

Give to AgEcon Search

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu

The Stata Journal

Editor
H. Joseph Newton
Department of Statistics
Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Editor
Nicholas J. Cox
Geography Department
Durham University
South Road
Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Associate Editors

Christopher Baum
Boston College

Rino Bellocco
Karolinska Institutet

David Clayton
Cambridge Inst. for Medical Research

Mario A. Cleves
Univ. of Arkansas for Medical Sciences

William D. Dupont
Vanderbilt University

Charles Franklin
University of Wisconsin, Madison

Joanne M. Garrett
University of North Carolina

Allan Gregory
Queen’s University

James Hardin
University of South Carolina

Ben Jann
ETH Zurich, Switzerland

Stephen Jenkins
University of Essex

Ulrich Kohler
WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stanley Lemeshow
Ohio State University

J. Scott Long
Indiana University

Thomas Lumley
University of Washington, Seattle

Roger Newson
King’s College, London

Marcello Pagano
Harvard School of Public Health

Sophia Rabe-Hesketh
University of California, Berkeley

J. Patrick Royston
MRC Clinical Trials Unit, London

Philip Ryan
University of Adelaide

Mark E. Schaffer
Heriot-Watt University, Edinburgh

Jeroen Weesie
Utrecht University

Nicholas J. G. Winter
Cornell University

Jeffrey Wooldridge
Michigan State University

Stata Press Production Manager

Stata Press Copy Editors

Lisa Gilmore

Gabe Waggoner, John Williams

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and

help files) are copyright c© by StataCorp LP. The contents of the supporting files (programs, datasets, and

help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy

or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,

as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.

This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web

sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting

files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,

or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,

incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote

free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered

trademark of StataCorp LP.

The Stata Journal (2005)
5, Number 4, pp. 567–573

Mata Matters: Using views onto the data

William Gould
StataCorp

Abstract. Mata is Stata’s matrix language. In the Mata Matters column, we
show how Mata can be used interactively to solve problems and as a programming
language to add new features to Stata. In this issue’s column, we explore view
matrices, matrices that are views of the underlying Stata dataset rather than copies
of it.

Keywords: pr0019, Mata, views, memory

Overview

A data matrix is a matrix in which the rows are observations and the columns are
variables. For instance, say we have the following data in Stata:

. list

mpg weight displa~t

1. 22 2,930 121
2. 17 3,350 258
3. 22 2,640 121
4. 20 3,250 196
5. 15 4,080 350

In Mata, we can obtain a copy of the data by typing

. mata:
mata (type end to exit)

: X = st_data(., .)

: X
1 2 3

1 22 2930 121
2 17 3350 258
3 22 2640 121
4 20 3250 196
5 15 4080 350

The data matrix we have just created might be used subsequently in the matrix formula
b = (X′X)−1X′y, for some vector y.

What is important to understand about the above is that X is a copy. If we were to
modify the dataset, or even drop it, that would not change X. If we were to modify X,
or even drop it, that would not change the dataset.

c© 2005 StataCorp LP pr0019

568 Mata Matters: Using views onto the data

Function st view() provides an alternative to st data() for accessing the data
stored in the Stata dataset.

: st_view(V=., ., .)

: V
1 2 3

1 22 2930 121
2 17 3350 258
3 22 2640 121
4 20 3250 196
5 15 4080 350

V has the same contents as X and can be used in the same way. For instance, we
might subsequently calculate (V′V)−1V′y. The difference between X and V is that V

is a view: matrix V and the Stata dataset are the same. If we were to modify V, the
dataset would change:

: V[1,1] = 500

: end

. list

mpg weight displa~t

1. 500 2,930 121
2. 17 3,350 258
3. 22 2,640 121
4. 20 3,250 196
5. 15 4,080 350

Similarly, if we were to modify the dataset, V would change:

. replace mpg = 2 in 1
(1 real change made)

. mata:
mata (type end to exit)

: V
1 2 3

1 2 2930 121
2 17 3350 258
3 22 2640 121
4 20 3250 196
5 15 4080 350

The other difference is in the amount of memory consumed by V and X:

W. Gould 569

: mata describe

bytes type name and extent

16 real matrix V[5,3]
120 real matrix X[5,3]

Both matrices are 5 × 3, but X, being a copy, consumes 5 × 3 × 8 = 120 bytes, whereas
V, being a view, consumes only 16 bytes. The difference, 120 − 16 = 104 bytes, is not
much, but were the matrices larger, the difference would become larger, too.

Let’s assume we have a 100,000 × 3 dataset. Then here is what we would see:

: X = st_data(., .)

: st_view(V=., ., .)

: mata describe

bytes type name and extent

16 real matrix V[100000,3]
2,400,000 real matrix X[100000,3]

X, our copy, would have taken 100,000× 3× 8 = 2,400,000 bytes. V, our view, would
still have taken only 16 bytes. Now there is a difference of 2,399,984 bytes.

Memory savings is the most important reason to use views. Data matrices are
usually the largest matrices in matrix calculations, and it is often convenient to have
more than one. With views, it does not matter how many matrices you have.

Most views take more than 16 bytes, but they never take much, especially in com-
parison with a copy. So far, we have included all the variables and all the observations.
If we select some variables and omit others, a little more memory will be required—4
bytes per variable selected in the worst case, and sometimes fewer.

If we omit some observations and include others, we will similarly face a 4-byte-per-
included-observation cost in the worst case, and just as with variables, sometimes it will
be fewer.

Although memory savings is the most important feature of views, I will show that
the ability to change the matrix and change the underlying data can also be put to good
use.

