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Speaking Stata: Smoothing in various

directions
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Abstract. Identifying patterns in bivariate data on a scatterplot remains a ba-
sic statistical problem, with special flavor when both variables are on the same
footing. Ideas of double, diagonal, and polar smoothing inspired by Cleveland
and McGill’s 1984 paper in the Journal of the American Statistical Association

are revisited with various examples from environmental datasets. Double smooth-
ing means smoothing both y given x and x given y. Diagonal smoothing means
smoothing based on the sum and difference of y and x that treats the two variables
symmetrically, possibly under standardization. Polar smoothing is based on the
transformation from Cartesian to polar coordinates followed by smoothing and
then reverse transformation; here the smoothing is implemented by regression on
a series of sine and cosine terms. These methods thus offer exploratory tools for
determining the broad structure of bivariate data.

Keywords: gr0021, exploratory data analysis, statistical graphics, bivariate data,
double smoothing, doublesm, diagonal smoothing, diagsm, polar smoothing, po-
larsm

1 Introduction

In my last two columns (Cox 2005a,b), I discussed some personal favorite methods that
in some sense or another have failed to become totally standard. This theme continues
with an examination of various ideas for smoothing data on scatterplots that were
prominent in a major paper in a leading journal several years ago (Cleveland and McGill
1984) but which have not been widely adopted.

Smoothing has moved to center stage in statistical science over the last few decades.
Not so long ago, smoothing meant, mostly, moving averages applied to time series.
Moving averages are often useful, and they are tied to deep and beautiful mathematics
in the frequency domain, but even in time-series analysis they are hardly the main idea.
Yet in various ways, the search for smooth structures has become the focus of a large
part of data analysis. This shift, as is well known, reflects new theory, new methods, and
better computing facilities. It also reflects greater emphasis on identifying structures
that both grow out of and can contribute to scientific explanations.

The interest in smoothing has grown hand in hand with a wider realization that
regression, interpreted suitably broadly, is the most powerful single idea in statistics.
Regardless of whether you agree with that, the theme of smoothing is broad enough
to stretch from simple exploratory data analysis to deeper and more formally analyzed
models. Much interest in smoothing begins with a relatively simple but perpetually

c© 2005 StataCorp LP gr0021
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interesting case, bivariate data on a scatterplot. It may seem surprising that anything
can be said about that case that has not been said many times before, but this column
surveys just one set of neglected ideas by way of example: double smoothing, diagonal
smoothing, and polar smoothing. They are not competing methods, and they may even
be complementary.

A few broad comments may be added at the outset on the homespun philosophy
underlying this work. Scatterplots containing just data points do most of the work in
conveying the information wrapped up in the two variables being examined. At most, we
are adding enhancements that highlight some of the structure in the data—or highlight
a lack of such structure. The question is often how far such enhancements support, or
even contradict, any interpretation based mostly on “eyeballing” the data. In practice,
such interpretations are also influenced by the scientific knowledge and the personal
biases of the observer and are thus subjective to some extent. How far the data show
what we think they show is a permanent issue.

2 Double and diagonal smoothing

Suppose that we have two variables that have the same units or are on equivalent unit-
free scales (for example, they are both probabilities). This restriction can be relaxed,
as will become clear. In addition, it is supposed that both are measured with error.

Examples are

1. Two sets of measurements of some quantity using different methods. Comparison
of methods is a common problem throughout science and a much discussed subject
in statistics (e.g., Dunn 2004).

2. Two sets of measurements at nearby locations. Concretely, we might have precip-
itation or temperature data from nearby meteorological stations.

3. Observed responses and predictions from some model. This model need not have
a statistical flavor.

4. Corresponding quantiles for two groups of a variable or two variables, as might be
shown on a quantile–quantile plot.

In these examples, and in many others, equality of variables is a natural reference
so that equality is either expected or at least a benchmark.

If we show data for these variables on a scatterplot, which variable goes on the y-axis
and which on the x-axis is likely to be arbitrary. The examples are all variables that are
essentially on the same footing. We might, however, want to add some smooth trace to
the graph to help to identify any systematic pattern. The motivation here is exploratory
or heuristic. We might prefer not to specify formally what error structure is associated
with the variables, marginally or jointly.
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This problem is therefore some distance from the classic smoothing problem in which
one variable fluctuates erratically and the other variable (for example, time) is consid-
ered known. The problem of “errors in variables” is related but not identical. Evidently,
neither smoothing y given x nor smoothing x given y would be entirely suitable. We
could

1. Choose one of these, say, smoothing y given x. At best, if the relationship is
strong, the other smooth will be very similar. This is in principle wrong, as it
assumes that one variable is known exactly, although we might choose not to worry
about that.

