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Abstract. This article gives a brief overview of the popular methods for esti-
mating variance components in linear models and describes several ways to obtain
such estimates in Stata for various experimental designs. The article’s emphasis
is on using xtmixed to estimate variance components. Prior to Stata 9, loneway
could be used to estimate variance components for one-way random-effects models.
For other experimental designs, variance components could be computed manually
using saved results after anova. The latter approach is viable but requires tedious
computations for complicated experimental designs. Instead, as of Stata 9, vari-
ance components are easily obtained by using xtmixed.
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1 Introduction

Various methods exist for estimating variance components. Among them are analysis of
variance (ANOVA), maximum likelihood (ML), restricted maximum likelihood (REML),
minimum norm, and Bayes. For a history of methods for estimating variance compo-
nents, see Searle, Casella, and McCulloch (1992). This article concentrates on how to
obtain variance components in Stata using the ANOVA, REML, and ML methods.

The general method for estimating variance components by equating ANOVA mean
squares to their expected values, known as the ANOVA method of estimation, is due to
Tippett (1931). Several adaptations of the ANOVA method for unbalanced data were
proposed by Henderson (1953). The algorithms for computing ANOVA estimates of
variance components for both balanced and unbalanced data are discussed in Searle,
Casella, and McCulloch (1992).

ANOVA estimation of variance components involves solving a system of linear equa-
tions, with the structure of the system dependent on the specific experimental design.
As such, a general program to compute ANOVA-type estimates is, at best, a difficult
concept. I do, however, demonstrate this method in section 2 for one specific design.

Serious weaknesses of ANOVA estimators—for example, possibly negative estimates
of variance components, nonexistence of uniformly best estimators, and lack of unique-
ness in the case of unbalanced data—have led to the investigation of alternative methods
of variance components estimation. Two alternatives are ML (Hartley and Rao 1967)
and REML (Thompson 1992). These methods are based on maximizing the likelihood
function corresponding to the statistical model that underlies the experimental design;
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2 Estimating variance components in Stata

they require a distributional assumption on the response, i.e., normality. The REML

method is based on maximizing the portion of the likelihood that is invariant to the
fixed effects. The REML and ML estimates are guaranteed to be nonnegative. The differ-
ence between ML and REML estimators is that the latter takes into account the implicit
degrees of freedom associated with the fixed effects. For balanced designs, ANOVA and
REML estimators are identical. For unbalanced designs, all three estimators generally
differ. Because of their simplicity relative to ANOVA methods, ML and REML are the
preferred methods of estimation for unbalanced data.

As of Stata 9, you can obtain ML and REML estimates of variance components by
using xtmixed. The key, however, lies in expressing the various experimental designs as
multilevel mixed-effects models, i.e., in the language used by xtmixed.

Section 2 describes the ANOVA method for estimating variance components and
demonstrates how ANOVA-type estimates can be obtained using Stata. Section 3 dis-
cusses xtmixed as a tool for variance-components estimation. Section 4 provides ex-
amples of how to get variance components estimates in Stata for several experimental
designs.

2 ANOVA-type estimation of variance components

We demonstrate two methods of computing ANOVA-type estimates of variance compo-
nents manually after anova for a random two-way full factorial experimental design.

ANOVA-type estimates of variance components can be obtained by solving the linear-
equation system obtained from equating the expected mean squares to their sample
estimates, which are labeled in anova output as “mean squares”. We can define b to
be the column vector of mean squares and matrix C to be the matrix of coefficients
that links expected mean squares to observed mean squares. The structure of matrix C
depends on a particular experimental design. Let v be the column vector of unknown
variance components. Then v is a solution to

Cv = b

As such, one method for estimating variance components is to use the Stata matrix
commands to construct the matrices b and C and to compute components of v as

v = C−1b (1)

You can also directly use formulas readily available for common experimental designs
to compute variance components; see, for example, Kuehl (2000); Winer, Brown, and
Michels (1991); and Searle, Casella, and McCulloch (1992). However, such formulas are
merely a more direct representation of (1).
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2.1 ANOVA-type estimates for random-effects two-way full factorial
design

As an example to show how to compute estimates of variance components after anova
by using the two methods described above for a random two-factor full factorial design,
we use the data from example 7.1 in Kuehl (2000). The measurements on triglyceride
levels (milligrams per deciliter) in the serum samples were obtained from a randomly
selected sample of machines to evaluate machine performance. The research problem
is to estimate the variability of measurements among machines operated over several
days. Four machines (b = 4) were selected for the study, with two measurements (r = 2)
obtained from each machine for each of the 4 days (a = 4). The sources of variation are
variability among machines, σ2

m; variability among days, σ2
d; variability associated with

interaction between days and machines, σ2
dm; and error variability, σ2

e .

