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Abstract. This article introduces a new measure of explained variation for use
with censored survival data. It is a modified version of a measure previously de-
scribed by John O’Quigley and colleagues, itself a modification of Nagelkerke’s
earlier proposal for a general index of determination. I describe Stata programs
str2ph, which implements the new measure, and str2d, which implements a mea-
sure proposed in 2004 by Royston and Sauerbrei. I provide examples with real
data.

Keywords: st0098, censored survival data, regression models, index of determina-
tion, explained variation, explained randomness, information gain

1 Introduction

Data analysts are familiar with the concept of explained variation or index of deter-
mination for the linear regression model y ∼ N

(
xβ, σ2

)
with covariate vector x and

parameter vector β. The explained variation statistic R2 may be written less familiarly
than usual as

R2 =
var (xβ)

σ2 + var (xβ)
(1)

where the variance is taken over the distribution of xβ between individuals. Several
authors over the last 15 years have proposed versions of explained variation statistics for
use with (possibly censored) survival data. These measures have not necessarily been
extensions of the linear regression case. For example, Graf et al. (1999) based their
proposed measure on the Brier score for survival data, whereas others (e.g., Schemper
1990) have worked with the survival curves fitted from a model.

Survival analysis methodology, particularly the Cox model, is often used to develop
so-called prognostic models in diseases such as cancer, where the outcome is time to
death or disease recurrence. It is medically relevant to ask how much of the varia-
tion in the outcome (survival time) is accounted for through the prognostic index, xβ.
Royston and Sauerbrei (2004) listed desirable characteristics of a measure of discrimina-
tion of a survival model, which is closely related to explained variation. Some properties
of a good measure include (a) approximate independence of the amount of censoring;
(b) reduction to (or a close relationship with) the usual R2 that would be obtained
by an “equivalent” linear regression analysis of the same dataset, if that were possi-
ble; (c) the nesting property, that is, for two models M1 ⊂ M2 (‘⊂’ denoting nesting)

c© 2006 StataCorp LP st0098



84 Explained variation for survival models

then R2 (M1) < R2 (M2); (d) R2 increasing with the strength of association; and (e)
availability of confidence intervals.

Here I will draw together several related lines of previous research. Nagelkerke
(1991) proposed a general index of determination that depends on the likelihood-ratio
statistic or model χ2 (minus twice the difference in log likelihoods between the model of
interest and the null model) and the number of observations. This index has the major
advantages of availability for many model types—including, if partial likelihood is used,
the Cox proportional hazards model and its relatives—and of possessing the nesting
property, as just defined. Recently, O’Quigley, Xu, and Stare (2005) proposed for use
with the Cox model a modified version of the Nagelkerke R2 that they called ρ2

k, in
which the number of observations is replaced by the number of uncensored observations
(events). I shall further modify ρ2

k, as explained in the next section.

I shall describe a Stata ado-file, str2ph, that implements the modified version of
ρ2

k for survival data. This command is intended for use with proportional hazards (PH)
models, that is, with stcox, streg (PH models—distributions exponential, gompertz,
weibull) and Royston’s stpm routine for flexible parametric survival modeling (Royston
2001, Royston and Parmar 2002) with scale(hazard). The statistic is provided also
for other survival models (streg with distributions lnormal, llogistic, gamma, and
stpm with scale(normal) and scale(odds)), but with a minor caveat that the inter-
pretation of ρ2

k is less clear for these distributions. Confidence intervals are provided
by using a built-in bootstrap procedure. Also included here, and implemented in the
ado-file str2d, is the R2

D measure of explained variation for survival models described
by Royston and Sauerbrei (2004). R2

D is a transformation of Royston and Sauerbrei
(2004)’s D measure of discrimination of a survival model. I give examples with a real
dataset.