2. Choose and plot both. Although not often done, this could be interesting whatever
was found. Either the traces are similar—so the choice is in fact not an issue—or
they are different, which should provoke further thought. This practice I here call
double smoothing. My inspiration is Cleveland and McGill (1984, 817–818).

3. Choose a smoothing method that treats y and x symmetrically. This is even less
often done, but again an ingeniously simple idea from Cleveland and McGill (1984,
818) offers a way forward. They call their procedure sum-difference smoothing,
but I propose the name diagonal smoothing to reflect the idea that smoothing is
done diagonally, rather than parallel to one of the axes.

Whenever x and y are positively correlated, the procedure is to form the difference
and sum

d = y − x s = y + x

and then smooth the difference as a function of sum in some way, calling the result d̂.
The calculation is then reversed, producing

ŷ = (s + d̂ )/2 x̂ = (s − d̂ )/2

to plot with the data points y and x.

Whenever x and y are negatively correlated, the procedure is to form the difference
and sum, as before, and then smooth the sum as a function of the difference in some
way, calling the result ŝ. The calculation is then reversed, producing

ŷ = (d + ŝ)/2 x̂ = (ŝ − d)/2

to plot with the data points y and x. (The case of negative correlation is not discussed
by Cleveland and McGill but is in practice much less common in problems in which this
technique is most appealing.)

This method does not depend on y − x being roughly constant, but it should work
well whenever that is so. But calculating the difference and sum does depend on y and
x sharing the same units. However, it is easy to ensure comparability by prior use of
some method of standardization, followed by smoothing on standardized scales and a
reversal of the standardization.
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2.1 Double smoothing in Stata

Double smoothing in Stata is straightforward. In practice, a wrapper program to do it
is helpful. One is published with this column as doublesm. Nevertheless, let us consider
how to attack the problem. Suppose that lowess is the smoothing command of choice
and our variables are y and x. The first step is to smooth y on x and keep the smoothed
values:

lowess y x, nograph gen(ys)

The second step is to smooth x on y and keep the smoothed values:

lowess x y, nograph gen(xs)

Then we put together the results in a graph. The main point requiring care is the sort
order for each graph component:

twoway line ys x, sort || ///

line y xs, sort(y xs) || ///

scatter y x

Naturally, this schematic outline omits details of how the lowess calls and, in turn,
the graph call might be tuned using various options. But a wrinkle does deserve men-
tion: with lowess as implemented in Stata, the same smooth is not guaranteed for the
same (x, y) pairs. Normally this is not a great problem. If a graphical display makes
nonuniqueness evident, it is just drawing attention to a genuine characteristic of the
data, the occurrence of ties. However, it is worth noting that this may happen.

With doublesm, this strategy is implemented via a single call doublesm y x; smooth-
ing using lowess is the default. Optionally, the running line method as implemented by
Sasieni (1995); Sasieni and Royston (1998); and Sasieni, Royston, and Cox (2005) may
be specified. Earnest programmers wishing to add their favorite smoothing method
would find it easy to adapt doublesm. In general, any method of smoothing that copes
with unequal spacing of values is likely to be adequate for exploration. The usual com-
ment from both theory and experience is that the degree of smoothing is more important
than the particular flavor implemented.

2.2 Diagonal smoothing in Stata

As before, the main question in a Stata implementation of diagonal smoothing is pre-
cisely how to smooth. A program diagsm published with this column uses [R] lowess
by default and running line smoothing optionally.

diagsm by default standardizes each variable using (value − median) / MAD before
smoothing. Here MAD is the median absolute deviation from the median. This should
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be a reasonable general choice, given the possibility of variables with skewed and/or
heavy-tailed distributions. Note, however, that MAD may be 0 whenever half or more
of the values are equal to the median, in which circumstance the method will not work.
A real example is the repair record variable rep78 in Stata’s auto dataset for domestic
cars.

A less robust standardization available through the meansd option is (value − mean)/
(standard deviation). In each case, standardization is reversed to produce smoothed
values. Only by specification of the raw option is smoothing on the original data scales
available. This may seems backwards design, given the motivation of the method, but
the intent is to protect naive users from the effects of what may well be an inappropriate
default.