We fit this design using anova and obtain variance components directly by using
published formulas and by solving the system of linear equations. Here trigly is the
dependent variable; day and machine define random factors.

. use trigly1
(Kuehl, example 7.1 (trigly data))

. anova trigly day machine day*machine

Number of obs = 32 R-squared = 0.9294
Root MSE = 4.23028 Adj R-squared = 0.8632

Source Partial SS df MS F Prob > F

Model 3767.77723 15 251.185149 14.04 0.0000

day 1334.46338 3 444.821125 24.86 0.0000
machine 1647.27875 3 549.092916 30.68 0.0000

day*machine 786.035104 9 87.3372338 4.88 0.0029

Residual 286.324902 16 17.8953064

Total 4054.10213 31 130.777488

The first method is to compute estimates of variance components for terms day,
machine, and day*machine directly using the formulas

σ̂2
r = MS(Residual)

σ̂2
dm =

MS(day*machine) − MS(Residual)
r

σ̂2
m =

MS(machine) − MS(day*machine)
ra

σ̂2
d =

MS(day) − MS(day*machine)
rb

and the values of sum of squares saved after anova as shown below. Since sums of
squares are what are saved in e() after anova, they must be converted to mean squares
by dividing by the appropriate degrees of freedom.
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. local a = 4

. local b = 4

. local r = 2

. local resid = e(rss)/e(df_r)

. local dayXmachine = (e(ss_3)/e(df_3) - ‘resid’)/‘r’

. local mach = (e(ss_2)/e(df_2) - e(ss_3)/e(df_3))/(‘r’*‘a’)

. local day = (e(ss_1)/e(df_1) - e(ss_3)/e(df_3))/(‘r’*‘b’)

. display as txt "Variance components:"
Variance components:

. display as txt "Var(day) = " as res ‘day’
Var(day) = 44.685486

. display as txt "Var(machine) = " as res ‘mach’
Var(machine) = 57.71946

. display as txt "Var(dayXmachine) = " as res ‘dayXmachine’
Var(dayXmachine) = 34.720964

. display as txt "Var(residual) = " as res ‘resid’
Var(residual) = 17.895306

In matrix notation, we have the following system of linear equations to estimate
variance components corresponding to this experimental design:

⎛
⎜⎜⎜⎝

rb 0 r 1
0 ra r 1
0 0 r 1
0 0 0 1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

σ2
d

σ2
m

σ2
dm

σ2
r

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

MS(day)
MS(machine)

MS(day*machine)
MS(Residual)

⎞
⎟⎟⎟⎠

We can obtain the solution to this system of linear equations in Stata as follows:

. mat b = (e(ss_1)/e(df_1) \ e(ss_2)/e(df_2) \ e(ss_3)/e(df_3) \e(rss)/e(df_r))

. mat C = (‘r’*‘b’,0,‘r’,1\0,‘r’*‘a’,‘r’,1\0,0,‘r’,1\0,0,0,1)

. mat v = inv(C)*b

. mat v = v’

. matrix rownames v = Var

. matrix colnames v = day machine dayXmachine residual

. display as txt "Variance components:"
Variance components:

. mat list v

v[1,4]
day machine dayXmachine residual

Var 44.685486 57.71946 34.720964 17.895306

The structure of the matrix C can become complicated and can involve tedious
computation of its entries for unbalanced and complicated experimental designs,1 which
makes manually computing variance components more difficult.

1. Expressions for the variance components for some such designs can be found in Searle, Casella, and
McCulloch (1992) and Winer, Brown, and Michels (1991).
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As of Stata 9, variance components for such designs can be easily estimated with
xtmixed. We demonstrate this process for this particular design in section 4.2.

3 xtmixed as a tool for variance component estimation

REML and ML estimates of variance components can be obtained in Stata by using
xtmixed for both balanced and unbalanced designs. By default, xtmixed produces
REML estimates. You can obtain ML estimates by using option mle.

I draw the attention of ANOVA-oriented Stata users to xtmixed as a tool for variance-
components estimation for random-effects experimental designs. xtmixed is designed
primarily for fitting random coefficients and multilevel models. However, statistical
models underlying random-effects experimental designs can be viewed as particular
types of multilevel models. For example, a one-way random-effects experimental design
corresponds to a random-intercept model; the experimental design with two nested
random factors can be treated as the two-level random-intercept model.

The difference between the ANOVA and multilevel representations of the models is
in the organization of the data. In multilevel models, the data are viewed as a series of
independent panels where each panel contains a vector of responses, with the specified
covariance structure, Σ, of random effects, u, where u is independently observed within
each panel. On the other hand, an ANOVA specification considers all n observations at
once, with corresponding covariance matrix2 G = IM ⊗ Σ of random effects, where M
defines the number of panels (for the specification of the models corresponding to the two
representations discussed above, refer to [XT] xtmixed). An ANOVA representation of
the model corresponds to treating all data as one big panel with a certain block-diagonal
covariance structure.