2 Measures of explained randomness and explained vari-
ation

Nagelkerke (1991)’s general measure of the strength of dependence of the outcome on
the predictors in a regression model is defined as

ρ2
n = 1 − exp

{
− 2

n

(
l
bβ − l0

)}
= 1 − exp

(
−X2

n

)
(2)

where n is the sample size, l
bβ denotes the maximized log likelihood of the model, and l0 is

the log likelihood of the comparator (null) model. Suppose that the model has covariate
vector x and linear predictor (index) xβ. Then X2 = 2

(
l
bβ − l0

)
is the likelihood ratio

statistic for comparing the model with index xβ with the null model xβ = 0. X2 is
distributed as χ2 on dim (β) degrees of freedom under the null hypothesis that β = 0.
It is assumed, where relevant, that β excludes the constant, β0.

In the context of censored survival data, O’Quigley, Xu, and Stare (2005) noted
that for a given model and dataset, ρ2

n is negatively correlated with the proportion of
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censored observations and in fact tends to 0 as that proportion tends to 1. For PH

models, they proposed replacing the denominator n in (2) by the number of events
(uncensored observations), e, to give a new statistic

ρ2
k = 1 − exp

(
−X2

e

)
(3)

O’Quigley, Xu, and Stare (2005)’s motivation for (3) was its simplicity together with
their demonstration, under certain conditions, of approximate equivalence between ρ2

k

and several other explained variation–like measures for the PH model, as briefly outlined
below. These measures are ρ2

W (Kent and O’Quigley 1988), ρ2
W,A (Kent and O’Quigley

1988), and ρ2
XOQ (Xu and O’Quigley 1999).

This line of research stems from Kent (1983)’s general idea of dependence as informa-
tion gain, expressed through the Kullback–Leibler distance between models (Kullback
and Leibler 1951). Kent and O’Quigley (1988) applied Kent (1983)’s approach to de-
velop a measure known as ρ2

W for use in Cox PH models. ρ2
W is a rather complex

statistic motivated by a kind of equivalence between Cox and Weibull models (the W in
ρ2

W standing for Weibull). For a Cox model, ρ2
W involves the calculation of the expected

information gain of an “equivalent” Weibull model. Because of the link with informa-
tion gain (i.e., reduction in entropy), Kent and O’Quigley (1988) described ρ2

W as the
proportion of “explained randomness” of a model, rather than explained variation.

Kent and O’Quigley (1988) showed that ρ2
W may be approximated by a much simpler

statistic

ρ2
W,A =

A

1 + A
(4)

where A = var(xβ). A has already appeared in this article in the context of linear
regression; see (1). Kent and O’Quigley (1988) initially considered

ρ2
PM =

A

σ2 + A
(5)

as a possible measure of dependence. ρ2
PM can be seen as an estimate of the squared

Pearson correlation between the logarithm of transformed survival time and the index
xβ in a linear model with errors distributed according to a Gumbel (log-Weibull) distri-
bution, for which the residual variance is σ2 = π2/6 � 1.645. See Kent and O’Quigley
(1988)’s equation (1.2) for the model underlying this interpretation, and the surround-
ing text for further details of ρ2

PM . Because of a preference for what they consid-
ered the stronger fundamentals of information-based measures of dependence, Kent and
O’Quigley (1988) rejected ρ2

PM in favor of ρ2
W and its approximation, ρ2

W,A.

2.1 Explained randomness versus explained variation

For the normal-errors regression model without censoring, explained variation and ex-
plained randomness (and the resulting statistics) coincide. However, for PH models with
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or without censoring, the statistics are different. I conjecture that explained random-
ness always exceeds explained variation for PH models, which is certainly the case when
considering ρ2

W,A (an approximation to explained randomness) versus ρ2
PM (a measure

of explained variation). Comparing (4) and (5) shows that if σ2 > 1 then ρ2
W,A > ρ2

PM .
For the PH model, σ2 � 1.645, so the condition on σ2 is satisfied. For normal-errors
models in standardized form, σ2 = 1 and ρ2

W,A = ρ2
PM .