3 Polar smoothing

One idea that several people have tried to transfer from the univariate case to the
bivariate is that of the middle or central part of the data. The ideas of the median as a
center and of the quartiles as defining the central half of a distribution, from an order
statistic point of view, were very well established by the latter nineteenth century, most
prominently in the work of Francis Galton. Naturally, the middle or central part—
whether precisely or roughly one half of the data—defines as a complement the outer
part, which may well be practically or scientifically even more important or interesting.

There are various possibilities for extending these ideas to two variables and no
apparent reason why several should not be fruitful. One is based on the idea of con-
vex hulls (e.g., Barnett 1976 and various papers in Barnett 1981). Others are based
closely on the box plot, generalized in some fashion (e.g., Goldberg and Iglewicz 1992
and Rousseeuw, Ruts, and Tukey 1999). Here we focus on what Cleveland and McGill
(1984, 819–820) called polar smoothing. They cite a 1977 personal communication from
Alan M. Gross.

Given data on x and y, the main idea is to map to polar coordinates, smooth the
radius with respect to its angle, and then map back again. The smoothing thus defines
a closed curve including the central part of the data. Including half of the values
is not guaranteed but is often approximately satisfied. Generalizing mildly from the
formulation of Cleveland and McGill, one algorithm runs like this:

1. Given measures of location m(x) and m(y) and measures of scale (width) w(x)
and w(y), form x′ = {x − m(x)}/w(x), y′ = {y − m(y)}/w(y).

2. Convert these to normalized coordinates d = y′ − x′, s = y′ + x′.

3. Normalize in turn to d′ = d/w(d), s′ = s/w(s).

4. Convert to polar coordinates r =
√

s′2 + d′2, θ = arctan(d/s).

5. Transform r to z = r2/3 to provide some robustness, thus pulling in the larger
spikes particularly. As r is a square root, this produces a cube root: compare



N. J. Cox 579

the Wilson–Hilferty transform that arises particularly in treatments of gamma
distributions.

6. Smooth z as a function of θ, producing ẑ.

7. Reverse 5 by r̂ = ẑ3/2.

8. Reverse 4 by d̂′ = r̂ sin θ, ŝ′ = r̂ cos θ.

9. Reverse 3 to get d̂ = w(d) d̂′, ŝ = w(s) ŝ′.

10. Reverse 2 to get x̂′ = (ŝ − d̂)/2, ŷ′ = (ŝ + d̂)/2.

11. Reverse 1 to get x̂ = m(x) + w(x) x̂′, ŷ = m(y) + w(y) ŷ′.

What is tunable here?

Measures of location and scale. Cleveland and McGill use median for location and MAD,
namely, median absolute deviation from the median, as measure of scale. Other
possibilities are mean for location and standard deviation for scale. Yet another
set of possibilities is not to normalize or equivalently to set w(x) = w(y) = 1.

Robustness step. The cube root transform could be varied or even omitted. But without
some “robustifying” step, the representation of the central part would inevitably
be sensitive to outliers, which is arguably contrary to the main purpose here.

Smoother. The most interesting issue is how to smooth the radii of polar coordinates.
It is crucial to ensure that the smoother wraps around the circle without jumps
or kinks and so respects the fact of working with respect to polar coordinates.
Cleveland and McGill copy data fore and aft of the range of 360◦ or 2π radians
and then apply lowess, and many other smoothers could be applied in the same
way.

3.1 Polar smoothing in Stata

A program polarsm is published with this column. I have found it easiest to smooth
by means of a regression on pairs of sine and cosine terms. Thus we regress z on
sin jθ, cos jθ for j = 1 to whatever k is desired. As sine and cosine functions automat-
ically wrap around the circle, no special trickery of copying fore and aft is needed.1 If
k = 1, then some b0 + b1 sin θ + b2 cos θ is fitted to the transformed polar coordinates.
This expression has a single maximum and a single minimum half a circle away from
that. The effect when back-transformed to Cartesian coordinates thus resembles fitting
an ellipse that represents the central part of the data. More pairs of terms (a larger
k) allow more complication, and the resulting curve can then display concave as well
as convex parts. The choice of k can, and arguably should, be informal; use whatever

1. So, the slogan is not trickery, but trigonometry! Not fudge, but Fourier!
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seems to work best at revealing structure in the data. If you have too high a value of
k, the curve tends towards an interpolation of the data, yielding a slightly spectacular
but utterly useless starburst pattern. The only common-sense stipulation is to smooth
groups to be compared to similar degrees.