Since variance components, along with error variance σ2
e , are characterized by ele-

ments of the matrix G and therefore by elements of matrix Σ, they are the same for
both ANOVA and multilevel model formulations. The latter, however, is more computa-
tionally efficient because of the lower dimension of the design matrix for random effects,
u.

The design-matrix–based approach, or as we call it, the brute-force way of fitting
random-effects designs with xtmixed, is to construct the design matrix for random
effects in a straightforward way by specifying indicator variables corresponding to the
levels of all random effects. In multilevel language, this approach means considering all
data as one big group, treating random factors as being nested within this group, and
treating levels of random factors as random coefficients on indicator variables for these
random factors. The random coefficients are assumed (a) to have equal variances within
a random effect, (b) to be uncorrelated among each other, and (c) to be uncorrelated
with the random coefficients for other random effects. To accommodate the design-
matrix–based approach, xtmixed supports the special group identifier all and the
factor notation R.varname (see [XT] xtmixed). The syntax for xtmixed corresponding
to the brute-force way of fitting random-effects designs is

2. ⊗ denotes the Kronecker product of two matrices.
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. xtmixed depvar fe equation
ˆ
|| all: R.re varname1

˜ ˆ
|| all: R.re varname2 ...

˜

where fe equation includes fixed effects defining a regression function; all corresponds
to the ID variable identifying all the observations as one big panel; and R.re varname1,
R.re varname2, and so on define random-effects variables re varname1, re varname2 as
factor variables. When R.-notation is used, by default, the identity covariance structure
is specified for the random effects. This condition fulfills requirements (a) and (b). Also,
since random factors from different random equations are independent, assumption (c)
is achieved by listing each random factor in a separate random equation. The syntax
above corresponds to the ANOVA formulation of the model.

However, such a direct approach can be computationally burdensome. That is, since
the R.-notation defines each of the levels of the random factor as a separate parameter in
the vector of random effects, the column dimension of the design matrix for the random
effects is increased. For example, in the specification above, the column dimension of the
design matrix for random effects is equal to the total number of levels of each random
effect. When the number of levels is very large, the consequences may be an increase in
the computation time and a failure to accommodate enough memory required for fitting
complicated experimental designs.

In such situations, formulating the model as a multilevel model is advantageous
since it results in a significant reduction of the dimensionality of the random effects. For
example, random-effects–nested designs with all nested factors being random correspond
to the random-intercept multilevel model with levels defined by these random factors:

. xtmixed depvar fe equation
ˆ
|| re varname1:

˜ ˆ
|| re varname2: ...

˜

where re varname1 defines first-level groups; re varname2, being nested within
re varname1, defines second-level groups; and so on. The column dimension of the
design matrix for random effects in this case is equal to the number of random factors.
For the random-effects designs with crossed factors, we cannot avoid using R.-notation.
However, as we show later in our examples, there are more effective ways of fitting such
designs than the brute-force way.

In what follows, I demonstrate examples of using xtmixed effectively to get estimates
of variance components for different experimental designs. A detailed discussion of using
xtmixed for random-effects models and ways to fit them more effectively is given in
Rabe-Hesketh and Skrondal (2005). A general description of multilevel models can be
found in Goldstein (2003). See also [XT] xtmixed for a general description of that
command.

4 Examples

I demonstrate how to obtain estimates of variance components for several experimental
designs using xtmixed. I provide both the brute-force way of using xtmixed with the
direct translation of an ANOVA model and the more efficient way of obtaining the same
results with xtmixed using a multilevel model specification.
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4.1 Random effects for one-factor experimental design

Here I demonstrate how to obtain variance-components estimates for a single random-
factor experimental design using both loneway and xtmixed. The data for this example
are taken from example 5.1 in Kuehl (2000). Tensile-strength measurements of the alloy
are obtained on a random sample of 10 (r = 10) bars from each of the three castings
(t = 3). The research objective of the experiment is to study the variability among the
bars, σ2

e , taking into account possible variability due to different castings, σ2
t .

We first estimate the variance components σ2
t and σ2

e by using loneway. The variable
temp is the dependent variable and casting defines a random factor. Error variability
defines the source of the variability among bars.

