)
st_store(., newvarname, b)

Here I needed to insert (void) in front of st addvar() to discard the returned result.
Otherwise, the result would have been printed, just as Mata does with any unassigned
expression.
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Rather than using st store() to save the values, I could have created a view onto
the new variable and then stored the values in it. In this case, I could change our code
to read

function do_trend_var(string scalar newvarname, string scalar varnames)
{

real matrix Y
real colvector b

st_view(Y, ., tokens(varnames))
st_view(b, ., st_addvar("float", newvarname))
b[.] = trends(Y)

}

I like this solution, but understand that we are talking about issues of style, not
substance. st view(), just like st store(), will accept variable numbers or names,
and so I substituted the call to st addvar() as st view()’s third argument. This
approach saves a line and, in the process, makes my intention clearer.

The last line is worthy of notice:

b[.] = trends(Y)

It would not do to code

b = trends(Y)

even though, in the first draft, I did just that and then wondered why my program did
not work. It did not work because b = trends(Y) replaces the definition b, and what
we want is to replace b’s elements while maintaining b’s definition as a view matrix.

I know this sounds like a fine distinction, so consider another, easier case. In some
other problem, pretend that we had vector v, and to keep it simple, v is not even a
view. It is just a regular Mata matrix. Let us pretend that v, right now, is 3× 1. If we
were to code

v = z

and if z were 18× 1, we would not expect the line to generate an error, and it does not.
It does not generate an error because the result on the right replaces the definition on
the left. Old 3 × 1 vector v is discarded and replaced with a brand new 18 × 1 vector.
On the other hand, had we coded

v[.] = z

we would expect an error, because that line says to replace the elements of the existing
v, and existing 3 × 1 vector v cannot hold 18 elements.

Usually this fine distinction does not matter. With views, however, it does. If you
code

b = trends(Y)
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you are saying that the result on the right replaces the definition on the left. Elim-
inate existing matrix b, which happens to be a view, and create a shiny new matrix
conformable with the result from trends(). In this case, however, we want to maintain
the existing definition of b and merely replace its elements. b is a view, and changing
its elements is what changes the underlying Stata dataset.

The distinction between v[.] = z and v = z (and in the matrix case, v[.,.] =
z and v = z) arises only when v is a view and then only when replacing every element
of it.

If you find this approach confusing, then use st store(). Using st store(), we
can make an equally concise version of our code:

function do_trend_var(string scalar newvarname, string scalar varnames)
{

real matrix Y

st_view(Y, ., tokens(varnames))
st_store(., st_addvar("float", newvarname), trends(Y))

}

Both final versions are equally good in terms of execution speed. Both routines
emphasize just how simple our solution is: get a view onto the trended variables, pass
the view to trends(), and finally save trends()’s result in new variable newvarname.

All we need to make this work is the trends() routine. Here’s one:

real colvector trends(real matrix Y)
{

real scalar i
real colvector y
real matrix X
real colvector b

b = J(rows(Y), 1, .)
for (i=1; i<=rows(Y); i++) {

y = Y[i,.]’
X = (1::rows(y)), J(rows(y),1,1)
b[i] = (invsym(X’X)*X’y)[1]

}
return(b)

}

In understanding the above code, remember that the rows of Y, not its columns,
record observations. Each row records a separate regression problem. Allow me to
assist you in interpreting the code. For each row i of Y—written in Mataspeak as
Y[i,.]—we copy the values into column vector y (y = Y[i,.]’), and we form the
corresponding X matrix (X = (1::rows(y)), J(rows(y),1,1)). Essentially, we set y
and X so that
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y =

⎛
⎜⎜⎜⎜⎝
Y[i,1]
Y[i,2]
Y[i,3]
Y[i,4]
Y[i,5]

⎞
⎟⎟⎟⎟⎠ X =

⎛
⎜⎜⎜⎜⎝

1 1
2 1
3 1
4 1
5 1

⎞
⎟⎟⎟⎟⎠

We then calculate the regression coefficients as usual: invsym(X’X)*X’y. That calcu-
lation results in a two-element vector, the first element of which is the trend coefficient,
and that value ((invsym(X’X)*X’y)[1]) we store in b[i]. Filling in b element by
element,

b[i] = (invsym(X’X)*X’y)[1]

requires that b already exist and be of the appropriate dimension. Before our loop, I
defined b to be J(rows(Y), 1, .), making it rows(Y)× 1 and placing missing values
in it.