Mentioning groups leads to one of the most interesting ways to apply polar smooth-
ing, either to separate y variables or to separate groups defined by some third variable
not shown on the scatterplot. polarsm allows either of these choices. In the latter case,
groups are indicated by an over() option. Either way, the question then is how far the
polar smooths differ or are similar.

By default, polar smooths are shown superimposed, but you may also wish to show
them in separate panels. This can be done by specifying by(), as usual. If separate
y variables are being shown, know that polarsm temporarily restructures the dataset
using stack. The option by( stack) is thus the way to produce separate panels. Any
preexisting stack is temporarily dropped from the data. If separate groups are indi-
cated by over(groupvar), using an additional by(groupvar) is the way.

Although the polar smooth is, by its definition as a sum of sines and cosines, a
very smooth function, it is shown by polarsm as a connected line. Strictly, it is shown
as two connected lines, one connecting the first to the last smoothed value, and the
other closing the loop by connecting the last to the first smoothed value, but they
share a linestyle. The reasons for using connected lines are both negative and positive.
Negatively, twoway mspline can show only single-valued curves, not loops. Positively,
reminding you that the smooth is an interpolation between distinct values, one for each
data point, might even be a small feature.

4 The doublesm, diagsm, and polarsm programs

4.1 Syntax for doublesm

doublesm yvar xvar
[
if
] [

in
] [

,
[
lowess(lowess options) | running

[
(running options)

] ]
line(line options)

xsmooth(line options) ysmooth(line options) data(scatter options)
[
addplot(plot) | plot(plot)

]
graph options

]

4.2 Syntax for diagsm

diagsm yvar xvar
[
if
] [

in
] [

,
[
raw | meansd

]
[
lowess(lowess options) | running

[
(running options)

] ]
line(line options)

data(scatter options)
[
addplot(plot) | plot(plot)

]
generate(newyvar

newxvar) graph options
]
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4.3 Syntax for polarsm

polarsm varlist
[
if
] [

in
] [

, terms(#) over(groupvar)
[
colors(colorstyle) | colours(colorstyle)

]
smooth(line options)

data(scatter options) addplot(plot) graph options
]

4.4 Options for doublesm

lowess(lowess options) specifies options for lowess; see [R] lowess.

running
[
(running options)

]
specifies the use of the command running as an alterna-

tive to lowess. The option running by itself specifies using the running command
and its defaults. Alternatively, running() specified with arguments passes options
to the running command.

line(line options) specifies options for line (see [G] graph twoway line) that are to
be applied to both smooth traces.

xsmooth(line options) specifies options for line (see [G] graph twoway line) that are
to be applied to the smooth of xvar given yvar.

ysmooth(line options) specifies options for line (see [G] graph twoway line) that are
to be applied to the smooth of yvar given xvar.

data(scatter options) specifies options for scatter (see [G] graph twoway scatter)
that are to be applied to rendering of the data points.

addplot(plot) (Stata 9 and later; see [G] addplot option) or plot(plot) (Stata 8 only;
see [G] plot option) provides a way to add other plots to the generated graph.

graph options are other options documented in [G] twoway options.

4.5 Options for diagsm

raw specifies no scaling or standardization so that the sum and difference are calculated
directly from the data before smoothing.

meansd specifies scaling by (value − mean) / standard deviation before smoothing. The
standardization will be reversed after smoothing.

lowess(lowess options) specifies options for lowess; see [R] lowess.

running
[
(running options)

]
specifies the use of the command running as an alterna-

tive to lowess. The option running by itself specifies using the running command
and its defaults. Alternatively, running() specified with arguments passes options
to the running command.

line(line options) specifies options for line (see [G] graph twoway line) that are to
be applied to the smooth trace.
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data(scatter options) specifies options for scatter (see [G] graph twoway scatter)
that are to be applied to the data points.

addplot(plot) (Stata 9 and later; see [G] addplot option) or plot(plot) (Stata 8 only;
see [G] plot option) provides a way to add other plots to the generated graph.

generate(newyvar newxvar) specifies the names of two new variables to hold the y and
x coordinates of the diagonal smooth.

graph options are other options documented in [G] twoway options.