Using loneway, we type

. use alloy
(Kuehl, example 5.1 (alloy data))

. loneway temp casting

One-way Analysis of Variance for temp:

Number of obs = 30
R-squared = 0.4849

Source SS df MS F Prob > F

Between casting 147.88464 2 73.94232 12.71 0.0001
Within casting 157.10202 27 5.8185932

Total 304.98666 29 10.516781

Intraclass Asy.
correlation S.E. [95% Conf. Interval]

0.53934 0.27948 0.00000 1.08712

Estimated SD of casting effect 2.610052
Estimated SD within casting 2.412176
Est. reliability of a casting mean 0.92131

(evaluated at n=10.00)

The estimated variance components can be obtained as the square of the corre-
sponding estimated standard deviations. The estimate of variability among bars is
σ̂2

e = (2.412)2 = 5.82, and the estimate of variability among castings is σ̂2
t = (2.610)2 =

6.81.

Now we use xtmixed to estimate these same variance components. By default,
xtmixed reports these as standard deviations, but we can specify option variance to
get estimates of variances.

The direct translation of the ANOVA model corresponds to specifying indicator vari-
ables for each level of the random effect, casting in our example, which corresponds to
the following syntax for xtmixed:
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. xtmixed temp || _all: R.casting, variance nolog

Mixed-effects REML regression Number of obs = 30
Group variable: _all Number of groups = 1

Obs per group: min = 30
avg = 30.0
max = 30

Wald chi2(0) = .
Log restricted-likelihood = -70.927391 Prob > chi2 = .

temp Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 90.86667 1.569951 57.88 0.000 87.78962 93.94371

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.casting) 6.812376 7.395932 .8113012 57.20251

var(Residual) 5.818593 1.58362 3.41311 9.919407

LR test vs. linear regression: chibar2(01) = 12.08 Prob >= chibar2 = 0.0003

The column dimension of the design matrix for random effects corresponding to this
syntax is equal to 3, the number of levels of casting. The more efficient way to do
this is to fit this model as a one-level random-intercept model with casting as a group
variable with a random intercept for each group. This method reduces the column
dimension of the design matrix to 1:

. xtmixed temp || casting:, variance nolog

Mixed-effects REML regression Number of obs = 30
Group variable: casting Number of groups = 3

Obs per group: min = 10
avg = 10.0
max = 10

Wald chi2(0) = .
Log restricted-likelihood = -70.927391 Prob > chi2 = .

temp Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 90.86667 1.569951 57.88 0.000 87.78962 93.94371

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

casting: Identity
var(_cons) 6.812376 7.395932 .8113011 57.20252

var(Residual) 5.818593 1.58362 3.41311 9.919407

LR test vs. linear regression: chibar2(01) = 12.08 Prob >= chibar2 = 0.0003
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The two estimations produce identical results; however, the advantage of the second
specification would become apparent when the number of levels of the random effect is
very large.

4.2 Random effects for two-way full factorial experimental design

Let us now go back to the example from section 2.1.

In accordance with the factor notation of the corresponding ANOVA model, we can
use the following syntax of xtmixed. There is no automatic way to specify an interaction
variable within xtmixed, but we can create the appropriate group variable manually by
using egen:

. use trigly1
(Kuehl, example 7.1 (trigly data))

. egen dayXmachine=group(machine day)

. xtmixed trigly || _all: R.day || _all: R.machine || _all: R.dayXmachine,
> variance nolog

Mixed-effects REML regression Number of obs = 32
Group variable: _all Number of groups = 1

Obs per group: min = 32
avg = 32.0
max = 32

Wald chi2(0) = .
Log restricted-likelihood = -107.51918 Prob > chi2 = .

trigly Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 141.1844 5.322644 26.53 0.000 130.7522 151.6166

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.day) 44.68551 45.69017 6.023203 331.517

_all: Identity
var(R.machine) 57.7195 56.27743 8.538616 390.1734

_all: Identity
var(R.dayXma~e) 34.72102 20.82727 10.71526 112.5077

var(Residual) 17.89529 6.326937 8.949396 35.78358

LR test vs. linear regression: chi2(3) = 27.48 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

The estimated variance components are identical to those derived using ANOVA

methods in section 2.1.

The more efficient way to fit this model is as a three-level model with crossed terms.
Here the factors day and machine are crossed. As described in Goldstein (2003) and
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Rabe-Hesketh and Skrondal (2005), we can specify the model corresponding to this
two-way random full factorial experimental design as follows.

1. Treat both factors to be nested within the entire dataset.

2. Choose one of the factors, usually the one with the largest number of levels, to
define a random intercept at the second level.

3. Create a set of indicator explanatory variables, one for each category, for the
other factor at the first level with random intercepts uncorrelated and with vari-
ances constrained to be equal. This step can be done automatically by using the
R.varname notation.

