%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

THE STATA JOURNAL

Editor

H. Joseph Newton

Department of Statistics

Texas A & M University
College Station, Texas 77843
979-845-3142; FAX 979-845-3144
jnewton@stata-journal.com

Associate Editors
Christopher Baum

Boston College
Rino Bellocco

Karolinska Institutet
David Clayton

Cambridge Inst. for Medical Research
Mario A. Cleves

Univ. of Arkansas for Medical Sciences
William D. Dupont

Vanderbilt University
Charles Franklin

University of Wisconsin, Madison
Joanne M. Garrett

University of North Carolina
Allan Gregor

Queen’s %niversity
James Hardin

University of South Carolina
Ben Jann

ETH Zurich, Switzerland
Stephen Jenkins

University of Essex
Ulrich Kohler

‘WZB, Berlin

Jens Lauritsen
Odense University Hospital

Stata Press Production Manager
Stata Press Copy Editors

Editor

Nicholas J. Cox

Geography Department
Durham University

South Road

Durham City DH1 3LE UK
n.j.cox@stata-journal.com

Stanley Lemeshow
Ohio State University

J. Scott Lon%I
Indiana University

Thomas Lumley

University of Washington, Seattle
Roger Newson

King’s College, London
Marcello Pagano

Harvard School of Public Health
Sophia Rabe-Hesketh

University of California, Berkeley
J. Patrick Royston

MRC Clinical Trials Unit, London
Philip Ryan

University of Adelaide
Mark E. Schaffer

Heriot-Watt University, Edinburgh
Jeroen Weesie

Utrecht University
Nicholas J. G. Winter

Cornell University
Jeffrey Wooldridge

I\/E,ichigan State University

Lisa Gilmore
Gabe Waggoner, John Williams

Copyright Statement: The Stata Journal and the contents of the supporting files (programs, datasets, and
help files) are copyright (© by StataCorp LP. The contents of the supporting files (programs, datasets, and
help files) may be copied or reproduced by any means whatsoever, in whole or in part, as long as any copy
or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

The articles appearing in the Stata Journal may be copied or reproduced as printed copies, in whole or in part,
as long as any copy or reproduction includes attribution to both (1) the author and (2) the Stata Journal.

Written permission must be obtained from StataCorp if you wish to make electronic copies of the insertions.
This precludes placing electronic copies of the Stata Journal, in whole or in part, on publicly accessible web
sites, fileservers, or other locations where the copy may be accessed by anyone other than the subscriber.

Users of any of the software, ideas, data, or other materials published in the Stata Journal or the supporting
files understand that such use is made without warranty of any kind, by either the Stata Journal, the author,
or StataCorp. In particular, there is no warranty of fitness of purpose or merchantability, nor for special,
incidental, or consequential damages such as loss of profits. The purpose of the Stata Journal is to promote
free communication among Stata users.

The Stata Journal, electronic version (ISSN 1536-8734) is a publication of Stata Press, and Stata is a registered
trademark of StataCorp LP.




The Stata Journal (2005)
5, Number 4, pp. 560-566

Suggestions on Stata programming style

Nicholas J. Cox
Durham University, UK
n.j.cox@durham.ac.uk

Abstract. Various suggestions are made on Stata programming style, under the
headings of presentation, helpful Stata features, respect for datasets, speed and
efficiency, reminders, and style in the large.

Keywords: pr0018, Stata language, programming style

1 Introduction

Programming in Stata, like programming in any other computer language, is partly a
matter of syntax, as Stata has rules that must be obeyed. It is also partly a matter
of style. Good style includes, but is not limited to, writing programs that are, above
all else, clear. They are clear to the programmer, who may revisit them repeatedly,
and they are clear to other programmers, who may wish to understand them, to debug
them, to extend them, to speed them up, to imitate them, or to borrow from them.

People who program a great deal know this: setting rules for yourself and then
obeying them ultimately yields better programs and saves time. They also know that
programmers may differ in style and even argue passionately about many matters of
style, both large and small. In this morass of varying standards and tastes, I suggest
one overriding rule: Set and obey programming style rules for yourself. Moreover, obey
each of the rules I suggest unless you can make a case that your own rule is as good or
better.

Enough pious generalities: The devil in programming is in the details. Many of these
details reflect longstanding and general advice (e.g., Kernighan and Plauger 1978).

2 Presentation

In this section, I give a list of basic guidelines for programs.

1. Always include a comment containing the version number of your program, your
name or initials, and the date the program was last modified above the program
line, for example,

*! 1.0.0 Tom Swift 21jan2006
program myprog

(As said, this line is indeed just a comment line; it bears no relation to the Stata
version command. However, which myprog will echo this comment line back

© 2005 StataCorp LP pr0018




N. J. Cox 561

to you whenever this myprog is visible to Stata along your ado-path. Both this
comment and a version command should be used.)