4.6 Options for polarsm

terms(#) specifies the number k of Fourier terms, sin jθ, cos jθ, j = 1, . . . , k on which
the radius is regressed as a function of the polar angle θ. By default, k is 1.

over(groupvar) specifies a variable to be used to identify different groups. over() is
not allowed whenever three or more variables are specified.

colors(colorstyle) or colours(colorstyle) (choose just one) specifies a list of colors
with which to show different polar smooths. See [G] colorstyle.

smooth(line options) specifies options for line (see [G] graph twoway line) control-
ling the representation of different polar smooths.

data(scatter options) specifies options for scatter (see [G] graph twoway scatter)
controlling the representation of data points for different variables or subsets of data.

addplot(plot) provides a way to add other plots to the generated graph; see [G] ad-

dplot option.

graph options are other options documented in [G] twoway options. In particular,
note that by default, polar smooths are shown superimposed. You may want to
show them in separate panels by specifying by(). If separate y variables are being
shown, polarsm temporarily restructures the dataset using stack; see [D] stack.
The option by( stack) is thus the way to produce separate panels. (Any preexisting
stack is temporarily dropped from the data.) If separate groups are specified by
over(groupvar), an additional by(groupvar) is the way to go.

5 Examples

Two substantial examples using environmental datasets will now be examined. Polar
smoothing also features briefly in the engaging text by Helsel and Hirsch (1992).
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5.1 Rainfall in the southern Pennines

A first example features the rainfall captured at three rain gauges over 42 years (1906–
1947) in part of the Derwent catchment (drainage basin or watershed) in the southern
Pennines in Britain. Rainfall means, strictly, precipitation: any fall of snow or other
solid forms of water is included as rainfall equivalent. The original data as reported by
Law (1953) were given in inches, which are long since obsolete as measurement units,
except among historians and U.S. citizens. However, those units are retained here: for
your information, 1 inch is exactly 25.4 mm.

As rainfall is sensitive to small differences in geographic location, especially but not
only landsurface altitude, many rain gauges are needed to get a good idea of the total or
average rainfall in an area. Conversely, rainfalls at nearby places do tend to be similar.
A common hydrological practice, as rain gauges are expensive, is thus to pepper an area
initially with many gauges, and then find out which pairs of gauges correlate so highly
that one can be removed without much loss of information. Standard climatological
folklore runs (e.g., Linacre 1992, Dingman 2002) that ratios of rainfalls at nearby rain
gauges tend to be nearly constant, but naturally this needs checking. Even if it holds,
the constant needs to be determined from data.

What should influence analysis is that the amounts at different gauges are variables
on the same footing. It would be at best arbitrary, and at worst wrong, to regard
the rainfall here as a response to the rainfall there, or indeed vice versa. It would be
nearer the mark to regard both as related to some latent or hidden variable, but here
we proceed otherwise, merely treating pairs of variables symmetrically.

Let us start with the idea of double smoothing, the idea of smoothing x given y,
as well as that of smoothing y given x. Figures 1, 2, and 3 show the results of double
smoothing pairs of three gauges, numbered 17, 23, and 60. More generally, double
smoothing pairs of k variables would yield k(k − 1)/2 plots, taking interchange of axes
for granted, just as with a half of a scatterplot matrix. The Stata recipe for each of
these graphs resembles this command:

. doublesm srain23 srain17, yla(, nogrid ang(h)) ms(oh)
> legend(order(1 "23 | 17" 2 "17 | 23") ring(0) pos(5) col(1))
> addplot(function x, range(srain23) lstyle(grid))

As the different gauges are highly correlated, it is possible to tuck the legend into
the bottom right-hand corner, although taste or convention might lead you to another
choice. A reference line y = x is also added. This could be done in various ways,
but putting a twoway function call into an addplot() option and requesting a grid

linestyle is one. (In Stata 8, use a plot() option instead.)
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Figure 1: Double smoothing by lowess of summer rainfall at two rain gauges. The
smooths of gauge 23 given 17 and of gauge 17 given 23 are almost identical and shifted
slightly from the reference line y = x.

The graphs show part of the range of behavior that might be expected. When two
variables agree quite closely, as with gauges 17 and 23 in figure 1, the two smooths are
essentially the same, and both are close to the reference line of equality. The structure
in this example seems more additive than multiplicative, although there is a hint of
multiplicativity at higher rainfalls.
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Figure 2: Double smoothing by lowess of summer rainfall at two rain gauges. The
smooths of gauge 23 given 60 and of gauge 60 given 23 are similar. Both indicate a
mainly multiplicative shift.
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Figure 3: Double smoothing by lowess of summer rainfall at two rain gauges. The
smooths of gauge 17 given 60 and of gauge 60 given 17 are similar. Again both indicate
a mainly multiplicative shift.