4. Use an additional nesting level to estimate the variance component for the inter-
action term.

. xtmixed trigly || _all: R.day || machine: || dayXmachine:, variance nolog

Mixed-effects REML regression Number of obs = 32

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 32 32.0 32
machine 4 8 8.0 8

dayXmachine 16 2 2.0 2

Wald chi2(0) = .
Log restricted-likelihood = -107.51918 Prob > chi2 = .

trigly Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 141.1844 5.322644 26.53 0.000 130.7522 151.6166

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.day) 44.68551 45.69017 6.023203 331.517

machine: Identity
var(_cons) 57.7195 56.27743 8.538615 390.1734

dayXmachine: Identity
var(_cons) 34.72102 20.82727 10.71526 112.5077

var(Residual) 17.89529 6.326937 8.949396 35.78358

LR test vs. linear regression: chi2(3) = 27.48 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

Since the interaction can also be viewed as nesting one factor within another, you
can also fit the above model by using
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. xtmixed trigly || _all: R.day || machine: || day:, variance nolog

Mixed-effects REML regression Number of obs = 32

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

_all 1 32 32.0 32
machine 4 8 8.0 8

day 16 2 2.0 2

Wald chi2(0) = .
Log restricted-likelihood = -107.51918 Prob > chi2 = .

trigly Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 141.1844 5.322644 26.53 0.000 130.7522 151.6166

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.day) 44.68551 45.69017 6.023203 331.517

machine: Identity
var(_cons) 57.7195 56.27743 8.538615 390.1734

day: Identity
var(_cons) 34.72102 20.82727 10.71526 112.5077

var(Residual) 17.89529 6.326937 8.949396 35.78358

LR test vs. linear regression: chi2(3) = 27.48 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

which does not require creating a separate interaction variable. All these estimations
using xtmixed are identical, yet the final way is the most efficient because the design
matrix for random effects is of lower dimension and we avoid creating an interaction
variable. The first estimation requires a design matrix for random effects with column
dimension equal to 4 + 4 + 4 × 4 = 24, whereas the other two need only 4 + 1 + 1 = 6
random-effects parameters. In the second estimation we also need to create an interac-
tion variable.

4.3 Random effects for mixed experimental design with crossed fac-
tors

Here I give an example of how to use xtmixed to estimate variance components for the
two-way full factorial mixed design. The data are obtained from example 7.2 in Kuehl
(2000). Two measurements of triglyceride levels (milligrams per deciliter) (r = 2) are
obtained for each of the two methods (a = 2) on each of the 4 days (b = 4). Here
method is a fixed factor, day is a random factor, and interaction between method and
day, method*day, is also a random factor.

The ANOVA table obtained for this experiment is as follows:
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. use trigly2
(Kuehl, example 7.2 (trigly data))

. anova trigly method day method*day

Number of obs = 16 R-squared = 0.8913
Root MSE = 3.79704 Adj R-squared = 0.7962

Source Partial SS df MS F Prob > F

Model 945.697524 7 135.099646 9.37 0.0026

method 329.422694 1 329.422694 22.85 0.0014
day 431.442437 3 143.814146 9.97 0.0044

method*day 184.832393 3 61.6107977 4.27 0.0446

Residual 115.340023 8 14.4175029

Total 1061.03755 15 70.7358365

Using the values of mean squares given in Kuehl (2000), you can calculate the
variance components to be σ̂2

e = 14 for the error (Residual), σ̂2
dm = (62 − 14)/2 = 24

for the interaction (method*day), and σ̂2
d = (144− 62)/(2× 2) = 20.5 for the day (day)

terms. Below is an example of using xtmixed efficiently to estimate variance components
for this design. Here we again define an interaction through a nesting of factors.

. xi: xtmixed trigly i.method || day: || method:, variance nolog
i.method _Imethod_1-2 (naturally coded; _Imethod_1 omitted)

Mixed-effects REML regression Number of obs = 16

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

day 4 4 4.0 4
method 8 2 2.0 2

Wald chi2(1) = 5.35
Log restricted-likelihood = -46.252391 Prob > chi2 = 0.0208

trigly Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Imethod_2 -9.075003 3.924627 -2.31 0.021 -16.76713 -1.382875
_cons 147 3.583163 41.03 0.000 139.9771 154.0229

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

day: Identity
var(_cons) 20.55083 31.9364 .9773392 432.129

method: Identity
var(_cons) 23.59664 25.40945 2.859271 194.7355

var(Residual) 14.41751 7.208753 5.411147 38.41412

LR test vs. linear regression: chi2(2) = 6.77 Prob > chi2 = 0.0339

Note: LR test is conservative and provided only for reference
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The same results can be obtained using the brute-force specification of xtmixed:

. egen dayXmethod = group(day method)

. xi: xtmixed trigly i.method || _all: R.day || _all: R.dayXmethod, variance nolog

4.4 Nested-factor experimental design

The data come from example 7.3 in Kuehl (2000). Glucose measurements (milligrams
per deciliter) were collected to study the performance of serum assays critical for the
correct medical diagnoses. The important sources of variation on the assays are days
on which the assays are conducted, σ2

a; the replicate runs within days, σ2
b(a); and the

replicate serum sample preparations within run, σ2
c(b). There are three (c = 3) replica-

tions of glucose standards prepared for each of two (b = 2) runs on each of 3 (a = 3)
days. This is an example of the nested experimental design with three random nested
factors: day (day), run|day (run|day), and rep|run (Residual).