2. Use sensible, intelligible names where possible for programs, variables, and macros.

3. Choose a name for your program that does not conflict with anything already
existing. Suppose that you are contemplating newname. If typing either which
newname or which newname.class gives you a result, StataCorp is already using
the name. Similarly, if ssc type newname.ado gives you a result, a program
with your name is already on SSC. No result from either does not guarantee that
the program is not in use elsewhere: findit newname may find such a program,
although often it will also find much that is irrelevant to this point.

4. Brevity of names is also a virtue. However, no platform on which Stata is currently
supported requires an 8-character limit. Tastes are in consequence slowly shifting:
an intelligible long name for something used only occasionally would usually be
considered preferable to something more cryptic.

5. Note that actual English words for program names are supposedly reserved for
StataCorp.

6. Use the same names and abbreviations for command options that are in common
use in official Stata’s commands. Try to adopt the same conventions for options’
syntax; for example, allow a numlist where similar commands use a numlist. Im-
plement sensible defaults wherever possible.

7. Use natural names for logical constants or variables. Thus local OK should be 1 if
true and 0 if false, permitting idioms such as if ‘0K’. (But beware such logicals’
taking on missing values.)

8. Type expressions so they are readable. Some possible rules are as follows:

a. Put spaces around each binary operator except ~ (gen z = x + y is clear,
but x ~ 2 looks odder than x~2).

b. * and / allow different choices. num / den is arguably clearer than num/den,
but readers might well prefer 2/3 to 2 / 3. Overall readability is paramount;
compare, for example,

hours + minutes / 60 + seconds / 3600
with
hours + minutes/60 + seconds/3600

c. Put a space after each comma in a function, etc.

d. Use parentheses for readability.

Note, however, that such a spaced-out style may make it difficult to fit expressions
on one line, another desideratum.




562

9.

10.

11.

12.
13.

Stata style rules

Adopt a consistent style for flow control. Stata has if, while, foreach, and
forvalues structures that resemble those in many mainstream programming lan-
guages. Programmers in those languages often argue passionately about the best
layout. Choose one such layout for yourself. Here is one set of rules:

a. Tab lines consistently after if or else or while or foreach or forvalues
(the StataCorp convention is that a tab is 8 spaces and is greatly preferable
if Stata is to show your programs properly).

b. Do not put anything on a line after a brace—an opening { or a closing }
(comments are a possible exception).

c. Put a space before braces.
d. Align the i of if and the e of else, and align closing braces } with the i,

or the e, or the w of while, or the f of foreach or forvalues:

if ... {

else {

while ... {

}

foreach ... {

}

In Stata 8 and later, putting the opening and closing braces on lines above
and below the body of each construct is compulsory (with the exceptions
that the whole of an if construct or the whole of an else construct may
legally be placed on one line). For earlier releases, it is strongly advised.

Write within 80 columns (72 are even better). The awkwardness of viewing (and
understanding) long lines outweighs the awkwardness of splitting commands into
two or more physical lines.

Use #delimit ; sparingly (Stata is not C): commenting out ends of lines is tidier
where possible (although admittedly still ugly). The /// comment introduced in
Stata 8 is most helpful here and is arguably more pleasing visually than /* */.

Use blank lines to separate distinct blocks of code.

Consider putting quietly on a block of statements rather than on each or many
of them. An alternative in some cases is to use capture, which eats what output
there might have been and any errors that might occur, which is sometimes the
ideal combination.




N. J. Cox 563

14.

15.
16.

17.

3

You can express logical negation by either ! or ~. Choose one and stick with it.
StataCorp has changed recently from preferring ~ to preferring !.

Group tempname, tempvar, and tempfile declarations.

Well-written programs do not need many comments. (Comment: I could certainly
argue about that!)

Use appropriate display styles for messages and other output. All error messages
(and no others) should be displayed as err; that is, type di as err. In addition,
attach a return code to each error message; 198 (syntax error) will often be fine.

Helpful Stata features

Stata has a number of features that makes programming easier. Examples of ways a
programmer can use these features are as follows:

Stata is very tolerant through version control of out-of-date features, but that
does not mean that you should be. To maximize effectiveness and impact and to
minimize problems, write programs using the latest version of Stata and exploit
its features.

Make yourself familiar with all the details of syntax. It can stop you from rein-
venting little wheels. Use wildcards for options to pass to other commands when
appropriate.

. Support if exp and in range where applicable. This is best done using marksample

touse (or occasionally mark and markout). Have touse as a temporary variable
if and only if marksample or a related command is used. See help marksample.

. _result () still works, but it is unnecessarily obscure compared with r(), e(), or

s() class results.

Make effective use of information available in e() and r(). If your program is
to run in a context that implies that results or estimates are available (say, after
regress), make use of the stored information from the prior command.

. Where appropriate, ensure that your command returns the information that it

computes and displays so that another user may employ it quietly and retrieve
that information.

Ensure that programs that focus on time series or panel data work with time-series
operators if at all possible. In short, exploit tsset.

. Define constants to machine precision. Thus use _pi or c(pi) rather than some

approximation, such as 3.14159, or use -digamma (1) for the Euler—Mascheroni
constant « rather than 0.57721. Cruder approximations may give results ade-
quate for your purposes, but that does not mean that you should eschew wired-in
features.