2.2 Proposed measures of explained variation

Because of its satisfying theoretical underpinning in the Kullback–Leibler distance be-
tween models, I regard ρ2

W as the “gold standard” of explained randomness measures for
survival models under the PH assumption. However, ρ2

W is complicated to compute and
does not measure explained variation. In my view, the latter property is a drawback—I
suggest a simple solution below. For practical purposes, an approximation to ρ2

W must
first be considered. Of the available easy-to-calculate approximations, ρ2

k is better than
ρ2

W,A in two important respects. First, ρ2
k possesses the nesting property, whereas ρ2

W,A

does not. Second, ρ2
k is useful in model validation. In an independent or test sample,

ρ2
W,A depends on xβ predicted from the original training sample but not on the out-

come in the test sample. Therefore, ρ2
W,A is useless in validation, where evaluation of

the predictive ability of a predefined index is required.

The main disadvantage of ρ2
k appears to be a mild increase (upward bias) with larger

amounts of censoring (see, for example, tables I and II of O’Quigley, Xu, and Stare
[2005]), whereas ρ2

W,A appears to be largely independent of censoring. ρ2
W also appears

to be independent of censoring, so the approximations relating ρ2
k to ρ2

W presumably
must start to break down with increasing amounts of censoring.

To create a statistic based on ρ2
k and resembling a measure of explained variation,

while inheriting its good properties, we may reexpress ρ2
k as follows. Suppose that

we write ρ2
k in the form V /(1 + V ) where V ≥ 0, so that V = ρ2

k

/(
1 − ρ2

k

)
. With

this definition, ρ2
k resembles ρ2

W,A in structure, with V � A. By analogy with ρ2
PM =

A/
(
π2/6 + A

)
, a measure with the character of explained variation in PH models may

be derived as

R2 =
V

π2/6 + V
=

ρ2
k

ρ2
k + (π2/6) (1 − ρ2

k)
(6)

R2 in (6) is our proposed measure of explained variation for a PH model.

Royston and Sauerbrei (2004)’s R2
D is a transformation of the D measure. The

latter is computed by ordering the estimated index xβ̂, calculating the expected normal
order statistics corresponding to these values, scaling the latter by dividing by a factor
κ =

√
8/π � 1.60, and performing an auxiliary regression on the scaled scores. The

resulting regression coefficient is D. The conversion to R2
D is given by

R2
D =

D2/κ2

σ2 + D2/κ2
(7)



P. Royston 87

where

σ2 =

⎧⎨
⎩

1 (lognormal model or models with a probit link)
π2/3 (log-logistic model or proportional odds models)
π2/6 (PH models)

As may be seen by comparing (7) with (6) and (5), D2/κ2 plays the same mathematical
role in R2

D as do V in R2 and A in ρ2
PM . D2/κ2 is interpretable as an estimate of the

variance of the index xβ.

2.3 Other survival models

In models that do not incorporate the PH assumption for covariate effects, R2 in (6) is
not interpretable as a measure of explained variation, since the inferential basis is no
longer valid. However, R2 is still useful as a rough-and-ready index of determination in
non-PH survival models. For a given covariate vector, x, the model χ2 statistic is often
numerically roughly equal across different types of survival model, when β is refitted
within each model framework. The magnitude of R2 values between such models will
therefore often be comparable. I give an example of this phenomenon later.

2.4 Adjusted R2

Under H0: β = 0, the quantity X2 has a positive expected value asymptotically equal
to dim (β). Therefore R2 will have a positive mean under H0. In linear regression, an
adjusted R2 that has mean 0 under H0 is available. In survival analysis, the expected
value of R2 in (6), after subtracting dim (β) from X2, will be close—but not equal—to
zero. The str2ph software has an adjust option to report this adjusted R2.

A similarly motivated adjustment to R2
D, as described by Royston and Sauerbrei

(2004), is implemented in str2d.