First, we use anova to produce a table corresponding to this design:

. use glucose
(Kuehl, example 7.3 (glucose data))

. anova glucose day / run|day /

Number of obs = 18 R-squared = 0.6864
Root MSE = 1.07083 Adj R-squared = 0.5558

Source Partial SS df MS F Prob > F

Model 30.1200012 5 6.02400023 5.25 0.0087

day 13.7633271 2 6.88166354 1.26 0.4002
run|day 16.3566741 3 5.4522247

run|day 16.3566741 3 5.4522247 4.75 0.0208

Residual 13.7600005 12 1.1466667

Total 43.8800016 17 2.58117657

We demonstrate the brute-force way of fitting xtmixed to obtain variance compo-
nents for this design. Since runs are nested within days, we cannot estimate variability
due to runs only and, therefore, we cannot use the R.run notation to define the random
effects for estimating σ2

c(b). Instead, we must create an interaction between run and day
and use it with R.-notation:

(Continued on next page)
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. egen dayXrun = group(day run)

. xtmixed glucose || _all: R.day || _all: R.dayXrun, variance nolog

Mixed-effects REML regression Number of obs = 18
Group variable: _all Number of groups = 1

Obs per group: min = 18
avg = 18.0
max = 18

Wald chi2(0) = .
Log restricted-likelihood = -30.861192 Prob > chi2 = .

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 42.76667 .6183155 69.17 0.000 41.55479 43.97854

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.day) .2382376 1.366002 3.14e-06 18097.3

_all: Identity
var(R.dayXrun) 1.435187 1.492089 .1870504 11.0118

var(Residual) 1.146667 .4681248 .5151523 2.552342

LR test vs. linear regression: chi2(2) = 5.53 Prob > chi2 = 0.0629

Note: LR test is conservative and provided only for reference

Now we use xtmixed more efficiently by fitting the model for a nested random-effects
design as a two-level random-intercept model:

. xtmixed glucose || day: || run:, variance nolog

Mixed-effects REML regression Number of obs = 18

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

day 3 6 6.0 6
run 6 3 3.0 3

Wald chi2(0) = .
Log restricted-likelihood = -30.861192 Prob > chi2 = .

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 42.76667 .6183155 69.17 0.000 41.55479 43.97854
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Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

day: Identity
var(_cons) .2382376 1.366002 3.14e-06 18097.3

run: Identity
var(_cons) 1.435187 1.492089 .1870504 11.0118

var(Residual) 1.146667 .4681248 .5151523 2.552342

LR test vs. linear regression: chi2(2) = 5.53 Prob > chi2 = 0.0629

Note: LR test is conservative and provided only for reference

You can obtain variance components for this design by specifying only one random-
effects equation. This goal can be achieved by noting that the covariance matrix of the
data is block-diagonal with exchangeable matrices on the diagonal blocks. We can thus
fit the same model as follows:

. xtmixed glucose || day: R.run, cov(exchangeable) variance nolog

Mixed-effects REML regression Number of obs = 18
Group variable: day Number of groups = 3

Obs per group: min = 6
avg = 6.0
max = 6

Wald chi2(0) = .
Log restricted-likelihood = -30.861192 Prob > chi2 = .

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

_cons 42.76667 .618316 69.17 0.000 41.55479 43.97854

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

day: Exchangeable
var(R.run) 1.673426 1.374891 .334393 8.37444
cov(R.run) .2382399 1.366007 -2.439084 2.915564

var(Residual) 1.146667 .4681248 .5151523 2.552342

LR test vs. linear regression: chi2(2) = 5.53 Prob > chi2 = 0.0629

Note: LR test is conservative and provided only for reference

The corresponding variance components are σ̂2
a = cov(R.run) = .238,

σ̂2
b(a) = var(R.run) − cov(R.run) = 1.435, and σ̂2

c(b) = 1.147, which agree with previous
results. For a detailed explanation, see example 7 in [XT] xtmixed.