564 Stata style rules

9. Familiarize yourself with the built-in material revealed by creturn list. Scrolling
right to the end will show several features that may be useful to you.

10. SMCL is the standard way to format Stata output.

4 Respect for datasets
In general, make no change to the data unless that is the direct purpose of your program
or that is explicitly requested by the user.

1. Your program should not destroy the data in memory unless that is essential for

what it does.

2. You should not create new permanent variables on the side unless notified or
requested.

3. Do not use variables, matrices, scalars, or global macros whose names might al-
ready be in use. There is absolutely no need to guess at names that are unlikely
to occur, as temporary names can always be used (type help macro for details
on tempvar, tempname, and tempfile).

4. Do not change the variable type unless requested.

5. Do not change the sort order of data; use sortpreserve.

5 Speed and efficiency

Here is a list of basic ways to increase speed and efficiency:

1. Test for fatal conditions as early as possible. Do no unnecessary work before
checking that a vital condition has been satisfied.

2. Use summarize, meanonly for speed when its returned results are sufficient. Also
consider whether a quietly count fits the purpose better.

3. foreach and forvalues are cleaner and faster than most while loops and much
faster than the old for that still satisfies some devotees. Within programs, avoid
for like the plague. (Note to new Mata users: this does not refer to Mata’s for.)

4. macro shift can be very slow when many variables are present. With 10,000
variables, for example, working all the way through a variable list with macro
shift would require around 50 million internal macro renames. Using foreach
or while without a macro shift is faster.

5. Avoid egen within programs; it is usually slower than a direct attack.




N. J. Cox 565

6. Try to avoid looping over observations, which is very slow. Fortunately, it can
usually be avoided.

7. Avoid preserve if possible. preserve is attractive to the programmer but can be
expensive in time for the user with large data files. Programmers should learn to
master marksample.

8. Specify the type of temporary variables to minimize memory overhead. If a byte
variable can be used, specify generate byte ‘myvar’ rather than letting the
default type be used, which would waste storage space.

9. Temporary variables will be automatically dropped at the end of a program, but
also consider dropping them when they are no longer needed to minimize memory
overhead and to reduce the chances of your program stopping because there is no
room to add more variables.

10. Avoid using a variable to hold a constant; a macro or a scalar is usually all that
is needed. One clear exception is that some graphical effects depend on a variable
being used to store a constant.

6 Reminders

In this section, I describe a few general procedures that will improve one’s code:

1. Remember to think about string variables as well as numeric variables. Does the
task carried out by your program make sense for string variables? If so, will it
work properly? If not, do you need to trap input of a string variable as an error,
say, through syntax?

2. Remember to think about making your program support by wvarlist: when this is
natural. See help byable.

3. Remember to think about weights and implement them when appropriate.

4. The job is not finished until the .hlp is done. Use SMCL to set up your help
files. Old-style help files, while supported, are not documented, while help files
not written in SMCL cannot take advantage of its paragraph mode, which allows
lines to autowrap to fit the desired screen width. For an introduction to the SMCL
required to write a basic help file, see [U] 18.11.6 Writing online help or help
examplehelpfile.

7 Style in the large

Style in the large is difficult to prescribe, but here are some vague generalities:

1. Before writing a program, check that it has not been written already! findit is
the broadest search tool.




566 Stata style rules

2. The best programs do just one thing well. There are exceptions, but what to a
programmer is a Swiss army knife with a multitude of useful tools may look to
many users like a confusingly complicated command.

3. Get a simple version working first before you start coding the all-singing, all-
dancing version that you most desire.

4. Very large programs become increasingly difficult to understand, build, and main-
tain, roughly as some power of their length. Consider breaking such programs
into subroutines or using a structure of command and subcommands.

5. The more general code is often both shorter and more robust. Sometimes pro-
grammers write to solve the most awkward case, say, to automate a series of
commands that would be too tedious or error-prone to enter interactively. Step-
ping back from the most awkward case to the more general one is often then easier
than might be thought.

6. Do not be afraid to realize that at some point you may be best advised to throw
it all away and start again from scratch.

8 Note: Use the best tools

Find and use a text editor that you like and that supports programming directly. A
good editor, for example, will be smart about indenting and will allow you to search for
matching braces. Some editors even show syntax highlighting. For much more detailed
comments on various text editors for Stata users, see
http://fmwww.bc.edu/repec/bocode/t/text Editors.html.

9 Acknowledgments

Many thanks to Kit Baum, Bill Gould, Alan Riley, and Vince Wiggins for general
benedictions and numerous specific contributions.

10 References

Kernighan, B. W. and P. J. Plauger. 1978. The Elements of Programming Style. New
York: McGraw—Hill.

About the Author

Nicholas Cox is a statistically minded geographer at Durham University. He contributes talks,
postings, FAQs, and programs to the Stata user community. He has also co-authored fifteen
commands in official Stata. He was an author of several inserts in the Stata Technical Bulletin
and is an Editor of the Stata Journal.