3 Syntax

str2ph survival cmd varlist
[
if
] [

in
] [

, adjust validate(varname)

bootreps(#) calibrate
[
no
]
dots randomness survival cmd options

]
str2d survival cmd varlist

[
if
] [

in
] [

, adjust validate(varname)

bootreps(#)
[
no
]
dots randomness survival cmd options

]
where survival cmd is an st survival command (stcox, streg, or stpm, if installed).

You must stset your data before using str2ph. str2ph computes Royston’s modi-
fication (6) of O’Quigley, Xu, and Stare (2005)’s modification of Nagelkerke (1991)’s
coefficient of determination for the survival model defined by
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survival cmd varlist
[
, survival cmd options

]
See the validate() option for comments on out-of-sample prediction and assessment
of R2 in a test sample.

4 Options

adjust computes adjusted R2, taking into account the dimension (i.e., number of co-
variates) of the model. This option may be helpful when R2 is low and/or the
model is complex, since the expected value of R2 under the null hypothesis (that
the outcome is unrelated to the covariates) is greater than zero and depends on the
model dimension. Adjustment attempts to eliminate this bias in R2 under the null
hypothesis. Since R2 calculated by out-of-sample prediction in a test sample does
not require adjustment, the validate() option is not permitted with adjust.

validate(varname) fits the model in the subsample defined by the low value of varname
and computes R2 in the subsample defined by the high value of varname. These
subsamples may be thought of as a training and a test set. varname must have
exactly two distinct values in the estimation sample defined by varlist and if and
in. These two values are arbitrary. varname may be a string variable, in which
case lexicographic ordering is assumed. R2 is computed according to the index (xb)
predicted from the training sample (low value of varname) into the test sample (high
value of varname). With str2ph, there is a choice between refitting the index as the
only covariate in the test sample and offsetting the index there (see the calibrate
option). With str2d, the index predicted on the test sample is transformed to scaled
normal scores and regression on the scores is performed. The slope of this regression
is Royston and Sauerbrei’s D statistic. This step is required to compute D and
hence R2. Since calibration is effectively done by the regression on the scores, the
calibrate option is not relevant to the D method and is not available with str2d.

bootreps(#), where # > 0, computes a bootstrap confidence interval for R2 or R2
D,

using # bootstrap replications. A minimum reasonable value of # is 1000, but
a better number is 5000. With # = 5000, the computation may take quite some
time. The default value of # is 0, meaning no confidence interval is computed by
str2ph. With # = 0 in str2d, an analytic estimate of the standard error (SE of R2 is
displayed, derived by the delta method from the SE of D (see Royston and Sauerbrei
[2004] for more details of the SE of D).

calibrate (for use only with str2ph . . . , validate()) forces the survival regression
to be reestimated in the test sample on the index predicted from varlist in the
training sample. The default is to offset the predicted index and calculate R2 via
the likelihood of that model. Regression on the index amounts to calibration of the
model in the test sample and may noticeably increase the R2 value. See also the
validate() option.
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nodots suppresses display of the replication dots with bootstrap confidence interval
estimation. By default, a dot character is displayed after each 100 replications.

randomness prevents conversion of the modified Nagelkerke index of determination from
explained randomness to explained variation. The reported R2 or R2

D is then inter-
pretable, at least in PH models, as explained randomness.

survival cmd options are options of survival cmd. Examples include
distribution(weibull) for streg, df(2) scale(hazard) for stpm, and strata(x1
x2) for stcox.

5 Example

We will again work with the breast cancer dataset that was analyzed in detail by
Sauerbrei and Royston (1999). The data are provided in brcancer.dta and relate to
a set of 686 patients with lymph node–positive breast cancer. The outcome of interest
is the recurrence-free survival (RFS) time, that is, the duration in years from entry into
the study (typically, the time of diagnosis of primary breast cancer) until either death
or disease recurrence, whichever occurred first. There were 299 events for this outcome
and the median follow-up time was about 5 years.