Program trends() is slick:

1. trends() focuses on calculation. trends() has nothing to say about where the
data Y came from or what is done with the result, b. Given Y, it returns b, and Y
might be a view, or not, and b might be stored back in the Stata dataset, or not.
All that is up to the caller.

2. Nowhere in trends() is it coded that we intend to calculate trends based on five
measurements. trends() gets that information from cols(Y) and would work
just as well on three measurements or a hundred.

trends(), however, can be improved. For reasons of speed and accuracy, I mentioned
in the previous column that calculations such as invsym(X’X)*X’y are better made as
invsym(cross(X,X))*cross(X,y). Here it hardly matters, but there is no reason to
use a poorer alternative when a better one exists.

More importantly, trends() does not handle missing values, and we need to fix that.
If one of the rows of input matrix Y were (170, 168, ., 163, 161), rather than producing a
missing value for the trend coefficient, we would prefer that the coefficient be calculated
from a regression of (170, 168, 163, 161)′ on (1, 2, 4, 5)′.

An advantage of using cross() over invsym(X’X)*X’y is that cross() will drop
observations with missing values. But we need to be cautious—so much so that the
manual actually warns against using the feature. Quoting from [M-5] cross(), “cross()
automatically omits rows containing missing values in making its calculation. Depending
on this feature, however, is considered bad style because so many other Mata functions
do not provide that feature and it is easy to make a mistake.” The manual goes on to
say that the right way to handle missing values is to exclude them when constructing
views and subviews. All good advice, but that advice will not help us here. Function
trends() receives Y and will just have to make do with it. Given how trends() will be
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used, it would not be reasonable to say that trends() should not be used with missing
data, which is how we might otherwise solve, so to speak, the problem.

We obtain the trend coefficient from the calculation
invsym(cross(X,X))*cross(X,y)[1]. The documentation says cross() handles miss-
ing values, so isn’t that good enough?

No, because in the presence of missing values, cross(X,X) and cross(X,y) could be
calculated on different samples and, in our particular case, that is exactly what would
happen. X has no missing values—it is just the numbers 1, 2, . . . —so cross(X,X)
would be computed on the full sample. Meanwhile, cross(X,y) would be calculated on
a subsample if y had missing values.

I emphasize that in most statistical problems we do not have to code around missing
values. In most statistical problems, the rows of the matrix are the observations and,
using st view() or st data(), we can specify an argument that says to exclude the
observations with missing values from the rows of the matrix. We do that and never
concern ourselves with missing values again. In this problem, however, it is the columns
of Y that are the observations, and the rows each record a separate regression problem,
and so we do have to consider missing values.

The solution here is to code only one call to cross(), including all the data, so
that cross() can observe the missing values and make a consistent calculation. That
is really what the warning in the manual was trying to say: if you depend on cross()’s
automatically dropping missing values, you can call the function only once, because
otherwise you run the risk of different calls’ using different samples. The choice is either
one call, or eliminate the missing values so that the multiple calls are certain to use the
same sample.