When pairs of variables do not agree so closely, the smooths inevitably differ to some
extent (figures 2 and 3). What is most common is a scissors pattern of intersecting
smooths, familiar from any discussion of the two regression lines of y given x and of
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x given y. In either case, however, the smooths in these two figures both support
the notion of multiplicative structure. This could be explored in other ways, such as
plotting the difference versus the mean or the ratio versus the geometric mean, an
approach discussed, with several references, in a previous column (Cox 2004c).

When the double smooths agree, many would be happy to accept a compromise
between them, and this is where diagonal smoothing is most congenial. Figure 4 gives
one example. A generate() option is used to store the coordinates of the smooth
for later use. As earlier mentioned, the default of diagsm is to smooth after a robust
standardization, which is then reversed.
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Figure 4: Diagonal smoothing by lowess of summer rainfall at two rain gauges, 17 and
60.

. diagsm srain17 srain60, yla(, nogrid ang(h)) ms(oh)
> legend(ring(0) pos(5) col(1)) addplot(function x, range(srain60) lstyle(grid))
> generate(y_1760 x_1760)

The new variables can then be added to a composite graph (figure 5).
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Figure 5: Double and diagonal smoothing by lowess of summer rainfall at two rain
gauges, 17 and 60. The diagonal smooth provides a reasonable compromise between the
double smooths.

. doublesm srain17 srain60, yla(, nogrid ang(h)) ms(oh)
> addplot(function x, range(srain60) lstyle(grid) ||
> line y_1760 x_1760, lp(dot) sort)
> legend(order(1 "17 | 60" 2 "60 | 17" 5 "diagonal") ring(0) pos(5) col(1))

The legend(order()) call shows the benefit of insider information. Know that the
fifth variable being plotted here is the diagonal smooth: the third is the data, as a set
of point symbols, and the fourth is the line of equality.

This graph is, as you will appreciate, a well-behaved example, and experience will
differ with worse behavior. Whenever candidate smooths agree, it matters little, ei-
ther scientifically or even statistically, which one we choose, but at least in this case
we considered different possibilities for analysis. Even in worse cases, differences be-
tween candidate smooths will emphasize uncertainty about how best to summarize the
structure, and thus caution against overhasty interpretation.

5.2 Cirques in the English Lake District

We continue with a geomorphological example, returning to a dataset used previously
in these columns (Cox 2004a, 2005a) on 158 glacial cirques from the English Lake
District (Evans and Cox 1995). Glacial cirques are hollows excavated by glaciers that
are open downstream, bounded upstream by the crest of a steep slope, and arcuate in
plan around a more gently sloping floor. More informally, they are sometimes described
as ‘armchair-shaped’. A similar dataset from Wales is used elsewhere in this issue (Cox
2005c).
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Two key variables are the length and width of these cirques. Previous analyses
indicate on various grounds that it is best to think on logarithmic scales, so we smooth
on those scales. However, we will want graphs to be labeled in terms of the original
variable labels and units, which make much more scientific sense. This is a common-
enough desire in other problems for us to detail one way how to do that.

First, set up default titles and axis labels in local macros. The program mylabels

is downloadable from SSC and was exemplified in an earlier column (Cox 2004b).

. local yttl "Width, max. perpendicular to median axis (m)"

. local xttl "Length of median axis, focus to crest (m)"

. mylabels 200 500 1000 2000, myscale(log10(@)) local(la)

Width and length are, once again, variables on the same footing. Geometrically,
both are aspects of plan size and shape. Physically, neither is a forcing variable. So
diagonal and double smoothing appeal here. Figure 6 was produced similarly to figure 5
by first diagonal smoothing, using its generate() option to save the coordinates of the
smooth, and then plotting those on top of a double smooth. What is especially intriguing
and a new detail is the hint of curvature at high values. Power-function models, which
transform to straight lines when both variables are logged, have long been popular with
variables like these, but the graph hints that here the power function may not fit quite
as well as thought. Other analyses are needed to follow this up, but the smoothing has
produced a new idea.
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Figure 6: Double and diagonal smoothing by lowess of log cirque width and length.
Smoothing was carried out on logarithmic scales. There is a hint of curvature at high
values that conflicts slightly with the idea of a power function fit, which would imply a
straight line fit on this graph.
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Now we turn to examples of polar smoothing. In practice, start with the default in
which one pair of terms (one sine and one cosine) is used to smooth polar coordinates,
thus yielding an approximate ellipse (figure 7). Then add further terms until it seems
that they are merely corresponding to noise or uninteresting detail (figures 8 and 9).