Model III of Sauerbrei and Royston (1999) was a Cox proportional-hazards model for
RFS that included five covariates: age (x1) with a fractional polynomial transformation
with powers −2 and −0.5, tumor grade 2/3 (x4a), number of positive lymph nodes (x5)
with the exponential transformation x5e = exp (−0.12 ∗ x5), progesterone receptors (x6)
with a fractional polynomial transformation with power 0.5, and hormonal therapy with
tamoxifen (hormon). Sauerbrei and Royston (1999) adjusted for hormon in all models,
and they did not explicitly report its regression coefficient; here we have treated hormon
simply as a covariate. Model III may be fitted in Stata as follows:

. use brcancer
(German breast cancer data)

. set seed 1234

. stset rectime, fail(censrec)

(output omitted )

. fracgen x1 -2 -0.5
-> gen double x1_1 = X^-2
-> gen double x1_2 = X^-0.5

(where: X = x1/10)

. fracgen x6 0.5
-> gen double x6_1 = X^0.5

(where: X = (x6+1)/1000)

. str2ph stcox x1_1 x1_2 x4a x5e x6_1 hormon

R^2 (explained variation): Cox model

Obs Events R^2 Boot. SE 95% conf. interval

686 299 0.289039 . . .
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Note the use of fracgen to transform the covariates before stcox is used (silently)
to fit the Cox model within str2ph. The explained variation for the model is 0.289.
The output provides no confidence interval since we did not specify the bootreps()
option.

A similar format is used to compute R2
D:

. str2d stcox x1_1 x1_2 x4a x5e x6_1 hormon

R^2 (explained variation - D method): Cox model

Obs Events R^2 Std. err. 95% conf. interval D SE

686 299 0.274702 0.032969 0.210028 0.338423 1.260 0.104

R2
D is 0.275 (SE 0.033). An estimated 95% confidence interval for R2

D is provided by
default. Bootstrap confidence intervals are also available via the bootreps() option.

Table 1 shows values of R2 and related statistics for a variety of models based
on model III. To illustrate different variation between models and across measures,
predictors were removed from model III one at a time, in the order that reduced the R2

the least at each step, giving five models.

Table 1: Measures of explained variation and (final column) explained randomness for
models for the breast cancer data

Variables in model Deviance R2 95% CI R2
D ρ2

PM ρ2
k

−2l
bβ (6) (bootstrap)a (5) (3)

x1 1 x1 2 x4a x5e x6 1 3,423.2 0.289 0.224, 0.372 0.275 0.271 0.401
hormon

x1 1 x1 2 x5e x6 1 3,428.2 0.281 0.215, 0.363 0.269 0.260 0.391
hormon

x1 1 x1 2 x5e x6 1 3,438.2 0.263 0.197, 0.346 0.259 0.249 0.370

x5e x6 1 3,456.9 0.230 0.162, 0.305 0.223 0.225 0.329

x5e 3,498.0 0.154 0.096, 0.223 0.141 0.137 0.231
aConfidence intervals were calculated by using 100 bootstrap replicates.

Most of the prognostic information is carried by x5e and x6 1, since R2 increases
only by 0.289 − 0.230 = 0.059 on adding the variables x1 1 x1 2 x4a hormon to the
model. The confidence intervals for R2 are fairly wide. R2, R2

D, and ρ2
PM have similar

values, with R2 always somewhat exceeding ρ2
PM and R2

D. The final column of table 1
shows ρ2

k. Its values are substantially higher than those of R2, demonstrating that
explained randomness and explained variation differ markedly in PH models.
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5.1 Non-PH models

Table 2 shows R2 and R2
D values for the covariates in model III across different types

of models.