Being able to estimate variance components for two nested factors, one nested within
another, in one equation is handy for fitting random-effects designs with nested and
crossed factors, as I demonstrate in subsection 4.6.
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4.5 Nested-factor mixed experimental design

Now we fit a mixed experimental design with a nested factor, assuming that day is a
fixed factor in the example described in section 4.4. The direct ANOVA formulation of
the model requires that we specify random coefficients on indicator variables for run
within each level of day:

. use glucose
(Kuehl, example 7.3 (glucose data))

. xi: xtmixed glucose i.day || day: R.run, variance nolog
i.day _Iday_1-3 (naturally coded; _Iday_1 omitted)

Mixed-effects REML regression Number of obs = 18
Group variable: day Number of groups = 3

Obs per group: min = 6
avg = 6.0
max = 6

Wald chi2(2) = 2.52
Log restricted-likelihood = -27.336908 Prob > chi2 = 0.2830

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Iday_2 1.633333 1.348113 1.21 0.226 -1.00892 4.275585
_Iday_3 -.3833338 1.348113 -0.28 0.776 -3.025587 2.258919

_cons 42.35 .9532598 44.43 0.000 40.48165 44.21836

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

day: Identity
var(R.run) 1.435186 1.49209 .1870499 11.01182

var(Residual) 1.146667 .4681247 .5151523 2.552341

LR test vs. linear regression: chibar2(01) = 3.73 Prob >= chibar2 = 0.0268

Interchanging the roles of run and day does not affect estimation results, so it is more
efficient to specify the factor with fewer levels with the R.-notation. For example, if
day had fewer levels than run, the following syntax would result in a smaller column
dimension of the design matrix for random effects:

. xi: xtmixed glucose i.day || run: R.day, variance nolog

A more efficient way to obtain the results above is to express this design as a one-
level random-intercept model with the level defined by the interaction between day and
run:
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. egen dayXrun = group(day run)

. xi: xtmixed glucose i.day || dayXrun:, variance nolog
i.day _Iday_1-3 (naturally coded; _Iday_1 omitted)

Mixed-effects REML regression Number of obs = 18
Group variable: dayXrun Number of groups = 6

Obs per group: min = 3
avg = 3.0
max = 3

Wald chi2(2) = 2.52
Log restricted-likelihood = -27.336908 Prob > chi2 = 0.2830

glucose Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Iday_2 1.633333 1.348113 1.21 0.226 -1.00892 4.275585
_Iday_3 -.3833338 1.348113 -0.28 0.776 -3.025587 2.258919

_cons 42.35 .9532598 44.43 0.000 40.48165 44.21836

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

dayXrun: Identity
var(_cons) 1.435186 1.49209 .18705 11.01182

var(Residual) 1.146667 .4681247 .5151523 2.552341

LR test vs. linear regression: chibar2(01) = 3.73 Prob >= chibar2 = 0.0268

The alternative specification of the model above comes in handy when, for example,
we want to include a random coefficient for some covariate, x, that is measured within
the levels of the random factor. For the above example, if some covariate, x, is measured
within levels of factor run, the syntax below can be used to fit the model:

. xi: xtmixed glucose i.day || dayXrun: x, variance nolog

4.6 Nested and crossed factors experimental design

Here I demonstrate how xtmixed can be used to fit random-effects design with crossed
and nested factors. We simulate data from the following experiment. Ten measurements
(r = 10) are obtained for each of the three machines (a = 3) from a random sample
of three runs (c = 3) for 3 days (b = 3). Runs are nested within day, and machines
are crossed with runs and days. Machine effect is a fixed effect, and all other effects
are random. The variance components for this design are variability among days (σ2

b =
2.25), variability among runs within day (σ2

c(b) = 0.09), variability due to the interaction
between machine and day (σ2

ab = 0.25), and variability due to the interaction between
machine and runs nested within day (σ2

ac(b) = 0.64); the error variance is set to one
(σ2

e = 1).

We use the following syntax for anova to produce a table corresponding to this
design:
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. use simul
(Simulation: crossed and nested factors)

. anova measurement machine / day machine*day run|day/ machine*run|day

Number of obs = 270 R-squared = 0.8952
Root MSE = .97025 Adj R-squared = 0.8840

Source Partial SS df MS F Prob > F

Model 1953.37309 26 75.1297341 79.81 0.0000

machine 1192.8791 2 596.439552 2.29 0.3044
day 521.966092 2 260.983046

machine*day 72.3036746 4 18.0759186 2.22 0.1281
run|day 68.4783724 6 11.4130621 1.40 0.2909

machine*run|day 97.7458432 12 8.14548694

Residual 228.756698 243 .941385588

Total 2182.12978 269 8.11200663

Using the following formulas, we can estimate variance components from the above
anova table

σ̂2
e = MS(Residual)

σ̂2
ac(b) =

MS(machine*run|day) − MS(Residual)
r

σ̂2
c(b) =

MS(machine*run|day) − MS(run|day)
ar

σ̂2
ab =

MS(machine*run|day) − MS(machine*day)
cr

σ̂2
b =

MS(day) + MS(machine*run|day) − MS(machine*day) − MS(run|day)
acr

to be σ̂2
e = 0.94, σ̂2

ac(b) = 0.72, σ̂2
c(b) = 0.109, σ̂2

ab = 0.33, and σ̂2
b = 2.66.