Selecting subsets

The basic recipe for creating a view is

st view(V=., ., .)

where you substitute for V the name of the matrix you wish to create. Do not get hung
up on how odd the first argument, V=., looks. Just change V to the name of your
matrix or, if you prefer, you can type

570 Mata Matters: Using views onto the data

V=.

st view(V, ., .)

You must code V=. one way or the other because the arguments to st view() must
already exist, just as for any function. The real question is not why you have to code
V=. so much as why the syntax is not V = st view(.,.). That is because matrix
V will be special and st view() must lay its hands on V to make it special. In the
process, it does not matter what V contained because st view() re-creates it. When V

already exists, you can dispense with the V=. if you wish. You can also dispense with
the preassignment when writing code within Mata programs. In both cases, it does not
matter which you do.

In any case, the odd-looking first argument V=. specifies the matrix to be created.
The second argument specifies the observations to be included, and the third argu-
ment specifies the variables. Specifying the second argument as . means to include all
observations. Specifying the third argument as . means to include all variables.

Usually, in interactive use, you will want all the observations, but it is rare that you
will want all the variables. Let’s assume that, using the auto data, we wish to calculate

b = (X′X)−1X′y

for

y = (mpg)

X = (weight, foreign, 1)

The solution using views is

. sysuse auto, clear
(1978 Automobile Data)

. gen one = 1

. mata:
mata (type end to exit)

: st_view(y=., ., "mpg")

: st_view(X=., ., ("weight", "foreign", "one"))

: b = invsym(X’X)*X’y

: b
1

1 -.0065878864
2 -1.650029106
3 41.67970233

: end

W. Gould 571

Note the two calls to st view(). To create y, we specified the third argument as "mpg".
To create X, we specified the third argument as ("weight", "foreign", "one"). The
third argument specifies the variables to be selected, and the argument is specified as a
row vector of names.

Once the view matrices are created, we use them just as we would any matrix. The
bulk of the calculation is

b = invsym(X’X)*X’y

whether X and y are views or copies. And, whether X and y are views or copies, it would
be better if the calculation were coded as

b = invsym(cross(X,X))*cross(X,y)

because function cross() is more accurate, faster, and uses less memory than multipli-
cation in these sorts of situations; see [M-5] cross(). This detail has nothing to do with
these discussions, but both the numerical analyst and the programmer in me demand
that I mention that.

Missing values

In calculations like b = (X′X)−1X′y, missing values will result in missing results. Had
there been any missing values in the data, the final result would have been

: b
1

1 .
2 .
3 .

Let us assume that we wish simply to ignore observations that contain missing values.
The easiest way is to drop any observations containing them before creating the views.
In Stata, there are many ways of finding and eliminating observations that contain
missing values. I use the following,

. egen missing = rowmiss(mpg weight foreign)

. drop if missing

and so our solution would become

. sysuse auto, clear

. gen one = 1

. egen missing = rowmiss(mpg weight foreign)

. drop if missing

. mata:
: st_view(y=., ., "mpg")
: st_view(X=., ., ("weight", "foreign", "one"))
: b = invsym(X’X)*X’y
: end

572 Mata Matters: Using views onto the data

That, however, is not the solution I would choose in a programming context. st view()

allows an optional fourth argument in which you can specify the name of a variable that
marks the observations to be included, which is often called a touse variable. In a
programming context, I would create a touse variable in the standard way—touse

variables contain nonzero for observations to be used and zero for observations to be
omitted—and then I would specify that variable’s name as the fourth argument. Do
not get hung up on this because the point of this column is interactive use, but I do
want to show programmers how this would be done:

top: myreg.ado
program myreg

version 9
syntax varlist [if] [in]
marksample touse
tempvar one
qui gen byte ‘one’=1

mata: myreg("‘varlist’ ‘one’", "‘touse’")
end

version 9
mata:
function myreg(string scalar varnames, string scalar touse)

string rowvector vars, rhsvars
string scalar lhsvar
real matrix X
real colvector y

vars = tokens(varnames)
lhsvar = vars[1]
rhsvars = vars[|2\.|]
st_view(X, ., rhsvars, touse)
st_view(y, ., lhsvar, touse)
invsym(cross(X,X))*cross(X,y)

end
end: myreg.ado

Using views to replace values in the dataset

When you replace a value in a view, you also change the value in the underlying Stata
dataset. This feature can be useful in data-management problems.

Say you have a dataset containing the variables stat72, stat73, . . . , stat99 that
record a patient’s status in 1972, 1973, . . . , 1999. You wish to add new variable
firstyear recording the first year in which a status variable takes on the value 1.

The standard solution to this problem involves reshaping the data to long form,
using standard commands to fill in variable firstyear, and reshaping the data back to
wide form.

W. Gould 573

Here is another solution:

. gen byte firstyear = .

. mata:

: names = "stat72 stat73 stat74 stat75 stat76 stat77 stat78 stat79
stat80 stat81 stat82 stat83 stat84 stat85 stat86 stat87 stat88 stat89
stat90 stat91 stat92 stat93 stat94 stat95 stat96 stat97 stat98 stat99"

: st view(s=., ., tokens(names))

: st view(first=., ., "firstyear")

: for (i=1; i<=rows(s); i++) {
> for (j=1; j<=cols(s); j++) {
> if (s[i,j]==1) {
> first[i] = j+71 /* <- note this line */
> break
> }
> }
>
> }

: end

In this program, we use two views.

s is a view onto variables stat72, stat73, . . . , stat99. That makes it easy to loop
over the variables.

first is a view onto variable firstyear. Notice the marked line in the midst of the
for loops: first[i] = j+71. When we change first, we change firstyear.

About the Author

William Gould is President of StataCorp, head of development, and principal architect of Mata.