. polarsm logw logl, yla(‘la’, ang(h)) xla(‘la’) yti("‘yttl’") xti("‘xttl’") ms(oh)

. polarsm logw logl, yla(‘la’, ang(h)) xla(‘la’) yti("‘yttl’") xti("‘xttl’") ms(oh)
> terms(2)

. polarsm logw logl, yla(‘la’, ang(h)) xla(‘la’) yti("‘yttl’") xti("‘xttl’") ms(oh)
> terms(4)
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Figure 7: Polar smooth of log cirque width and length. Smoothing was carried out on
logarithmic data. The smoothing is based on regressing radial coordinates on one sine
term and one cosine term, producing an approximate ellipse on back-transformation.

(Continued on next page)
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Figure 8: Polar smooth of log cirque width and length. Smoothing was carried out on
logarithmic data. The smoothing is based on regressing radial coordinates on two sine
terms and two cosine terms, but the result resembles figure 7.
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Figure 9: Polar smooth of log cirque width and length. Smoothing was carried out
on logarithmic data. The smoothing is based on regressing radial coordinates on four
sine terms and four cosine terms and shows some sensitivity to small details of the
configuration of points.
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As earlier mentioned, polar smoothing done groupwise is a way of checking whether
groups behave similarly or differently. An ordered categorical variable in this dataset
is the ‘grade’ of the cirque, codifying the expert’s best summary of how well developed
the cirque is, meaning how far it represents evidence of strong modification by ice. The
numbers in each grade are classic 11, well-defined 31, definite 44, marginal 37, and
poor 35. The number of classic cirques is too small for this technique, so the first two
categories are combined:

. gen grade2 = cond(grade <= 2, 1, grade)

. label def grade2 1 "classic, well-defined" 3 "definite" 4 "poor" 5 "marginal"

. label val grade2 grade2

. polarsm logw logl, yla(‘la’, ang(h)) xla(‘la’) yti("‘yttl’") xti("‘xttl’")
> ms(oh) terms(2) over(grade2) by(grade2, row(1) legend(off) note("") compact)
> subtitle(, ring(0) pos(11) nobexpand box fcolor(none)) xla(, ang(v))

200

500

1000

2000

20
0

50
0

10
00

20
00 20
0

50
0

10
00

20
00 20
0

50
0

10
00

20
00 20
0

50
0

10
00

20
00

classic, etc. definite poor marginal

W
id

th
, m

ax
. p

er
pe

nd
ic

ul
ar

 to
 m

ed
ia

n 
ax

is
 (

m
)

Length of median axis, focus to crest (m)

Figure 10: Polar smooth of log cirque width and length, separately by expert-determined
grade. Smoothing was carried out on logarithmic data. A systematic shift over cate-
gories is evident, although results indicate that poor and marginal cirques are similar.

The polar smooths in figure 10 show evidence of a systematic change in characteristic
lengths and widths but also some novel details, including the approximate similarity of
the last two categories.

6 A note on quantile–quantile plots

An application of diagonal smoothing particularly that is not discussed in detail here is
to quantile–quantile plots. These plots, for example, as implemented in Stata’s qqplot,
are often plainly presented, usually with no more than a reference line. Yet adding a
smooth can be useful. For this, it is helpful to have a utility generating corresponding
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quantiles for two variables or for two groups of one variable. cquantile is built for this
purpose and may be downloaded using ssc ([D] ssc). A quantile–quantile plot with
smoothing can then be produced with diagsm.

7 Conclusions

Cleveland and McGill (1984) presented an abundance of simple but valuable ideas in
their wide-ranging paper, perhaps too many for them all to be absorbed. Their ‘sun-
flowers’ have seeded and borne fruit recently in Stata (see [R] sunflower; Dupont and
Plummer, Jr., 2005). This paper has drawn attention to an array of more neglected
ideas for identifying basic structure on scatterplots, together with the release of new
programs for experimentation, doublesm, diagsm, and polarsm. They are particularly
relevant to the common but rather neglected problem of smoothing when both variables
are on the same footing.
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