Let us first show the brute-force way of fitting xtmixed for this random-effects design.
We first need to create all corresponding interaction terms using egen:

. egen dayXrun = group(day run)

. egen machXday = group(machine day)

. egen machXdayXrun = group(machine day run)



Y. Marchenko 19

. xi: xtmixed measurement i.machine || _all: R.day || _all: R.dayXrun || _all:
> R.machXday || _all: R.machXdayXrun, variance nolog
i.machine _Imachine_1-3 (naturally coded; _Imachine_1 omitted)

Mixed-effects REML regression Number of obs = 270
Group variable: _all Number of groups = 1

Obs per group: min = 270
avg = 270.0
max = 270

Wald chi2(2) = 65.99
Log restricted-likelihood = -409.51008 Prob > chi2 = 0.0000

measurement Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Imachine_2 1.539087 .6337863 2.43 0.015 .2968884 2.781285
_Imachine_3 5.024508 .6337863 7.93 0.000 3.78231 6.266707

_cons -.0387583 1.049048 -0.04 0.971 -2.094854 2.017337

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

_all: Identity
var(R.day) 2.66267 2.904453 .3139226 22.58458

_all: Identity
var(R.dayXrun) .1089146 .2460279 .0013011 9.117384

_all: Identity
var(R.machXday) .3310101 .4402353 .0244211 4.486609

_all: Identity
var(R.machXd~n) .7204136 .3326501 .2914342 1.780833

var(Residual) .9413857 .0854042 .7880341 1.124579

LR test vs. linear regression: chi2(4) = 301.88 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

Now I demonstrate the more efficient way of using xtmixed to fit this design. The
interaction terms machXday and machXdayXrun can be viewed as the following nested
terms: machine nested within days and runs nested within machines nested within days.
Therefore, we have three levels of nesting, with day defining the first level, machine
defining the second level, and run defining the third level. This formulation allows us
to obtain variance components σ2

b , σ2
ab, and σ2

ac(b), respectively. To obtain the variance
component, σ2

c(b), recall that we can obtain the estimate of a variance component for a
nested factor by using the exchangeable covariance matrix as described in section 4.4.
All the above suggest the following syntax for xtmixed:

(Continued on next page)
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. xi: xtmixed measurement i.machine || day: R.run, cov(exchangeable) || machine
> : || run:, variance nolog
i.machine _Imachine_1-3 (naturally coded; _Imachine_1 omitted)

Mixed-effects REML regression Number of obs = 270

No. of Observations per Group
Group Variable Groups Minimum Average Maximum

day 3 90 90.0 90
machine 9 30 30.0 30

run 27 10 10.0 10

Wald chi2(2) = 65.99
Log restricted-likelihood = -409.51008 Prob > chi2 = 0.0000

measurement Coef. Std. Err. z P>|z| [95% Conf. Interval]

_Imachine_2 1.539087 .6337875 2.43 0.015 .296886 2.781287
_Imachine_3 5.024508 .6337875 7.93 0.000 3.782308 6.266709

_cons -.0387583 1.049048 -0.04 0.971 -2.094855 2.017339

Random-effects Parameters Estimate Std. Err. [95% Conf. Interval]

day: Exchangeable
var(R.run) 2.771589 2.907932 .354531 21.66724
cov(R.run) 2.662671 2.90446 -3.029966 8.355309

machine: Identity
var(_cons) .3310135 .4402365 .0244218 4.486568

run: Identity
var(_cons) .7204107 .3326466 .2914349 1.780815

var(Residual) .9413856 .0854042 .788034 1.124579

LR test vs. linear regression: chi2(4) = 301.88 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference

5 Summary

In this article, I described how variance components can be obtained in Stata with the
emphasis on using xtmixed. I demonstrated effective ways of fitting different ANOVA

models with xtmixed by expressing them as multilevel models, also providing the syntax
corresponding to the direct translation of the ANOVA model. The latter model provides
a straightforward approach for fitting random-effects designs with xtmixed by directly
constructing the design matrix for random effects. With the former, however, there are
no general rules for reexpressing a generic random-effects design as a multilevel model.
Trial and error may be required to find the most efficient way to fit random-effects
designs with xtmixed.

Stata users are advised to use the alternate multilevel formulation for random-effects
designs with many levels of random effects. It may be difficult for certain designs to



Y. Marchenko 21

find the same formulation as a multilevel model, and the direct way of fitting may be
infeasible because of the large number of levels. In such situations, you might obtain
results by using the brute-force approach on a subset of data with fewer levels and then
find the multilevel representation that matches your results. Then this formulation can
be used to fit the model on the entire dataset.

Although the examples considered in this article correspond to balanced designs,
xtmixed can also be used with unbalanced designs.
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