We can adopt the one-call solution if we use our single call to calculate

(
y X

)′ (
y X

)
=
(

y′y y′X
X ′y X ′X

)

and that we can do by coding cross((y,X),(y,X)). If we stored the result in S,
then we could calculate the trend coefficient as (invsym(XX)*Xy)[1], where XX =
S[|2,2\3,3|] and Xy = S[|2,1\3,1|]. [|. . . \. . . |] is Mata notation for extract-
ing a submatrix. Before the backslash appears the subscript of the top-left corner of the
matrix to be extracted, and after the backslash appears the subscript of the bottom-
right corner. Thus S[|2,2\3,3|] refers to the 2 × 2 submatrix of S starting at (2, 2),
which is X ′X in the display above.

Our improved code reads

real colvector trends(real matrix Y)
{

real scalar i
real matrix X, Z, XX, S
real colvector y, Xy, b
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b = J(rows(Y), 1, .)
for (i=1; i<=rows(Y); i++) {

y = Y[i,.]’
X = (1::rows(y)), J(rows(y),1,1)
Z = (y, X)
S = cross(Z, Z)
XX = S[|2,2\3,3|]
Xy = S[|2,1\3,1|]
b[i] = (invsym(XX)*Xy)[1]

}
return(b)

}

although we could collapse it to read

real colvector trends(real matrix Y)
{

real scalar i
real matrix Z, S
real colvector b

b = J(rows(Y), 1, .)
for (i=1; i<=rows(Y); i++) {

Z = Y[i,.]’, (1::cols(Y)), J(cols(Y),1,1)
S = cross(Z, Z)
b[i] = (invsym(S[|2,2\3,3|])*S[|2,1\3,1|])[1]

}
return(b)

}

We combine either of the above with

function do_trend_var(string scalar newvarname, string scalar varnames)
{

real matrix Y
real colvector b

st_view(Y, ., tokens(varnames))
st_view(b, ., st_addvar("float", newvarname))
b[.] = trends(Y)

}

which we can call by coding, either interactively or in a do- or ado-file,

mata: do trend var("b", "bp1 bp2 bp3 bp4 bp5")

and we are done.

Creating multiple variables

st addvar() can add multiple variables to the Stata dataset. Obviously, you could call
st addvar() repeatedly:

kidx1 = st_addvar("double", "b")
kidx2 = st_addvar("double", "c")
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You may also code

kidxes = st_addvar( ("double", "double"), ("b","c") )

or you may code

idxes = st_addvar( "double", ("b","c") )

when all the variables are of the same type. In either case, idxes will be a 1 × 2 row
vector containing the respective variable numbers. In this way, you may create as many
variables as you wish.

It really does not matter which of the forms you use. The advantage of the combined
call is that either all the variables are added or, if there is a problem such as insufficient
memory, a bad variable name, etc., none are. That makes cleanup after failure easier.

If you want to create k variables and name them a1, a2, . . . , use sprintf() to create
the names:

varidxes = J(1,k,.)
stubname = "a"
for (i=1; i<=k; i++) {

name = sprintf("%s%g", stubname, i)
varidxes[i] = st_addvar("double", name)

}

If you wanted to create all the variables at once, you could code

varnames = J(1,k,"")
stubname = "a"
for (i=1; i<=k; i++) {

varnames[i] = sprintf("%s%g", stubname, i)
}
varidxes = st_addvar("double", varnames)

In both examples, I used sprintf("%s%g", stubname, i) to create variable names.
If you preferred, you could use stubname+strofreal(i). It makes no difference.

Creating temporary variables

To add temporary variables to the Stata dataset, you combine st addvar() with
st tempname(). st tempname() without arguments returns one temporary variable
name—it does not create the temporary variable—and so to add one temporary variable,
you code

tmpidx = st_addvar("double", st_tempname())

st tempname() with a real scalar argument specifies the number of temporary vari-
able names to be returned. To add four temporary variables, code

tmpidxes = st_addvar("double", st_tempname(4))
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Either way, this is an odd thing to want to do. Temporary variables, which play
such an important role in ado-file programming, play no role in Mata programming.
You don’t need them. If you have a temporary result that you need to hold on to, store
it in a Mata vector or matrix and be done with it.