Table 2: Values of X2 (model χ2), R2, and Akaike information criterion (AIC) for seven
model types for breast cancer data

Model type X2 R2 R2
D AIC

Cox 153.1 0.289 0.275 —a

Exponential 133.9 0.256 0.234 1,300.6

Weibull 162.6 0.305 0.288 1,252.8

Gompertz 148.4 0.281 0.267 1,285.4

stpm (hazard)b 153.2 0.289 0.275 1,217.3

Log logistic 162.6 0.305 0.253 1,234.2

stpm (odds)b 155.6 0.293 0.243 1,215.4

Lognormal 158.4 0.298 0.274 1,220.2

stpm (probit)b 155.6 0.293 0.243 1,212.2

Gamma 150.7 0.285 —c 1,220.3
aAIC is not appropriate for the Cox model in this context.
bFlexible parametric model with 2 degrees of freedom for the baseline

distribution function, and link function as specified in parentheses.
cR2

D is not available for the gamma model.

The first five rows of table 2 are for PH models; the rest are for non-PH. The R2

values for all model types are roughly similar. Values of R2
D are also broadly similar

across models. There is close agreement between the statistics for the Cox model and
the stpm model. This agreement is expected, since the stpm model is essentially a Cox
model in which the baseline log cumulative hazard function is estimated as a smooth
parametric (spline) function of time, whereas in the Cox model it is (or would be, if
estimated explicitly) a noisy step function. Unlike the Cox model, stpm models are
fitted by full maximum likelihood and therefore their likelihoods are comparable with
those of the other parametric models.

Similarity of R2 values across models does not imply that all the models fit the data
equally well (see further comments in the next section). The relative fit of the models
may be judged by the value of the Akaike information criterion (AIC), which is given in
the final column of table 2. The AIC is the deviance (i.e., minus twice the maximized
log likelihood) plus twice the model dimension. The dimension is assumed to include
auxiliary parameters, such as a scale parameter, where present. The AIC for the Cox
model is not reported since partial likelihood is used, and the resulting partial AIC is not
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comparable with AIC calculated from a full likelihood. The best-fitting model appears
to be the flexible parametric model (Royston and Parmar 2002) fitted by stpm (Royston
2001) with a probit link function.

5.2 Comparing R2 values: a trap for the unwary

A subtle error may be made when trying to compare R2 values across different types of
model. Higher R2 does not necessarily mean a better fit; this relation is the case only
when comparing two non-null models for which the underlying null model is identical.
Consider the generalized gamma model, which contains as special cases the Weibull and
lognormal models and is of course more flexible than either of them. However, as seen
in table 2, the R2 for the gamma model is lower than that for the Weibull or lognormal
because R2 compares the model having given covariates with that having no covariates.
The gamma model fits the underlying distribution (no covariates) better than the other
two models do, leaving less scope for inclusion of covariates to improve the fit than with
the other models. This effect may be seen in table 3.

Table 3: Deviances and model χ2 statistics for breast cancer–null model and model III,
according to three parametric survival models

Model Deviance X2

Null model Model III

Gamma 1,353.0 1,202.3 150.7

Weibull 1,399.4 1,236.8 162.6

Lognormal 1,362.7 1,204.2 158.4

The gamma model has the lowest deviance for the null model and for model III, as
it must have. However, the Weibull fits the distribution of log survival times in the null
model much worse than the gamma and lognormal models. It therefore may have the
greatest scope for improvement when covariates are added; in fact, its R2 turns out to
be the largest. Nevertheless, as judged by the AIC (see table 2), the Weibull model with
covariates fits the worst of the three by some margin.

6 Validation

Model validation is an important application of R2. Suppose that we have training and
test samples, each with the same covariates recorded. A model is developed on the
training data, its R2 is estimated, and its performance is evaluated on the test data.
Typically, the index xβ is estimated on the training data and this index is used, without
reestimation of β, to predict the outcome in the test data. The covariate values in the
test data are used to compute xβ there—in Stata terminology, this is out-of-sample
prediction.
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Suppose that the dataset includes both training and test data, with an indicator
variable, say, test, taking the value 0 for the training sample and 1 for the test sample.
Such a variable, derived by a random split of the data, has been included in the brcancer
dataset for exemplification.