The only valid reason to create temporary variables is because you are writing an
ado-file utility—adding to the ado-file language, if you will—and the entire purpose is
to create temporary variables for use by the ado-file. That is why temporary variables
are not automatically dropped when the Mata function concludes or even when Mata
itself concludes. Temporary variables are viewed as being the property of the calling
ado-file and will be dropped when the ado-file ends.

Creating time-series variables

Using st data(), you may use time-series operators in the variable list. There is nothing
special you have to do. For example,

X = st_data(., ("gnp", "l.gnp"))

The same ease of treatment does not apply to st view(). Since most time-series
datasets are small in comparison with cross-sectional or longitudinal datasets, the
st data() solution is usually your better alternative.

You can also use function st tsrevar() with st view(). This topic is advanced.
st tsrevar(string rowvector s) examines the elements of s. It skips over straight vari-
able names such as gnp. Where it finds a time-series–operated variable such as l.gnp, it
creates a temporary variable in the dataset containing the appropriate values. That is, it
does that unless, sometime in the past, any other routine has already created a variable
containing l.gnp values. In that case, it finds and reuses that variable. st tsrevar()
returns the variable indices, either of the original variable (for gnp) or of the created or
found variable (for l.gnp).

Thus, if string row-vector tsnames contains a list of variable names, any of which
might contain time-series operators, the appropriate way to get a view onto the data is
to code

st_view(V=., ., st_tsrevar(tsnames))

Any temporary variables that are created will not be dropped when the subroutine
concludes, or even when Mata itself concludes. The variables will be eliminated when
the calling ado-file or do-file ends. Thus the same variables will be reused from one call
to the next, which is desirable because that conserves memory.

(Continued on next page)
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Creating datasets from whole cloth

To create an all-new dataset,

1. Start with an empty dataset. If the dataset might not be empty, clear it by coding

st_dropvar(.)

2. Add the variables by using st addvar(), either in one call or in repeated calls.

3. Increase the number of observations from zero to the desired number (say, 50) by
coding

st_addobs(50)

4. Define the contents of the variables, either by creating and filling in a view onto
the dataset—or by using st store().

You may also set the number of observations before adding the variables, or you may
add variables, set the observations, and then add more variables. Just do not fill in
values until you have set the number of observations.

Say we wish to write Mata function random ds(real scalar n, real matrix V) that
would set the Stata dataset to contain n observations drawn from N(0, V ).

Just as we did in our trend example, we will write the numeric part of our program
separately and then write another routine that will call the numeric part and save the
data. This time, let’s write the numeric subroutine first:

real matrix drawnorm(real scalar n, real matrix V)
{

return(invnormal(uniform(n,cols(V)))*cholesky(V)’)
}

The above subroutine does all the work and, if we needed this matrix only in Mata, we
would be done. The rest of our code concerns the posting of the matrix to the Stata
dataset:

function random_ds(real scalar n, real matrix V)
{

real scalar i
real matrix data

st_dropvar(.)

for (i=1; i<=rows(V); i++) {
(void) st_addvar("float", sprintf("x%g",i))

}

st_addobs(n)
st_view(data, ., .)
data[.,.] = drawnorm(n, V)

}
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With that, we could create a 10,000-observation dataset with three variables and a .5
correlation between each pair by typing

mata: random_ds(10000, (1,.5,.5 \ .5,1,.5 \ .5,.5,1))

Note the last line of random ds():

data[.,.] = drawnorm(n, V)

We coded that and not

data = drawnorm(n, V)

for the same reason we coded b[.] = trends(Y) in the regression-trend example. We
want to assign to the values of data, not redefine data. We could instead have used
st store(), as shown below.

function random_ds(real scalar n, real matrix V)
{

real scalar i

st_dropvar(.)

for (i=1; i<=rows(V); i++) {
(void) st_addvar("float", sprintf("x%g",i))

}

st_addobs(n)
st_store(., ., drawnorm(n, V))

}
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