Suppose that we wanted to evaluate the performance, according to R2, of the pre-
specified model III fitted on the training data (test==0) in the test data (test==1),
and get a 95% confidence interval for R2. For the training data, we run

. str2ph stcox x1_1 x1_2 x4a x5e x6_1 hormon if test==0, bootreps(5000)

..................................................

R^2 (explained variation): Cox model

Obs Events R^2 Boot. SE 95% conf. interval

343 148 0.320285 0.056558 0.230017 0.452113

Now we evaluate R2 for the index predicted on the test data:

. str2ph stcox x1_1 x1_2 x4a x5e x6_1 hormon, validate(test) bootreps(5000)

..................................................

R^2 (explained variation): Cox model

Obs Events R^2 Boot. SE 95% conf. interval

343 151 0.216595 0.051386 0.132217 0.333522

Note: model fitted at low value of test, evaluated at high value
Note: index offset from linear predictor in validation sample

The R2 value on the test data is 0.217, lower than the value of 0.320 in the training
sample. Since we have estimates of the SE of R2 on both subsamples and the estimates
are independent, we can also find a confidence interval for the difference between the
R2 values on the training and test data. The SE of the difference is estimated as√

0.05652 + 0.05142 = 0.0764 and a 95% confidence interval for the difference in R2 is
(−0.253, 0.046). Since the confidence interval includes zero we might conclude that the
difference in R2 was compatible with no real difference.

We might instead wish to evaluate R2, allowing regression on the predicted index
in the test sample. This approach is a type of model calibration (e.g., Verweij and van
Houwelingen [1993]). To do this, one would add the calibrate option to the validation
run.

. str2ph stcox x1_1 x1_2 x4a x5e x6_1 hormon, validate(test) bootreps(5000)
> calibrate
..................................................

R^2 (explained variation): Cox model

Obs Events R^2 Boot. SE 95% conf. interval

343 151 0.224467 0.050078 0.133314 0.327437

Note: model fitted at low value of test, evaluated at high value
Note: calibrated on index in validation sample
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The value of R2 and the corresponding fit of the model have increased slightly by
calibration, from 0.217 to 0.224. This result suggests that the index predicted from
the subsample with test==0 needs little calibration. The calibration slope (i.e., the
shrinkage statistic ĉ proposed by Verweij and van Houwelingen [1993]) is 0.84 (SE 0.11)
and a 95% confidence interval for c includes 1. A value of c = 1 means no calibration
and is represented by validate() without the calibrate option. When available, ĉ
and its SE are returned by str2ph in r(c) and r(cse), respectively.

This example is merely pedagogic. A real validation exercise would have an inde-
pendent test sample, not use a random subset of the original data.

7 Final comments

Once you leave the confines of the normal-errors linear model, the concept of explained
variation becomes tricky. A useful summary of the situation from the Stata user’s point
of view is given in a frequently asked question by Nicholas Cox (2003) on the Stata web
site. Cox comments that, in cases of doubt when Stata does not supply an R2,

There is usually something you can do for yourself: calculate the correlation
between the observed response and the predicted response, and then square
it.

This idea is explored for the generalized linear model by Zheng and Agresti (2000).
Unfortunately, the approach does not work very naturally in survival analysis with
censored observations, which is why more complicated approaches are needed.

An advantage of ρ2
k and R2 is their availability with more complex models (e.g., time-

varying Cox models) for which ρ2
W,A is undefined. In a time-varying Cox model, xβ and

var(xβ) depend on time. How to extend ρ2
W,A and R2

D to allow for time dependence is
an open question.

Finally, more work is needed on the performance of R2, including comparisons with
R2

D. For example, simulations to clarify the dependency of the expected value of these
statistics on the amount of censoring would be helpful. My preliminary impression
is that R2 increases rather more rapidly with the amount of censoring than does R2

D.
Limited information on the relationship between D (and implicitly R2

D) and the amount
of censoring is given in tables 2 and 4 of Royston and Sauerbrei (2004).
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